JPH08254260A - Lubrication device of belt type continuously variable transmission - Google Patents

Lubrication device of belt type continuously variable transmission

Info

Publication number
JPH08254260A
JPH08254260A JP7058517A JP5851795A JPH08254260A JP H08254260 A JPH08254260 A JP H08254260A JP 7058517 A JP7058517 A JP 7058517A JP 5851795 A JP5851795 A JP 5851795A JP H08254260 A JPH08254260 A JP H08254260A
Authority
JP
Japan
Prior art keywords
pulley
oil supply
continuously variable
variable transmission
belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7058517A
Other languages
Japanese (ja)
Other versions
JP3221271B2 (en
Inventor
Daisuke Kobayashi
大介 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP05851795A priority Critical patent/JP3221271B2/en
Publication of JPH08254260A publication Critical patent/JPH08254260A/en
Application granted granted Critical
Publication of JP3221271B2 publication Critical patent/JP3221271B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0434Features relating to lubrication or cooling or heating relating to lubrication supply, e.g. pumps ; Pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0456Lubrication by injection; Injection nozzles or tubes therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0487Friction gearings
    • F16H57/0489Friction gearings with endless flexible members, e.g. belt CVTs

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transmissions By Endless Flexible Members (AREA)
  • General Details Of Gearings (AREA)

Abstract

PURPOSE: To optimize the supply amount of a lubricating oil between a belt and a pulley of a belt type continuously variable transmission and reduce drive loss of a hydraulic pump. CONSTITUTION: Oil supply nozzles 11, 12 for belt lubrication are provided in each of an input pulley 1 and an output pulley 2. On the halfway of a passage which connects a hydraulic pump 7 and each oil supply nozzle, a control valve 14 which supplies discharge oil of the hydraulic pump 7 to each oil supply nozzle 11, 12 reciprocally is provided so that an oil supply ratio to the input pulley 1 side is increased as gear change ratio increases.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はベルト式無段変速機の
潤滑装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lubricating device for a belt type continuously variable transmission.

【0002】[0002]

【従来の技術とその解決すべき課題】従来のベルト式無
段変速機の潤滑装置としては、例えば実開昭63−75
661号公報に開示されているようなものがある。
2. Description of the Related Art As a conventional lubricating device for a belt type continuously variable transmission, for example, the actual opening 63-75.
There is one disclosed in Japanese Patent No. 661.

【0003】この潤滑装置は、それまでのベルト式無段
変速機の給油ノズルが、入力プーリもしくは出力プーリ
のどちらか一方側にのみ付設されているにすぎず、入力
側と出力側の両方のベルト及びプーリを十分に潤滑する
ためには、実際に必要な潤滑流量よりも過剰な潤滑流量
が必要となり、駆動ポンプの大型化と駆動損失の増大が
避けられないという問題点を解消するためのものであ
り、このために入力プーリと出力プーリの各々の近傍に
給油ノズルを付設し、この2個の給油ノズルにより、ベ
ルト及びプーリに潤滑油を供給するようにしている。
In this lubrication system, the oil supply nozzle of the belt type continuously variable transmission has been attached only to either one of the input pulley and the output pulley, and both the input side and the output side are provided. In order to sufficiently lubricate the belt and pulley, an excessive amount of lubrication flow is required than the actually required lubrication flow rate, and it is necessary to solve the problem that the drive pump becomes large and drive loss increases. For this reason, oil supply nozzles are provided in the vicinity of each of the input pulley and the output pulley, and the two oil supply nozzles supply the lubricating oil to the belt and the pulley.

【0004】しかしながら、この潤滑装置では、潤滑油
の流量調整手段が設けられていないので各プーリへの潤
滑流量は常に一定となっており、この場合、入力側と出
力側の各々で最も摩擦状態の厳しい条件に合わせて独立
に、あるいは同一に潤滑流量を設定せざるをえず、設定
される潤滑流量の総和は、実際のベルト運転時に必要な
潤滑流量の総和に対して過剰となり、この結果、依然と
して駆動ポンプの大型化と駆動損失の増大が避けられな
いという問題があった。
However, since this lubricating device is not provided with the means for adjusting the flow rate of the lubricating oil, the lubricating flow rate to each pulley is always constant. In this case, the frictional state on the input side and the output side is the highest. Inevitably, the lubrication flow rate must be set independently or identically according to the severe conditions of, and the total sum of the lubrication flow rate set becomes excessive with respect to the total lubrication flow rate required during actual belt operation. However, there is still a problem that the drive pump becomes larger and the drive loss increases.

【0005】一方、車速もしくはエンジン回転数と負荷
の少なくとも何れか一方に応じて、潤滑流量を可変制御
するというものが、特開昭60−95273号として開
示されている。
On the other hand, Japanese Patent Laid-Open No. 60-95273 discloses that the lubricating flow rate is variably controlled according to at least one of the vehicle speed or the engine speed and the load.

【0006】ただし、この装置では、ベルトに対して潤
滑ノズルは1個しか用意されていないため、入力側と出
力側の両方のベルト及びプーリを過不足なく潤滑するこ
とは不可能である。また、潤滑流量を可変としても、駆
動ポンプが固定容量ポンプであれば、ポンプの容積は最
大必要流量で決まってしまうため、可変流量制御のみに
よってポンプの駆動損失を低減することはできない。
However, in this apparatus, since only one lubrication nozzle is prepared for the belt, it is impossible to lubricate both the input side and output side belts and pulleys without excess or deficiency. Further, even if the lubricating flow rate is variable, if the drive pump is a fixed displacement pump, the volume of the pump is determined by the maximum required flow rate, so the drive loss of the pump cannot be reduced only by the variable flow rate control.

