JPH08253879A - Method for revealing small inclination grain boundary in steel material and corroding the same - Google Patents

Method for revealing small inclination grain boundary in steel material and corroding the same

Info

Publication number
JPH08253879A
JPH08253879A JP8090595A JP8090595A JPH08253879A JP H08253879 A JPH08253879 A JP H08253879A JP 8090595 A JP8090595 A JP 8090595A JP 8090595 A JP8090595 A JP 8090595A JP H08253879 A JPH08253879 A JP H08253879A
Authority
JP
Japan
Prior art keywords
corrosion
hydrogen peroxide
grain boundaries
steel material
methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8090595A
Other languages
Japanese (ja)
Inventor
Shinji Kusaba
真二 草場
Katsuyuki Goto
克之 後藤
Taketo Tatara
武人 多々良
Tadanori Yakushinji
忠則 薬真寺
Kazuo Saeki
和夫 佐伯
Minoru Fujiwara
藤原  稔
Shuichi Jinushi
修一 地主
Toshinaga Hasegawa
俊永 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8090595A priority Critical patent/JPH08253879A/en
Publication of JPH08253879A publication Critical patent/JPH08253879A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • ing And Chemical Polishing (AREA)

Abstract

PURPOSE: To easily enable the simultaneous discrimination of small inclination grain boundaries, small inclination magnetic fields and large inclination grain boundaries in a steel structure by grinding a steel material, thereafter priviously corroding the same by hydrochloric acid, executing water washing and thereafter treating the same by a corroding soln. having a specified compsn. CONSTITUTION: A steel material is ground, is thereafter preliminarily corroded by 0.03 to 0.1 normal hydrochloric acid to remove away oxides or the like on the surface, and water washing and cleaning are executed. Next, it is immersed in a soln. obtd. by mixing 0.1 to 0.2 normal oxalic acid, an aq. of hydrogen peroxide contg., by weight, 30 to 40% hydrogen peroxide, 0.1 to 0.2 normal sulfuric acid and methanol or ethanol in such a manner that the ratios of oxalic acid: aq. of hydrogen peroxide: sulfuric acid: methanol or ethanol are regulated to (45 to 55):(45 to 55):(7 to 18): 1 for 3 to 20sec to corrode the ground surface of the steel material. By observing the corroded face by an optical microscope and a scanning type electron microscope, small inclination grain boundaries, small inclination magnetic fields and large inclination grain boundaries in the structure can simultaneously be discriminated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明法は、鉄鋼材料の小傾角粒
界を明確に現出する腐食方法および、小傾角粒界と大傾
角粒界の識別を同一試料上で容易に行える腐食方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The method of the present invention is a corrosion method that clearly reveals a small tilt grain boundary of a steel material and a corrosion method that can easily distinguish between a small tilt grain boundary and a large tilt grain boundary on the same sample. It is about.

【0002】[0002]

【従来の技術】金属材料の金属組織中に認められる結晶
粒界は、結晶方位の異なる金属組織中の二つの結晶粒の
境目である。結晶粒径や結晶粒の形態は金属の機械的性
質を解明するのに極めて重要な情報である。これまで
は、金属材料の研磨された鏡面を酸で腐食し、光学顕微
鏡や走査型電子顕微鏡で観察したり、透過型電子顕微鏡
で薄膜化された金属材料を観察することが種々の方法で
行われてきた。
2. Description of the Related Art A crystal grain boundary found in a metal structure of a metal material is a boundary between two crystal grains in a metal structure having different crystal orientations. The crystal grain size and crystal grain morphology are extremely important information for clarifying the mechanical properties of metals. Until now, the polished mirror surface of metal materials has been corroded with acid, and observation with an optical microscope or scanning electron microscope or observation of thin film metal materials with a transmission electron microscope has been performed by various methods. I've been told.