【0007】なお、仮に入力プーリと出力プーリの各々
の近傍に給油ノズルを付設し、車速もしくはエンジン回
転数等に応じて潤滑流量を可変制御するようにしたとし
ても、車速とエンジン回転数等の情報からベルトの変速
比を正確に検知することはできないので各プーリでの必
要潤滑流量を設定することができず、したがって適切な
潤滑を行うことはできない。また、潤滑流量を車速もし
くはエンジン回転数等に応じて可変としても、駆動ポン
プが固定容量であれば、ポンプ容積は最大必要流量で決
まるため、可変流量制御のみによってポンプの駆動損失
を低減することはやはりできない。
Even if an oil supply nozzle is provided near each of the input pulley and the output pulley and the lubricating flow rate is variably controlled according to the vehicle speed or the engine speed, the vehicle speed and the engine speed can be controlled. Since it is not possible to accurately detect the gear ratio of the belt from the information, it is not possible to set the required lubrication flow rate for each pulley, and therefore it is not possible to perform proper lubrication. Even if the lubrication flow rate can be varied according to the vehicle speed or engine speed, if the drive pump has a fixed capacity, the pump volume will be determined by the maximum required flow rate, so the drive loss of the pump can be reduced only by variable flow rate control. Can't do

【0008】この発明はこうした従来技術の問題点を解
消して、ベルト式無段変速機のベルト−プーリ間の潤滑
油供給量を最適化すると共に油圧ポンプの駆動損失を軽
減することを目的としている。
SUMMARY OF THE INVENTION The present invention aims to solve the problems of the prior art, optimize the amount of lubricating oil supplied between the belt and pulley of a belt type continuously variable transmission, and reduce the drive loss of the hydraulic pump. There is.

【0009】[0009]

【課題を解決するための手段】第1の発明は、入力プー
リ側と出力プーリ側の各々にベルトの潤滑油を供給する
給油ノズルを配設し、油圧ポンプからの吐出油を前記各
給油ノズルに供給する通路を備えたベルト式無段変速機
において、前記通路の途中に各給油ノズルへの潤滑流量
を相反的に増減する制御弁を設けるとともに、無段変速
機の変速比が大となるほど入力プーリ側の潤滑油供給割
合が増大するように前記制御弁を制御する手段を設けた
ものとする。
According to a first aspect of the invention, oil supply nozzles for supplying belt lubricating oil are provided on the input pulley side and the output pulley side respectively, and the oil discharged from a hydraulic pump is supplied to each of the oil supply nozzles. In a belt-type continuously variable transmission having a passage for supplying the oil to the oil supply nozzle, a control valve for reciprocally increasing or decreasing the lubricating flow rate to each oil supply nozzle is provided in the middle of the passage, and the transmission ratio of the continuously variable transmission becomes larger. A means for controlling the control valve is provided so that the lubricating oil supply ratio on the input pulley side increases.

【0010】第2の発明は、上記第1の発明の制御手段
を、入力プーリまたは出力プーリの可動プーリの位置を
検出して、当該可動プーリが変速比大となる位置に移動
するほど入力プーリ側の潤滑油供給割合が増大するよう
に制御弁を制御するものとする。
According to a second aspect of the invention, the control means of the first aspect of the invention detects the position of the movable pulley of the input pulley or the output pulley, and moves the input pulley so that the movable pulley moves to a position where the gear ratio is high. The control valve shall be controlled so that the side lubricating oil supply rate increases.

【0011】第3の発明は、上記第2の発明の制御手段
を、入力プーリまたは出力プーリの可動プーリの移動を
制御弁に伝達するリンク機構として構成したものとす
る。
According to a third aspect of the present invention, the control means of the second aspect is configured as a link mechanism for transmitting the movement of the movable pulley of the input pulley or the output pulley to the control valve.

【0012】第4の発明は、上記第1〜第3の発明の制
御弁を、油圧ポンプからの潤滑油を入力プーリ側の給油
ノズルに供給する第1のポートと出力プーリ側の給油ノ
ズルに供給する第2のポートと、これら2つのポート内
に相反的に進退する弁体とを備え、該弁体のポート内へ
の進入量が大となるほどポート開口面積が減じるように
形成したものとする。
According to a fourth aspect of the present invention, the control valve according to any of the first to third aspects is provided in a first port for supplying lubricating oil from a hydraulic pump to an oil supply nozzle on the input pulley side and an oil supply nozzle on the output pulley side. A second port for supplying and a valve body that reciprocally moves into and out of these two ports, and the port opening area is reduced as the amount of entry of the valve body into the port increases. To do.

【0013】[0013]

【作用】無段変速機のベルトとプーリとの間に生じる摩
擦熱は、詳細は後述するが、一般にベルトとプーリとの
接触周長が小さい側で比較的大となり、すなわち変速比
が大きくなるほど入力プーリ側の、変速比が小さくなる
ほど出力プーリ側の、熱負荷がそれぞれ増大する傾向が
ある。
The frictional heat generated between the belt and the pulley of the continuously variable transmission will be relatively large on the side where the contact circumferential length between the belt and the pulley is small, that is, as the gear ratio becomes larger, as will be described later in detail. The heat load on the output pulley side tends to increase as the gear ratio on the input pulley side decreases.

【0014】いま、第1の発明において、無段変速機の
入力プーリと出力プーリにはその変速比に応じて、変速
比が大となるほど入力プーリ側の給油ノズルへの流量が
増大するように潤滑油が供給される。このとき、制御弁
を介しての相反的な流量制御に基づき、出力プーリ側の
給油ノズルには相対的に少量の潤滑油が供給されること
になる。その反面、変速比が小となるほど出力プーリ側
への潤滑流量が増大するとともに入力プーリ側への潤滑
流量が減少する。
In the first aspect of the present invention, the flow rate of the input pulley and the output pulley of the continuously variable transmission is increased according to the gear ratio of the continuously variable transmission as the gear ratio increases. Lubricating oil is supplied. At this time, a relatively small amount of lubricating oil is supplied to the oil supply nozzle on the output pulley side based on the reciprocal flow rate control via the control valve. On the other hand, as the gear ratio becomes smaller, the lubricating flow rate to the output pulley side increases and the lubricating flow rate to the input pulley side decreases.

【0015】このようにして、熱的負担の大きくなる側
への潤滑流量は増大され、負担の小さくなる側への潤滑
流量が減少されることにより、各プーリへの潤滑流量は
熱的負担に対して過不足のない量に最適制御されるとと
もに、各プーリに供給される総潤滑流量は常に一定値に
抑えられるので、潤滑油を各給油ノズルに供給する油圧
ポンプの負担は常に必要最小限に抑えられる。
In this way, the lubricating flow rate to the side where the thermal load becomes large is increased, and the lubricating flow rate to the side where the thermal load becomes small is reduced, so that the lubricating flow rate to each pulley becomes a thermal load. On the other hand, it is optimally controlled so that there is no excess or deficiency and the total lubrication flow rate supplied to each pulley is always suppressed to a constant value, so the load on the hydraulic pump that supplies lubricating oil to each oil supply nozzle is always the minimum required. Can be suppressed to.

【0016】第2の発明では、無段変速機の入力プーリ
または出力プーリを構成する可動プーリの位置に基づい
て変速比が判定され、可動プーリが変速比大となる位置
に移動するほど入力プーリ側の潤滑油供給割合が増大す
るように制御弁が制御されるので、無段変速機による変
速比変化に対し潤滑流量を正確に制御できる。さらに、
第3の発明では、前記変速比変化が可動プーリの位置変
化としてリンク機構を介して直接的に制御弁に伝達され
るので、簡潔な構成で変速比変化を潤滑流量に反映させ
ることができる。
According to the second aspect of the invention, the gear ratio is determined based on the position of the movable pulley that constitutes the input pulley or the output pulley of the continuously variable transmission, and the input pulley is increased as the movable pulley moves to a position where the gear ratio is high. Since the control valve is controlled so that the side lubricating oil supply rate increases, it is possible to accurately control the lubricating flow rate with respect to the change of the gear ratio by the continuously variable transmission. further,
In the third aspect, the change in the gear ratio is directly transmitted to the control valve via the link mechanism as the change in the position of the movable pulley, so that the change in the gear ratio can be reflected in the lubricating flow rate with a simple configuration.

【0017】第4の発明では、それぞれ入力プーリ側給
油ノズルと出力プーリ側給油ノズルに連通する2つのポ
ート間での弁体の往復運動に基づいて相反的に各給油ノ
ズルへの潤滑流量が制御される。この場合、簡潔な構成
の制御弁にて容易に所期の流量制御を実現できる。
In the fourth aspect of the invention, the lubricating flow rate to each oil supply nozzle is reciprocally controlled based on the reciprocating motion of the valve element between the two ports communicating with the input pulley side oil supply nozzle and the output pulley side oil supply nozzle. To be done. In this case, the desired flow rate control can be easily realized with the control valve having a simple structure.

【0018】[0018]

【実施例】以下、この発明の実施例を図面に基づいて説
明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0019】図1(図4)において、1〜3はそれぞれ
ベルト式無段変速機構を構成する入力プーリ,出力プー
リ,及びベルトを示している。
In FIG. 1 (FIG. 4), reference numerals 1 to 3 respectively indicate an input pulley, an output pulley and a belt which constitute a belt type continuously variable transmission mechanism.

【0020】入力プーリ1は、トルクコンバータ4およ
びクラッチ5を介してエンジン6の出力軸6aに連結さ
れる入力軸1aと、この入力軸1aに固定された固定プ
ーリ1bと、入力軸1a上を軸方向に摺動して前記入力
固定プーリ1bとの相対間隔が可変となるように油圧制
御される可動プーリ1cとからなっている。また、出力
プーリ2は、図示しない車両の駆動軸側に連結される出
力軸2aと、この出力軸2aに固定された固定プーリ2
bと、出力軸2a上を軸方向に摺動して前記固定プーリ
2bとの相対間隔が可変となるように油圧制御される可
動プーリ2cとからなっている。
The input pulley 1 includes an input shaft 1a connected to an output shaft 6a of an engine 6 via a torque converter 4 and a clutch 5, a fixed pulley 1b fixed to the input shaft 1a, and an input shaft 1a. It comprises a movable pulley 1c which is hydraulically controlled so as to slide in the axial direction and to have a variable relative distance from the input fixed pulley 1b. The output pulley 2 includes an output shaft 2a connected to a drive shaft side of a vehicle (not shown) and a fixed pulley 2 fixed to the output shaft 2a.
b, and a movable pulley 2c that is hydraulically controlled so as to slide on the output shaft 2a in the axial direction so that the relative distance between the fixed pulley 2b and the fixed pulley 2b is variable.

【0021】ベルト3は、図2および図3に示したよう
に、積層構造を有するリング3a上に多数のエレメント
3bを支持した構成を有しており、入出力プーリ1,3
間に巻き掛けた状態で前記エレメント3bの両側面とプ
ーリ円錐面との間に生じる接触摩擦力に基づいて回転力
を伝達する。
As shown in FIGS. 2 and 3, the belt 3 has a structure in which a large number of elements 3b are supported on a ring 3a having a laminated structure.
The rotational force is transmitted based on the contact frictional force generated between the both side surfaces of the element 3b and the conical surface of the pulley while being wound between them.

【0022】この無段変速機構の変速比(=入出軸回転
速度/出力軸回転速度)は、ベルト3が入力プーリ1と
出力プーリ2の各に接触する部分の半径をそれぞれの可
動プーリ1c,2cの位置を相反的に油圧制御して変化
させることにより制御され、すなわち入力側のプーリ1
b,1cの間隔を広げてベルト3の接触半径を小さくす
るとともに、出力側のプーリ2b,2cの間隔を狭めて
接触半径を大きくするほど変速比は大となり、その反対
に入力側のプーリ1b,1cの間隔を狭めるとともに出
力側のプーリ2b,2cの間隔を広げるほど変速比は小
となる。
The gear ratio (= input / output shaft rotation speed / output shaft rotation speed) of this continuously variable transmission mechanism is determined by setting the radius of the portion where the belt 3 contacts the input pulley 1 and the output pulley 2 as the movable pulleys 1c, 2c is controlled by reciprocally hydraulically controlling and changing the position, that is, the pulley 1 on the input side.
As the contact radius of the belt 3 is reduced by widening the distance between b and 1c, and the contact radius is increased by narrowing the distance between the output pulleys 2b and 2c, the gear ratio becomes larger, and conversely, the input pulley 1b. , 1c and the output side pulleys 2b and 2c are widened, the gear ratio becomes smaller.