【0003】例えば鉄鋼材料のフェライト(α)オース
テナイト(γ)二相域圧延材などの材料では、結晶粒内
に導入された転位が運動して集まり、通常の鉄鋼材料の
腐食法であるナイタール腐食やピクラール腐食では、現
出されない結晶方位の相違が5〜15°程度と小さい結
晶粒の間の粒界、いわゆる小傾角粒界を形成することが
ある。これに対して区切られている結晶粒の間の結晶方
位の相違が、15°程度以上に大きい粒界を大傾角粒界
といっている。
For example, in a material such as a ferrous material (ferrite (α) austenite (γ) two-phase rolled material), dislocations introduced in crystal grains move and collect, and nital corrosion which is a usual corrosive method of steel material. In the case of Picral corrosion, a grain boundary between crystal grains having a small difference in crystal orientation of 5 to 15 ° which is not revealed, that is, a so-called small tilt grain boundary may be formed. On the other hand, the difference in crystal orientation between the separated crystal grains is called a large-angle grain boundary when the grain boundary is larger than about 15 °.

【0004】小傾角粒界で区切られた亜結晶粒は、大傾
角粒界で区切られた通常の結晶粒と材質への寄与が異な
り、通常の腐食方法では殆ど現出されないので、上に述
べた二相域圧延材などの材質の支配因子調査を精密に行
うためには、手数のかかる透過型電子顕微鏡の薄膜試料
調整や、ビーム径の小さな電子ビームを用いた特殊な走
査型電子顕微鏡による結晶方位解析で、小傾角粒界を検
出することを必要としていた。
Sub-grains separated by small-angle grain boundaries have different contributions to the materials from ordinary crystal grains separated by large-angle boundaries, and are hardly revealed by ordinary corrosion methods. In order to precisely investigate the controlling factors of the material such as the two-phase rolled material, it is necessary to adjust the thin film sample of the transmission electron microscope and the special scanning electron microscope using the electron beam with a small beam diameter. It was necessary to detect the low-angle grain boundaries by the crystal orientation analysis.

【0005】また小傾角粒界を識別するために、簡便な
方法としてMetallography 14(198
1)p.61および、Metal progress
75(1958)p.96等の文献に示されている、い
わゆるMarshall氏試薬により鉄鋼材料の研磨面
を腐食して観察する方法が採用されていた。これらの方
法では腐食面が均一に腐食されず、ムラや気泡が発生し
やすいなどの欠点のため、小傾角粒界がやや不明瞭であ
った。
Further, as a simple method for identifying a low-angle grain boundary, Metalography 14 (198)
1) p. 61 and Metal progress
75 (1958) p. A method of observing a polished surface of a steel material by observing it by a so-called Marshall's reagent, which is shown in the literature such as 96, has been adopted. In these methods, the corroded surface was not uniformly corroded, and unevenness and air bubbles were easily generated, so that the small tilt grain boundaries were slightly unclear.

【0006】これらの従来の薄膜化された試料を透過型
電子顕微鏡で観察する方法や、鉄鋼材料試料の研磨され
た鏡面をMarshall氏試薬により腐食して観察す
る方法などの、小傾角粒界の識別方法は、手数がかかる
ことや、現出されている小傾角粒界がやや不明瞭であ
り、腐食状態が安定しないため同一試料の腐食面上に気
泡や腐食ムラがでやすい等の問題があった。
[0006] These conventional thin-film samples can be observed with a transmission electron microscope, and the polished mirror surface of a steel material sample can be observed by being corroded by Marshall's reagent. The identification method is troublesome, and the small-angle grain boundaries that are exposed are somewhat unclear, and the corrosion state is not stable, so there are problems such as bubbles and uneven corrosion on the corroded surface of the same sample. there were.

【0007】また小傾角粒界で区切られる粒径と大傾角
粒界で区切られる粒径は、機械的性質への寄与が異なる
ので、鉄鋼材料の疲労特性や変形挙動などのある種の特
性の調査では、これを区別して識別することが必要であ
る。従来の薄膜を透過型電子顕微鏡で観察する方法で
は、結晶粒毎のディフラクションパターン解析が必要と
なり非常に手数がかかること、またMarshall氏
試薬による腐食面の観察では、大傾角粒界と小傾角粒界
が同様に腐食されてしまい、一つの試料の上で区別がつ
かないためナイタール腐食などとの比較を必要とするな
どの問題があった。
Further, since the grain size delimited by the low-angle grain boundary and the grain size delimited by the high-angle grain boundary have different contributions to the mechanical properties, some properties such as fatigue properties and deformation behavior of steel materials are The survey needs to distinguish and identify this. The conventional method of observing a thin film with a transmission electron microscope is very troublesome because it requires a diffraction pattern analysis for each crystal grain. Also, when observing a corroded surface using Marshall's reagent, a large inclination grain boundary and a small inclination angle are observed. Since the grain boundaries are similarly corroded and indistinguishable on one sample, there is a problem that comparison with nital corrosion is necessary.