【0023】このような入出力側のそれぞれのプーリ間
隔つまり可動プーリ1c,2cの位置は、油圧ポンプ7
から各プーリ1c,2cについて相反的に大きさが変化
するように調圧手段8を介して供給される油圧力によっ
て制御される。このような油圧制御は、車両の運転状態
に応じて所定の変速比となるように、予め定められた所
定の変速パターンにしたがって図示しない変速比制御手
段が実行する。
The distance between the respective pulleys on the input and output sides, that is, the positions of the movable pulleys 1c and 2c is determined by the hydraulic pump 7.
Is controlled by the oil pressure supplied via the pressure adjusting means 8 so that the sizes of the pulleys 1c and 2c reciprocally change. Such hydraulic control is executed by a gear ratio control means (not shown) according to a predetermined gear shift pattern that is set in advance so that the gear ratio becomes a predetermined gear ratio according to the operating state of the vehicle.

【0024】以上の点は周知の無段自動変速機と同様で
あるが、この実施例では、入出力側の各プーリ1,2に
対する潤滑油の供給を行うべく、それぞれに給油ノズル
11,12を設けるとともに、各ノズル11,12に調
圧手段8からの潤滑油を供給する通路13の途中に潤滑
流量を各ノズル11,12について相反的に制御する制
御弁14を介装する。前記制御弁14は、無段変速機の
変速比を検出して変速比が大となるほど、つまり変速比
がLOW側になるほど入力プーリ1側への潤滑油量が増
えるように制御手段15により制御される。
The above points are similar to those of the known continuously variable automatic transmission, but in this embodiment, in order to supply the lubricating oil to the pulleys 1 and 2 on the input / output side, the oil supply nozzles 11 and 12 are respectively supplied. In addition, a control valve 14 for reciprocally controlling the lubricating flow rate of each nozzle 11, 12 is provided in the middle of a passage 13 for supplying the lubricating oil from the pressure adjusting means 8 to each nozzle 11, 12. The control valve 14 is controlled by the control means 15 such that the amount of lubricating oil to the input pulley 1 side increases as the gear ratio is detected by detecting the gear ratio of the continuously variable transmission, that is, the gear ratio becomes LOW. To be done.

【0025】図4と図5に、上記制御手段15と制御弁
14の実施例をそれぞれ示す。図5に示した制御手段
は、可動プーリの位置変化に応じて潤滑流量が変化する
ようにリンク機構により制御弁開度を制御するようにし
ている。詳細には、この場合入力側の可動プーリ1cの
外周面に全周的に凹溝1dが形成されており、この凹溝
1dにプーリ位置検出子15aの先端部15bが摺動可
能に係合している。プーリ位置検出子15aはプーリ軸
方向に摺動可能に支持されており、可動プーリ1cの移
動に伴って軸方向に移動する。この検出子15aの他端
部は、図5に示したように制御弁14のスプール状の弁
体14aに連接されており、前記プーリ移動に伴って弁
体14aが開閉作動をするように構成されている。
4 and 5 show examples of the control means 15 and the control valve 14, respectively. The control means shown in FIG. 5 controls the opening degree of the control valve by the link mechanism so that the lubricating flow rate changes according to the position change of the movable pulley. More specifically, in this case, a concave groove 1d is formed on the entire outer peripheral surface of the input side movable pulley 1c, and the tip portion 15b of the pulley position detector 15a is slidably engaged with the concave groove 1d. are doing. The pulley position detector 15a is slidably supported in the pulley axial direction, and moves in the axial direction as the movable pulley 1c moves. The other end of the detector 15a is connected to the spool-shaped valve body 14a of the control valve 14 as shown in FIG. 5, and the valve body 14a is configured to open and close as the pulley moves. Has been done.

【0026】制御弁14は、上記弁体14aとこれを摺
動自由に収装したハウジング14bとからなり、前記ハ
ウジング14bには調圧手段8を介して所定量に調整さ
れた油圧ポンプ7からの潤滑油が流入する入口ポート1
4cと、この流入潤滑油をそれぞれ入力プーリ1側の給
油ノズル11と出力プーリ2側の給油ノズル12に分流
する第1,第2のポート14d,14eが設けられてい
る。前記各ポート14d,14eはハウジング14b内
面に弁体14aを包囲するように環状路を形成してお
り、一方弁体14aの円筒面にはこの環状路に対抗する
ように、内側に対向的に傾斜した一対の平坦部14f,
14gが形成されている。
The control valve 14 comprises the valve body 14a and a housing 14b in which the valve body 14a is slidably accommodated, and the housing 14b is provided with a hydraulic pump 7 adjusted to a predetermined amount via a pressure adjusting means 8. Inlet port 1 into which the lubricating oil of
4c and first and second ports 14d and 14e for branching the inflowing lubricating oil to the oil supply nozzle 11 on the input pulley 1 side and the oil supply nozzle 12 on the output pulley 2 side, respectively. Each of the ports 14d and 14e forms an annular passage on the inner surface of the housing 14b so as to surround the valve body 14a, while the cylindrical surface of the valve body 14a is opposed to the inside so as to oppose the annular passage. A pair of inclined flat portions 14f,
14 g are formed.

【0027】図5は可動プーリ1cが最LOW位置とな
ったときの制御弁位置を示している。このとき、出力プ
ーリ側のポート14eは弁体14aの円筒面により大部
分が塞がれ、出力プーリ側の潤滑油量Lsは非常に絞ら
れて小流量となる。一方、入力プーリ側のポート14d
は、弁体平坦部14fとの間隔つまり流路断面積が最大
となるので、入力プーリ側の潤滑流量Lpは比較的大流
量に制御される。同様に、可動プーリ1cが最HI位置
となったときには、弁体14aが図5で右方向に移動し
て前記と逆の流量の設定状態になる。
FIG. 5 shows the control valve position when the movable pulley 1c is at the lowest LOW position. At this time, most of the port 14e on the output pulley side is blocked by the cylindrical surface of the valve body 14a, and the lubricating oil amount Ls on the output pulley side is extremely narrowed to a small flow rate. On the other hand, the port 14d on the input pulley side
Since the distance from the valve flat portion 14f, that is, the flow passage cross-sectional area, becomes maximum, the lubricating flow rate Lp on the input pulley side is controlled to a relatively large flow rate. Similarly, when the movable pulley 1c reaches the maximum HI position, the valve element 14a moves to the right in FIG. 5, and the flow rate setting state opposite to that described above is set.