【0008】[0008]

【発明が解決しようとする課題】本発明の解決しようと
する課題は、従来の技術で不可能だった(1)明瞭かつ
腐食面上に気泡や腐食ムラの生じない小傾角粒界の明確
な現出法および(2)従来観察法では不可能な一つの試
料上での大傾角粒界と小傾角粒界の同時識別が可能で簡
便な観察法を提供することにある。
The problems to be solved by the present invention have been impossible in the prior arts (1) Clear and clear grain boundaries with small tilt angles in which no bubbles or corrosion unevenness occur on the corroded surface. (2) It is an object of the present invention to provide a simple observation method capable of simultaneously discriminating a high-angle grain boundary and a low-angle grain boundary on one sample, which is impossible by the conventional method and the observation method.

【0009】[0009]

【課題を解決するための手段】本発明は上記課題を解決
するためになされたものであり、その手段は (1)鉄鋼材料に研磨を施し、0.03〜0.1規定塩
酸で予備腐食した後、水洗し、0.1〜0.2規定蓚酸
と重量%比で30〜40%の過酸化水素を含む過酸化水
素水と、0.1〜0.2規定硫酸およびメタノールまた
はメタノールに替わるエタノールを体積%の比で、 蓚酸:過酸化水素水:硫酸:メタノールまたはエタノール =45〜55:45〜55:7〜18:1(体積%比) に混合した混合溶液中に、3〜20秒浸漬して鉄鋼材料
の小傾角粒界を明確に現出する腐食方法。
Means for Solving the Problems The present invention has been made to solve the above problems. The means are: (1) a steel material is polished and pre-corroded with 0.03 to 0.1N hydrochloric acid. After that, it is washed with water to form a hydrogen peroxide solution containing 0.1 to 0.2N oxalic acid and 30 to 40% by weight of hydrogen peroxide, and 0.1 to 0.2N sulfuric acid and methanol or methanol. 3% by volume of the alternative ethanol in a mixed solution of oxalic acid: hydrogen peroxide: sulfuric acid: methanol or ethanol = 45-55: 45-55: 7-18: 1 (volume% ratio). A corrosion method in which a low-angle grain boundary of a steel material is clearly revealed by immersion for 20 seconds.

【0010】(2)鉄鋼材料に研磨を施し、まず大傾角
粒界で囲まれた結晶粒の部分をより強く減肉する腐食を
行い、続いて0.03〜0.1規定塩酸で試料表面皮膜
を除去するための腐食をした後、水洗し、0.1〜0.
2規定蓚酸と重量%比で30〜40%の過酸化水素を含
む過酸化水素水と、0.1〜0.2規定硫酸およびメタ
ノールまたはメタノールに替わるエタノールを体積%の
比で、 蓚酸:過酸化水素水:硫酸:メタノールまたはエタノール =45〜55:45〜55:7〜18:1(体積%比) に混合した混合溶液中に、3〜20秒浸漬して鉄鋼材料
の大傾角粒界と小傾角粒界を同一試料上で明確に識別せ
しめる腐食方法である。
(2) The steel material is polished, and first, the portion of the crystal grain surrounded by the high-angle grain boundaries is corroded to reduce the thickness more strongly, and then the sample surface is subjected to 0.03 to 0.1N hydrochloric acid. After corroding to remove the film, it is washed with water and washed with 0.1 to 0.
2% oxalic acid and hydrogen peroxide containing 30-40% by weight of hydrogen peroxide, 0.1-0.2N sulfuric acid and methanol or ethanol replacing methanol at a volume% ratio of oxalic acid: peroxide Hydrogen oxide water: sulfuric acid: methanol or ethanol = 45 to 55:45 to 55: 7 to 18: 1 (volume% ratio). This is a corrosion method that clearly distinguishes the low-angle grain boundaries on the same sample.

【0011】[0011]

【作用】次に本発明法における各手順の作用と請求項目
の各条件を規定した理由を述べる。 (1)本発明請求項1の各条件を規定した理由である
が、まず研磨された鉄鋼材料を0.03〜0.1規定塩
酸で予備腐食する理由について述べる。
Next, the function of each procedure in the method of the present invention and the reason for defining each condition of claim items will be described. (1) The reason for defining each condition of claim 1 of the present invention, and the reason for preliminarily corroding a polished steel material with 0.03-0.1N hydrochloric acid will be described.

【0012】0.03〜0.1規定塩酸で予備腐食する
理由は、研磨後の放置等による研磨面表面の酸化物等に
よる皮膜を除去するためである。ここで塩酸の規定度を
0.03〜0.1とした理由は、これ以下では塩酸によ
る腐食が緩慢すぎて表面の皮膜を除去することが困難
で、これ以上では腐食の進行が急速すぎて後の腐食が良
好にならないためである。続いて水洗する理由は塩酸に
より鉄鋼材料試料の表面を過度に腐食させないためであ
る。さらに続けて、0.1〜0.2規定蓚酸と重量%比
で30〜40%の過酸化水素を含む過酸化水素水と、
0.1〜0.2規定硫酸およびメタノールまたはメタノ
ールに替わるエタノールを体積%の比で、 蓚酸:過酸化水素水:硫酸:メタノールまたはエタノール =45〜55:45〜55:7〜18:1(体積%比) に混合した混合溶液中に3〜20秒浸漬する理由につい
て述べる。
The reason for pre-corrosion with 0.03 to 0.1N hydrochloric acid is to remove a film of oxide or the like on the surface of the polished surface which is left after polishing. The reason why the normality of hydrochloric acid is set to 0.03 to 0.1 is that below this, corrosion due to hydrochloric acid is too slow to remove the film on the surface, and above this, the progress of corrosion is too rapid. This is because the later corrosion will not be good. The reason for subsequent washing with water is that hydrochloric acid does not excessively corrode the surface of the steel material sample. Further continuously, a hydrogen peroxide solution containing 0.1 to 0.2 normal oxalic acid and 30 to 40% by weight of hydrogen peroxide,
0.1-0.2 N sulfuric acid and methanol or ethanol in place of methanol in a volume ratio of oxalic acid: hydrogen peroxide: sulfuric acid: methanol or ethanol = 45-55: 45-55: 7-18: 1 ( The reason for immersing in a mixed solution mixed for 3 to 20 seconds will be described.

【0013】この混合溶液中で過酸化水素が30%以上
の濃度の過酸化水素水が添加されないと、粒界のみが腐
食される現象が起こらない。その理由は、これより低濃
度の過酸化水素水では、結晶粒界に囲まれた結晶粒の部
分を過酸化水素水で酸化させて皮膜保護することで、蓚
酸および硫酸による腐食を停滞させる作用が十分に起こ
らないからであると思われる。また過酸化水素が40%
以上の濃度の過酸化水素水が添加されると、腐食が不明
瞭になる傾向がある。これは濃度の高い過酸化水素水で
は、粒界の部分まで酸化により厚い皮膜が生成してしま
い、粒界の腐食が起こりにくくなるからであると思われ
る。また0.1〜0.2規定蓚酸と0.1〜0.2規定
硫酸は、特に粒界を選択的に腐食するのに有効であるこ
との知見を得た。これらは同時に用いることによって、
過酸化水素水による皮膜で覆われた鉄鋼試料上の粒界の
部分を、硫酸の還元の効果によって選択的格子欠陥の多
い粒界に腐食される位置を限定させ、さらに比較的弱い
酸である蓚酸によって、適度に粒界を腐食する効果があ
るためと思われる。
Unless hydrogen peroxide solution having a hydrogen peroxide concentration of 30% or more is added to this mixed solution, the phenomenon that only the grain boundaries are corroded does not occur. The reason for this is that in a hydrogen peroxide solution with a lower concentration than this, the portion of the crystal grains surrounded by the grain boundaries is oxidized by the hydrogen peroxide solution to protect the film, and the effect of stalling the corrosion by oxalic acid and sulfuric acid. Is not likely to occur enough. 40% hydrogen peroxide
When hydrogen peroxide water having the above concentration is added, corrosion tends to be unclear. This is considered to be because, in a hydrogen peroxide solution having a high concentration, a thick film is formed even at the grain boundary portion due to oxidation, and corrosion of the grain boundary is less likely to occur. It was also found that 0.1-0.2 normal oxalic acid and 0.1-0.2 normal sulfuric acid are particularly effective in selectively corroding grain boundaries. By using these at the same time,
It is a relatively weak acid that limits the locations of the grain boundaries on steel samples covered with a hydrogen peroxide solution on the grain boundaries with many selective lattice defects due to the effect of sulfuric acid reduction. It seems that oxalic acid has an effect of moderately corroding the grain boundaries.