【0028】図6はこのような入力プーリ位置つまり変
速比の変化に伴う各プーリ1,2側への潤滑油量Lp,
Lsの流量制御特性を示したもので、図示したようにL
pとLsは一方が増大すると他方が減少するという具合
に相反的に制御され、変速比=1のときには互いに等流
量となる。また、LpとLsによる総流量は変速比にか
かわらず常に一定である。
FIG. 6 shows the amount of lubricating oil Lp to the pulleys 1 and 2 due to the change of the input pulley position, that is, the gear ratio.
It shows the flow rate control characteristic of Ls.
p and Ls are reciprocally controlled such that one increases and the other decreases, and when the gear ratio = 1, the flow rates are equal to each other. Further, the total flow rate of Lp and Ls is always constant regardless of the gear ratio.

【0029】次に上記実施例の作用を説明するにあた
り、まず無段変速機のVベルトとプーリ間で摩擦熱が発
生する原理について説明する。
In describing the operation of the above embodiment, first, the principle of frictional heat generation between the V-belt and the pulley of the continuously variable transmission will be described.

【0030】図2は、ベルト式無段変速機に用いられる
金属Vベルトの構成例を示したものであり、このVベル
ト3は、既述したとおり複数の無端リングからなる積層
リング3aと、このリング3aの長手方向に隙間なく配
列される多数のエレメント3bからなっている。各エレ
メント3bは前面下半部に形成されたテーパ面3cによ
りエレメント列としての内側への屈曲が許容され、これ
によりプーリ1,2への巻かけを可能にしている。
FIG. 2 shows an example of the structure of a metal V-belt used in a belt type continuously variable transmission. This V-belt 3 has a laminated ring 3a composed of a plurality of endless rings as described above. The ring 3a is composed of a large number of elements 3b arranged in the longitudinal direction without gaps. Each element 3b is allowed to be bent inward as an element row by the taper surface 3c formed in the lower half portion of the front surface, which allows the pulleys 1 and 2 to be wound.

【0031】ところで、エレメント同士の接触点Aは、
リング3aとエレメント3bとの接触面Bから半径方向
にrほど内側に離れている。この径差rは1mm程度であ
るが、これがあるためプーリに巻き付いた屈曲部分で外
側を移動するベルト3aのほうが内側を移動するエレメ
ント3bよりも角速度が小さくなって滑りを生じること
になる。このとき、例えば図8の(a)で示したよう
に、変速比が大きいLOW側にある場合、ベルト3の巻
き掛け角度ないしプーリへの接触周長は入力プーリ1側
よりも出力プーリ2側のほうが大きく、それだけリング
3aとエレメント3bとの間の摩擦力も大きいので、滑
りは比較的摩擦力の小さい入力プーリ1側で起きること
になる。その反対に、図8の(b)で示したように、変
速比が小さいHI側にある場合には、ベルトの巻き掛け
角度が大きい入力プーリ1側ではリング3aとエレメン
ト3bとは略一体的に回転し、リング3aとエレメント
3bとの間の相対滑りは主として出力プーリ2側にて発
生することになる。
By the way, the contact point A between the elements is
It is separated from the contact surface B between the ring 3a and the element 3b inward in the radial direction by r. This diameter difference r is about 1 mm, but because of this, the belt 3a moving outside at the bent portion wound around the pulley has a smaller angular velocity than the element 3b moving inside and slips. At this time, for example, as shown in FIG. 8A, when the gear ratio is large on the LOW side, the winding angle of the belt 3 or the contact circumference with the pulley is closer to the output pulley 2 side than the input pulley 1 side. Is larger, and the frictional force between the ring 3a and the element 3b is larger accordingly, so that the slip occurs on the side of the input pulley 1 where the frictional force is relatively small. On the contrary, as shown in FIG. 8B, when the gear ratio is small on the HI side, the ring 3a and the element 3b are substantially integrated on the input pulley 1 side where the belt winding angle is large. The relative slip between the ring 3a and the element 3b occurs mainly on the output pulley 2 side.

【0032】つまり、このような無段変速機用のVベル
トにおいては、リング3aとエレメント3bとが、変速
比が1よりも大きいLOW側では入力プーリ1側で、変
速比が1よりも小さいHI側では出力プーリ2側で相対
滑りを発生する。そして、この相対滑りによってリング
3aとエレメント3bとの接触面に摩擦熱が発生する。
図9は、ベルト周長=700mm、プーリ軸間距離=16
0mmのベルト式無段変速機において、入力軸回転速度=
4000rpmで運転して変速比を変化させたときに生じ
るエレメントとリング間の相対滑り速度の計算結果を示
したものである。変速比=1を境に滑りの発生が入れ替
わること、変速比がLOW側もしくはHI側になるほど
相対滑り速度は増大し、発熱量も増大することが分か
る。
That is, in such a V-belt for a continuously variable transmission, the ring 3a and the element 3b are on the input pulley 1 side on the LOW side where the gear ratio is larger than 1, and the gear ratio is smaller than 1. On the HI side, relative slippage occurs on the output pulley 2 side. Friction heat is generated on the contact surface between the ring 3a and the element 3b due to this relative sliding.
In FIG. 9, the belt circumference is 700 mm and the distance between the pulley axes is 16
0 mm belt type continuously variable transmission, input shaft rotation speed =
It is the calculation result of the relative slip speed between the element and the ring that occurs when the gear ratio is changed by operating at 4000 rpm. It can be seen that the occurrence of slipping changes at the gear ratio = 1 and that the relative slip speed increases and the amount of heat generation also increases as the gear ratio becomes LOW or HI.

【0033】ここで、仮に最LOWで必要な潤滑流量を
(入力,出力)=(2,1)、最HIレシオで必要な潤
滑流量を(入力/出力)=(1,2)とするとき、入力
プーリと出力プーリの各々の近傍に設けた給油ノズルに
よりベルトおよびプーリに潤滑油を一定流量で供給する
従来技術の場合、運転条件の全域で十分な潤滑を達成す
るためには、既に述べたように、潤滑流量を入力側と出
力側の各々で、最も摩擦状態の厳しい条件に合わせて独
立に、あるいは同一に設定する必要があるから、入力プ
ーリ側は最LOW時に必要な2を、出力プーリ側は最H
I時に必要な2を常時供給しなければならず、したがっ
て必要な総潤滑流量は4となる。ここで、最LOWの運
転条件を考えると、入力プーリ側は必要十分な潤滑流量
2であるが、出力プーリ側では1で済むにもかかわらず
2の潤滑流量のままであり、明らかに過剰供給というこ
とになる。同様に、最HIの運転条件を考えると、入力
プーリ側では1だけ過剰供給となる。すなわち、従来装
置では潤滑油の過剰供給は、結局すべての運転条件にお
いて1の分だけ生じることになり、これがそのまま油圧
ポンプの駆動損失分となっている。
Here, assuming that the lubricating flow rate required at the maximum LOW is (input, output) = (2,1) and the lubricating flow rate required at the maximum HI ratio is (input / output) = (1,2). In the case of the conventional technology in which the lubricating oil is provided to the belt and the pulley at a constant flow rate by the oil supply nozzles provided near the input pulley and the output pulley, in order to achieve sufficient lubrication over the entire operating condition, As described above, it is necessary to set the lubrication flow rate independently or the same on the input side and the output side according to the most severe frictional condition. Maximum H on the output pulley side
The required 2 must always be supplied at the time of I, so the total required lubricating flow rate is 4. Considering the operating conditions of maximum LOW, the necessary and sufficient lubricating flow rate is 2 on the input pulley side, but the lubricating flow rate of 2 remains at the output pulley side even though the required lubricating flow rate is 2. It turns out that. Similarly, considering the maximum HI operating condition, the supply amount is 1 excessively on the input pulley side. That is, in the conventional device, the excessive supply of the lubricating oil is eventually generated by 1 under all the operating conditions, which is the driving loss of the hydraulic pump.

【0034】これに対して、上記実施例においては、図
6に示したような特性で潤滑流量が制御される。無段変
速機がLOWからHIにシフトするほど入力プーリ1側
の相対滑りすなわち発熱量は減少し、HIからLOWに
シフトするほど出力プーリ2側の発熱量が減少するか
ら、このような流量制御特性により、それぞれのプーリ
1,2に必要な流量を過不足なく供給することができる
ことがわかる。そして、この場合の必要な総潤滑油流量
は常に3である。したがって、従来技術と比較して必要
潤滑流量を1だけ低減することが可能であり、この潤滑
流量の低減により駆動ポンプの小型化ないし駆動損失の
低減が図れるのである。
On the other hand, in the above embodiment, the lubricating flow rate is controlled with the characteristics shown in FIG. As the continuously variable transmission shifts from LOW to HI, the relative slip on the input pulley 1 side, that is, the calorific value decreases, and the shift value from HI to LOW decreases the calorific value on the output pulley 2 side. It can be seen from the characteristics that the required flow rates can be supplied to the pulleys 1 and 2 without excess or deficiency. The required total lubricating oil flow rate in this case is always 3. Therefore, it is possible to reduce the required lubricating flow rate by one as compared with the conventional technique, and by reducing the lubricating flow rate, the drive pump can be downsized or the drive loss can be reduced.

【0035】なお、上記実施例においては無段変速機の
変速比を可動プーリ位置で代表させ、当該位置に応動す
るように制御弁14の開度を検出子15a等からなるリ
ンク機構を介して機械的に制御するようにしているが、
制御弁14の制御手段はこのようなものに限られず、例
えば無段変速機の変速比を変速制御回路の指令値やプー
リ比の制御油圧から検出し、この検出結果に基づいて電
磁的に制御弁の開度を制御するものとすることもでき
る。
In the above embodiment, the gear ratio of the continuously variable transmission is represented by the position of the movable pulley, and the opening of the control valve 14 is adjusted by the link mechanism including the detector 15a so as to respond to the position. Although it is controlled mechanically,
The control means of the control valve 14 is not limited to this, and for example, the gear ratio of the continuously variable transmission is detected from the command value of the gear shift control circuit or the control oil pressure of the pulley ratio, and electromagnetically controlled based on this detection result. It is also possible to control the opening of the valve.

【0036】[0036]

【発明の効果】以上説明したように、第1の発明によれ
ば、無段変速機の入力プーリと出力プーリに変速比が大
となるほど入力プーリ側の給油ノズルへの流量が増大す
るように相反的に潤滑油を供給するようにしたので、各
プーリへの潤滑流量を熱的負担に対して過不足のない適
切な流量に制御しつつ、各プーリに供給する総潤滑流量
を常に一定値に抑えられるので、油圧ポンプの駆動損失
を必要最小限に抑制して駆動系の効率を改善することが
できる。
As described above, according to the first aspect of the present invention, the flow rate to the oil supply nozzle on the input pulley side increases as the gear ratio of the input pulley and the output pulley of the continuously variable transmission increases. Since the lubrication oil is supplied reciprocally, the total lubrication flow rate supplied to each pulley is always kept constant while controlling the lubrication flow rate to each pulley to an appropriate flow rate that is sufficient for the thermal load. Therefore, it is possible to suppress the drive loss of the hydraulic pump to a necessary minimum and improve the efficiency of the drive system.