【0014】混合溶液中の各単体物質の体積%比の範囲
は実験の繰り返しにより、粒界を選択的に腐食する効果
の顕著な範囲を求めた。これにより大傾角粒界および小
傾角粒界を明瞭な溝状に腐食することができる。もし硫
酸を0.1規定以下とすると、粒界を選択的に腐食する
効果が明確に認められず、腐食面は不明瞭になる。また
0.2規定以上の硫酸を混合すると、粒界に囲まれた結
晶粒内の部分の皮膜をも腐食して、粒界以外の部分を腐
食してしまう。蓚酸の規定度を0.1〜0.2に定めた
理由は、これ以下では粒界を明瞭に腐食することができ
ず、これ以上では粒界の腐食が強過ぎて腐食面が良好に
ならないからである。
The range of the volume% ratio of each simple substance in the mixed solution was determined by repeating the experiment to find a range in which the effect of selectively corroding the grain boundaries was remarkable. As a result, the high-angle grain boundaries and the low-angle grain boundaries can be corroded into distinct groove shapes. If the content of sulfuric acid is 0.1 N or less, the effect of selectively corroding the grain boundaries is not clearly recognized, and the corroded surface becomes unclear. Further, when a sulfuric acid having a concentration of 0.2 N or more is mixed, the film inside the crystal grains surrounded by the grain boundaries is also corroded, and the portions other than the grain boundaries are corroded. The reason why the normality of oxalic acid is set to 0.1 to 0.2 is that the grain boundary cannot be clearly corroded below this, and the grain boundary corrosion is too strong and the corroded surface is not good above this. Because.

【0015】次にメタノールまたはそれに替わるエタノ
ールを添加する理由を述べる。本発明者らは従来から知
られているMarshall氏試薬による腐食法では、
小傾角粒界の現出がやや不明瞭であり、小傾角粒界を明
瞭にむらなく現出するためには、鋼材料研磨面上の濡れ
性を向上することが有効であることを見いだした。しか
し通常界面活性剤としてよく用いられている、直鎖アル
キル硫酸エステルナトリウム塩水溶液などの試薬では、
腐食液中の硫酸とアルキル基の反応で発煙し、腐食が進
行しないので蓚酸と硫酸の混合した酸と同時には利用で
きないことも知見した。だがしかし研究によって種々の
液体を利用することを検討した結果、メタノールやエタ
ノールのような直鎖アルキル硫酸エステルナトリウム塩
水溶液にくらべて、比較的分子量の小さいアルコールを
添加することが濡れ性向上のため有効であることを明ら
かにした。メタノールまたはエタノールは表面の腐食を
むらなくするために混合する。このメタノールまたはエ
タノールの添加を省略すると、腐食面に気泡や腐食ムラ
ができやすく観察面を安定して腐食することが困難であ
る。体積比を規定した値以上にすると酸の濃度が薄ま
り、これ以下では濡れ性向上の効果が低くなる。
Next, the reason for adding methanol or ethanol instead of methanol will be described. The inventors of the present invention have proposed a conventional corrosion method using Marshall's reagent.
It was found that the appearance of the low-angle grain boundaries is somewhat unclear, and it is effective to improve the wettability on the polished surface of the steel material in order to reveal the low-angle grain boundaries clearly and evenly. . However, with reagents that are often used as surfactants, such as aqueous solutions of linear alkyl sulfate sodium salt,
It was also found that it cannot be used at the same time as an acid mixture of oxalic acid and sulfuric acid because smoke is generated by the reaction between sulfuric acid and an alkyl group in the corrosive liquid and corrosion does not proceed. However, as a result of investigating the use of various liquids in the research, it was found that the addition of an alcohol having a relatively small molecular weight compared to a straight chain alkyl sulfate sodium salt aqueous solution such as methanol or ethanol improves the wettability. Clarified that it is effective. Methanol or ethanol is mixed to ensure even surface corrosion. If this addition of methanol or ethanol is omitted, bubbles and corrosion unevenness are likely to occur on the corroded surface, making it difficult to stably corrode the observation surface. If the volume ratio is more than the specified value, the concentration of the acid becomes thin, and if it is less than this, the effect of improving the wettability becomes low.

【0016】次に本発明請求項2の各条件を規定した理
由については、研磨された鉄鋼材料を、まず大傾角粒界
で囲まれた結晶粒の部分をより強く減肉する腐食を行う
必要があり、この理由について述べる。大傾角粒界で囲
まれた結晶粒の部分をより強く減肉する腐食とは、例え
ば0.1〜0.2規定硝酸エタノール溶液中に7〜20
秒程度浸漬する腐食方法(いわゆるナイタール腐食法)
や、0.1〜0.2規定の2,4,6−トリニトロフェ
ノール水溶液中に7〜20秒程度浸漬する腐食方法(い
わゆるピクリン酸腐食法)、または0.1〜0.2規定
の2,4,6−トリニトロフェノールのエタノール溶液
中に7〜20秒程度浸漬する腐食方法(いわゆるピクラ
ール腐食法)等の、鉄鋼材料の金属組織の大傾角粒界に
囲まれた結晶粒の部分をより強く腐食し、大傾角粒界に
対し凹状に結晶粒の部分を減肉させる作用がある腐食法
の全てを指す。
Next, for the reason that each condition of claim 2 of the present invention is defined, it is necessary to perform the corrosion of the polished steel material so that the portion of the crystal grain surrounded by the high-angle grain boundary is more strongly thinned. There is a reason for this. Corrosion that strongly reduces the thickness of the crystal grains surrounded by the high-angle grain boundaries is, for example, 7 to 20 in 0.1 to 0.2 normal nitric acid ethanol solution.
Corrosion method of soaking for about 2 seconds (so-called Nital corrosion method)
Alternatively, a corrosion method of dipping in an aqueous solution of 2,4,6-trinitrophenol of 0.1 to 0.2 normal for about 7 to 20 seconds (so-called picric acid corrosion method), or 0.1 to 0.2 normal A portion of crystal grains surrounded by a high-angle grain boundary of a metal structure of a steel material, such as a corrosion method of dipping in an ethanol solution of 2,4,6-trinitrophenol for about 7 to 20 seconds (so-called Picral corrosion method) Is more strongly corroded, and refers to all of the corrosion methods that have the effect of reducing the thickness of the crystal grain portion in a concave shape with respect to the high-angle grain boundary.

【0017】本発明者らが従来の腐食方法について腐食
面の状態を観察・研究したところ、いわゆるナイタール
腐食法、ピクリン酸腐食法、ピクラール腐食法などの腐
食法は、鉄鋼材料組織の大傾角粒界に囲まれた結晶粒の
部分をより強く腐食し、大傾角粒界に対し凹状に結晶粒
の部分を減肉させる作用が働いて、大傾角粒界を明確に
していることを知見し得た。さらには、これらの腐食方
法では、大傾角粒界のみが明瞭で小傾角粒界は殆ど現出
されないことが判った。また一方、請求項1に示した腐
食方法では、大傾角粒界も小傾角粒界もともに溝状に腐
食する作用があることを知見した。本発明者らは、これ
らいずれかの腐食方法により鉄鋼材料組織の大傾角粒界
に囲まれた結晶粒の部分をより強く腐食して、大傾角粒
界に対し凹状に結晶粒の部分を減肉させ、続いて請求項
1に示した腐食方法で大傾角粒界も腐食するが、特に大
傾角粒界に囲まれた結晶粒部分(凹状部)の小傾角粒界
を、溝状に腐食する腐食を行って大傾角粒界と小傾角粒
界を同時に識別して観察できる腐食方法を開発し、この
方法を本発明の請求項2とした。
The inventors of the present invention observed and studied the state of the corroded surface in the conventional corrosion method, and found that the corrosion methods such as the so-called Nital corrosion method, picric acid corrosion method, and picral corrosion method have a large inclination grain of the steel material structure. It can be found that the grain boundaries surrounded by the boundaries are corroded more strongly, and the grain boundaries of the large-angle boundaries are concavely thinned to clarify the large-angle boundaries. It was Furthermore, it was found that with these corrosion methods, only the large-angle grain boundaries were clear, and the small-angle grain boundaries were hardly exposed. On the other hand, it was found that the large-angle grain boundary and the small-angle grain boundary both corrode in a groove shape in the corrosion method described in claim 1. The inventors of the present invention more strongly corrode the part of the crystal grain surrounded by the high-angle grain boundary of the steel material structure by any of these corrosion methods, and reduce the part of the crystal grain concave to the high-angle grain boundary. Then, the high-angle grain boundary is also corroded by the corrosion method described in claim 1, and the low-angle grain boundary of the crystal grain portion (concave portion) surrounded by the high-angle grain boundary is corroded like a groove. A corrosion method has been developed in which a large-angle grain boundary and a small-angle grain boundary can be simultaneously distinguished and observed by performing the above-described corrosion, and this method is defined as claim 2 of the present invention.

【0018】次に、0.03〜0.1規定塩酸で試料表
面の皮膜を除去するための腐食をする理由について述べ
る。0.03〜0.1規定塩酸で試料表面の皮膜を除去
するための腐食をする理由は、研磨後の放置等による研
磨面表面の酸化物等による皮膜を除去するためである。
0.03〜0.1規定塩酸で腐食した後、水洗する理由
は塩酸により鉄鋼材料試料の表面を過度に腐食させない
ためである。さらに、0.1〜0.2規定蓚酸と重量%
比で30〜40%の過酸化水素を含む過酸化水素水と、
0.1〜0.2規定硫酸およびメタノールまたはメタノ
ールに替わるエタノールを体積%の比で、 蓚酸:過酸化水素水:硫酸:メタノールまたはエタノール =45〜55:45〜55:7〜18:1(体積%比) に混合した混合溶液中に3〜20秒浸漬する理由につい
て述べる。
Next, the reason why corrosion is performed to remove the film on the surface of the sample with 0.03 to 0.1N hydrochloric acid will be described. The reason for corroding with 0.03 to 0.1N hydrochloric acid to remove the film on the surface of the sample is to remove the film due to oxides and the like on the surface of the polished surface by leaving it after polishing.
The reason for washing with water after corroding with 0.03 to 0.1N hydrochloric acid is to prevent the surface of the steel material sample from being corroded excessively by hydrochloric acid. Furthermore, 0.1 to 0.2 normal oxalic acid and weight%
Hydrogen peroxide solution containing 30 to 40% hydrogen peroxide in a ratio,
0.1-0.2 N sulfuric acid and methanol or ethanol in place of methanol in a volume ratio of oxalic acid: hydrogen peroxide: sulfuric acid: methanol or ethanol = 45-55: 45-55: 7-18: 1 ( The reason for immersing in a mixed solution mixed for 3 to 20 seconds will be described.

【0019】この混合溶液中で過酸化水素が30%以上
の濃度の過酸化水素水が添加されないと、大傾角粒界で
囲まれた凹状に減肉されている結晶粒の部分中の小傾角
粒界のみが腐食される現象が起こらない。また過酸化水
素が40%以上の濃度の過酸化水素水が添加されると、
小傾角粒界の腐食が不明瞭になる傾向がある。また、
0.1〜0.2規定蓚酸と0.1〜0.2規定硫酸は、
特に粒界を選択的に腐食するのに有効な腐食液である。
これにより大傾角粒界で囲まれた凹状に減肉されている
結晶粒の部分中の、小傾角粒界を溝状に腐食することが
できる。混合溶液中の各単体物質の体積%比の範囲は、
実験の繰り返しにより粒界を選択的に腐食する効果の顕
著な範囲を求め決定した。メタノールまたはエタノール
は表面の腐食をムラなくするために混合する。このメタ
ノールまたはエタノールの添加を省略すると腐食面に気
泡や腐食ムラができやすく、観察面を安定して腐食する
ことが困難である。以上の本発明請求項2の規定する全
ての諸工程を、規定された順序に従って実施することに
より、大傾角粒界で囲まれた結晶粒の部分は凹状の腐食
による減肉で識別でき、同時に小傾角粒界を大傾角粒界
で囲まれた結晶粒の部分中の腐食された溝状部分として
識別可能である。
Unless hydrogen peroxide solution having a concentration of hydrogen peroxide of 30% or more is added to this mixed solution, the small tilt angle in the portion of the crystal grain which is surrounded by the large tilt grain boundary and is thinned in a concave shape. The phenomenon that only the grain boundaries are corroded does not occur. Also, when hydrogen peroxide solution with a concentration of hydrogen peroxide of 40% or more is added,
Corrosion of low-angle grain boundaries tends to be unclear. Also,
0.1-0.2 normal oxalic acid and 0.1-0.2 normal sulfuric acid,
In particular, it is a corrosive solution effective for selectively corroding grain boundaries.
As a result, it is possible to corrode the small-angle grain boundaries in the recessed grain boundaries surrounded by the large-angle grain boundaries into a groove shape. The range of the volume% ratio of each simple substance in the mixed solution is
By repeating the experiment, the remarkable range of the effect of selectively corroding the grain boundaries was determined and determined. Methanol or ethanol is mixed to evenly corrode the surface. If this addition of methanol or ethanol is omitted, bubbles and corrosion unevenness are likely to occur on the corroded surface, making it difficult to stably corrode the observation surface. By carrying out all the steps defined in claim 2 of the present invention according to the specified order, the portion of the crystal grain surrounded by the high-angle grain boundaries can be identified by the wall thickness reduction due to the concave corrosion, and at the same time, The low-angle grain boundaries are identifiable as corroded troughs in the portion of the crystal grain surrounded by the high-angle grain boundaries.

【0020】[0020]

【実施例】次に本発明法の実施例について述べる。表1
に示されている成分の鋼種を供試鋼に用いた。表1に示
したA〜Jの各成分の供試鋼で二相域加工(供試鋼D,
Eは1100℃でのオーステナイト域加熱後放冷して、
工場の圧延設備による実機圧延で650℃での二相域累
積加工30%を施し、その後放冷した。A〜C,F〜J
の供試鋼は、8mmφ×12mm高さの円柱状の小試験
片を1100℃で加熱後、0.2℃/sで冷却650℃
にて1パス圧下30%後、0.2℃/sで室温まで冷却
した。)を行い、大傾角粒界と小傾角粒界を同時に有す
る試料を作成した。
EXAMPLES Next, examples of the method of the present invention will be described. Table 1
The steel grades of the components shown in 1 above were used as the test steel. Two-phase region processing with each of the sample steels A to J shown in Table 1 (sample steel D,
E is heated in the austenite region at 1100 ° C and then allowed to cool,
By the actual rolling by the rolling equipment of the factory, 30% of the two-phase area cumulative processing at 650 ° C. was performed, and then it was allowed to cool. A to C, F to J
The test steel of No. 2 is a cylindrical small test piece of 8 mmφ x 12 mm height, heated at 1100 ° C, and then cooled at 0.2 ° C / s at 650 ° C
After 30% under a pressure of 1 pass, it was cooled to room temperature at 0.2 ° C / s. ) Was performed to prepare a sample having a large tilt grain boundary and a small tilt grain boundary at the same time.

【0021】[0021]

【表1】 [Table 1]

【0022】以上用意した供試鋼を本発明請求項1に対
応する腐食方法を表2に、その比較法で腐食した結果を
表3に示した。同様に本発明請求項2に対応する腐食方
法を表4に、その比較法で腐食した結果を表5に示し
た。表2の実施例1〜10はいずれも本発明法に従って
いるので、現出された組織は小傾角粒界を極めて明確に
現出できていた。しかし表3の比較例1は、0.05N
塩酸による予備腐食を省略しており、皮膜の除去が十分
でないため、小傾角粒界は不鮮明であった。比較例2
は、予備腐食後の水洗を省略しており、腐食ムラが生じ
ており組織が部分的に不鮮明になっていた。比較例3,
4,9,10はいずれも混合腐食液の混合比が規定から
逸脱するもので、酸の腐食が強すぎて粒界が滲んでい
た。比較例5,7,8も混合腐食液の混合比が規定から
逸脱する例であるが、酸の腐食力が弱い例となっており
粒界の腐食が不鮮明であった。比較例4はアルコールの
混合をしなかった例で腐食面にピットが発生していた。
Table 2 shows the corrosion method corresponding to claim 1 of the present invention, and Table 3 shows the results of corrosion of the test steels prepared above by the