【0037】第2の発明では、上記第1の発明におい
て、無段変速機の入力プーリまたは出力プーリを構成す
る可動プーリの位置に基づいて変速比を判定するように
したので、無段変速機による変速比変化に対し潤滑流量
をより正確に制御することができる。
In the second invention, in the first invention, the gear ratio is determined based on the position of the movable pulley which constitutes the input pulley or the output pulley of the continuously variable transmission. The lubricating flow rate can be controlled more accurately with respect to the change in the gear ratio due to.

【0038】さらに、第3の発明では、上記第1の発明
の変速比変化を可動プーリの位置変化としてリンク機構
を介して直接的に制御弁に伝達するようにしたので、簡
潔な構成で所期の潤滑流量制御を行うことができる。
Further, in the third aspect of the invention, the change of the gear ratio of the first aspect of the invention is directly transmitted to the control valve via the link mechanism as the change of the position of the movable pulley, so that the structure is simple. It is possible to control the lubrication flow rate during the period.

【0039】第4の発明では、上記各発明の制御弁を、
それぞれ入力プーリ側給油ノズルと出力プーリ側給油ノ
ズルに連通する2つのポート間での弁体の往復運動に基
づいて相反的に各給油ノズルへの潤滑流量を制御するも
のとしたので、簡潔な構成の制御弁にて容易に所期の流
量制御を実現することができる。
In a fourth invention, the control valve of each of the above inventions is
The lubrication flow rate to each oil supply nozzle is controlled reciprocally based on the reciprocating motion of the valve element between the two ports communicating with the input pulley side oil supply nozzle and the output pulley side oil supply nozzle, respectively. The desired flow rate control can be easily realized with the control valve.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の概略構成図。FIG. 1 is a schematic configuration diagram of an embodiment of the present invention.

【図2】ベルトの正面断面図。FIG. 2 is a front sectional view of a belt.

【図3】ベルトの要部側面図。FIG. 3 is a side view of a main part of the belt.

【図4】上記実施例の制御手段の概略構成図。FIG. 4 is a schematic configuration diagram of a control unit of the above embodiment.

【図5】上記実施例の制御弁の概略構成断面図。FIG. 5 is a schematic cross-sectional view of the control valve of the above embodiment.

【図6】上記制御弁の流量特性を示す特性線図。FIG. 6 is a characteristic diagram showing a flow rate characteristic of the control valve.

【図7】従来の潤滑装置による流量制御特性を示す特性
線図。
FIG. 7 is a characteristic diagram showing a flow rate control characteristic of a conventional lubricating device.

【図8】ベルトのエレメント〜リング間の相対滑りが発
生する原理を示す説明図。
FIG. 8 is an explanatory diagram showing the principle of relative slip between the element and the ring of the belt.

【図9】ベルトのエレメント〜リング間の相対滑り速度
の変化をプーリ比との関係において示した特性線図。
FIG. 9 is a characteristic diagram showing a change in relative sliding speed between the belt element and the ring in relation to the pulley ratio.

【符号の説明】[Explanation of symbols]

1 入力側のプーリ 1a 入力軸 1b 固定プーリ 1c 可動プーリ 2 出力側のプーリ 2a 出力軸 2b 固定プーリ 2c 可動プーリ 3 ベルト 3a リング 3b エレメント 6 エンジン 7 油圧ポンプ 8 調圧手段 11 入力プーリ側の給油ノズル 12 出力プーリ側の給油ノズル 14 制御弁 14a 制御弁の弁体 14d 制御弁の第1のポート 14e 制御弁の第2のポート 15 制御手段(リンク機構) 15a プーリ位置検出子 1 Input Side Pulley 1a Input Shaft 1b Fixed Pulley 1c Movable Pulley 2 Output Side Pulley 2a Output Shaft 2b Fixed Pulley 2c Movable Pulley 3 Belt 3a Ring 3b Element 6 Engine 7 Hydraulic Pump 8 Pressure Regulator 11 Oil Supply Nozzle on Input Pulley 12 Output pulley side oil supply nozzle 14 Control valve 14a Control valve body 14d Control valve first port 14e Control valve second port 15 Control means (link mechanism) 15a Pulley position detector

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 入力プーリ側と出力プーリ側の各々にベ
ルトの潤滑油を供給する給油ノズルを配設し、油圧ポン
プからの吐出油を前記各給油ノズルに供給する通路を備
えたベルト式無段変速機において、 前記通路の途中に各給油ノズルへの潤滑流量を相反的に
増減する制御弁を設けるとともに、無段変速機の変速比
が大となるほど入力プーリ側の潤滑油供給割合が増大す
るように前記制御弁を制御する手段を設けたことを特徴
とするベルト式無段変速機の潤滑装置。
1. A belt-type non-pressurizer having an oil supply nozzle for supplying a lubricating oil for a belt to each of an input pulley side and an output pulley side, and a passage for supplying oil discharged from a hydraulic pump to each of the oil supply nozzles. In a continuously variable transmission, a control valve that reciprocally increases and decreases the lubricating flow rate to each oil supply nozzle is provided in the middle of the passage, and the larger the gear ratio of the continuously variable transmission, the greater the proportion of lubricating oil supplied to the input pulley side. A lubricating device for a belt type continuously variable transmission, characterized in that means for controlling the control valve is provided.
【請求項2】 制御手段は、入力プーリまたは出力プー
リの可動プーリの位置を検出して、当該可動プーリが変
速比大となる位置に移動するほど入力プーリ側の潤滑油
供給割合が増大するように制御弁を制御するものとした
ことを特徴とする請求項1に記載のベルト式無段変速機
の潤滑装置。
2. The control means detects the position of the movable pulley of the input pulley or the output pulley, and the lubricating oil supply ratio on the input pulley side increases as the movable pulley moves to a position where the gear ratio is large. The lubrication device for a belt type continuously variable transmission according to claim 1, wherein the control valve is controlled by the control valve.
【請求項3】 制御手段は、入力プーリまたは出力プー
リの可動プーリの移動を制御弁に伝達するリンク機構と
して構成されることを特徴とする請求項2に記載のベル
ト式無段変速機の潤滑装置。
3. The lubrication for a belt type continuously variable transmission according to claim 2, wherein the control means is configured as a link mechanism for transmitting the movement of the movable pulley of the input pulley or the output pulley to the control valve. apparatus.
【請求項4】 制御弁は、油圧ポンプからの潤滑油を入
力プーリ側の給油ノズルに供給する第1のポートと出力
プーリ側の給油ノズルに供給する第2のポートと、これ
ら2つのポート内に相反的に進退する弁体とを備え、該
弁体のポート内への進入量が大となるほどポート開口面
積が減じるように形成されていることを特徴とする請求
項1から請求項3の何れかに記載のベルト式無段変速機
の潤滑装置。
4. The control valve comprises: a first port for supplying lubricating oil from a hydraulic pump to an oil supply nozzle on the input pulley side; a second port for supplying the oil supply nozzle to an oil supply nozzle on the output pulley side; And a valve element that reciprocally moves forward and backward, and the port opening area decreases as the amount of entry of the valve element into the port increases. A belt type continuously variable transmission lubrication device according to any one of the preceding claims.
JP05851795A 1995-03-17 1995-03-17 Lubrication device for belt type continuously variable transmission Expired - Fee Related JP3221271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05851795A JP3221271B2 (en) 1995-03-17 1995-03-17 Lubrication device for belt type continuously variable transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05851795A JP3221271B2 (en) 1995-03-17 1995-03-17 Lubrication device for belt type continuously variable transmission

Publications (2)

Publication Number Publication Date
JPH08254260A true JPH08254260A (en) 1996-10-01
JP3221271B2 JP3221271B2 (en) 2001-10-22

Family

ID=13086629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05851795A Expired - Fee Related JP3221271B2 (en) 1995-03-17 1995-03-17 Lubrication device for belt type continuously variable transmission

Country Status (1)

Country Link
JP (1) JP3221271B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998020269A1 (en) 1996-11-05 1998-05-14 Nissan Motor Co., Ltd. Continuously variable transmission with lubricating apparatus
JP2003097677A (en) * 2001-09-21 2003-04-03 Toyota Motor Corp Lubricating device of power transmission mechanism
US6626781B2 (en) * 2000-06-20 2003-09-30 Van Doorne's Transmissie B.V. Continuously variable transmission having lubrication nozzle outputs at maximum power transmitting secondary radial belt position
JP2005133933A (en) * 2003-10-30 2005-05-26 Hyundai Motor Co Ltd Device for controlling belt lubrication and cooling of continuously variable transmission
JP2008128304A (en) * 2006-11-17 2008-06-05 Toyota Motor Corp Belt-type continuously variable transmission
JP2010270773A (en) * 2009-05-19 2010-12-02 Jatco Ltd Belt type continuously variable transmission
CN111051740A (en) * 2017-07-05 2020-04-21 邦奇动力有限责任公司 Lubricating and/or cooling device for a continuously variable transmission system and continuously variable transmission system comprising such a lubricating and/or cooling device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998020269A1 (en) 1996-11-05 1998-05-14 Nissan Motor Co., Ltd. Continuously variable transmission with lubricating apparatus
US6626781B2 (en) * 2000-06-20 2003-09-30 Van Doorne's Transmissie B.V. Continuously variable transmission having lubrication nozzle outputs at maximum power transmitting secondary radial belt position
JP2003097677A (en) * 2001-09-21 2003-04-03 Toyota Motor Corp Lubricating device of power transmission mechanism
JP2005133933A (en) * 2003-10-30 2005-05-26 Hyundai Motor Co Ltd Device for controlling belt lubrication and cooling of continuously variable transmission
JP4691339B2 (en) * 2003-10-30 2011-06-01 現代自動車株式会社 Belt lubrication and cooling control device for continuously variable transmission
JP2008128304A (en) * 2006-11-17 2008-06-05 Toyota Motor Corp Belt-type continuously variable transmission
JP2010270773A (en) * 2009-05-19 2010-12-02 Jatco Ltd Belt type continuously variable transmission
CN111051740A (en) * 2017-07-05 2020-04-21 邦奇动力有限责任公司 Lubricating and/or cooling device for a continuously variable transmission system and continuously variable transmission system comprising such a lubricating and/or cooling device
CN111051740B (en) * 2017-07-05 2024-03-01 南京邦奇自动变速箱有限公司 Lubrication and/or cooling device and continuously variable transmission system comprising such a device

Also Published As

Publication number Publication date
JP3221271B2 (en) 2001-10-22

Similar Documents

Publication Publication Date Title
RU2133895C1 (en) Stepless transmission at probable control of torque
US6478704B1 (en) Link chain
US6669588B2 (en) Continuously variable transmission with integrated torque sensor
EP1283383A1 (en) Stepless speed change unit
US7074144B2 (en) Hydraulic control apparatus for vehicle with belt-drive continuously variable transmission
KR19990044676A (en) Continuously variable transmission
JP4565701B2 (en) Shift control device for continuously variable transmission
JP3221271B2 (en) Lubrication device for belt type continuously variable transmission
JPH10141459A (en) Lubrication device for belt type continuously variable transmission
US7654926B2 (en) Continuously variable V-belt transmission
US7044873B2 (en) Belt-type continuously variable transmission
JP2827727B2 (en) Hydraulic control device for continuously variable transmission
US8162785B2 (en) Continuously variable conical pulley transmission with traction mechanism belt
JPH05288261A (en) Variable speed device of auxiliary machine and detection method of belt-slip
JP2004251327A (en) Automatic transmission
JP3907261B2 (en) V belt type continuously variable transmission
JP3675329B2 (en) Belt type continuously variable transmission
KR100313808B1 (en) Belt-type continuously variable transmission
JP2000074193A (en) Lubricating device of v-belt type continuously variable transmission
JPH01269756A (en) Line pressure controller for belt type continuously variable transmission
JP2001330113A (en) Variable speed controller for continuously variable transmission
KR100279974B1 (en) Belt pulley for continuously variable transmission
KR200189177Y1 (en) Cvt with belt
JPH0932898A (en) Line pressure control device for v-belt-type variable speed change gear
KR20010105591A (en) Controlling mechanism of pulley sheaves in continuously variable transmission

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080817

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090817

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100817

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees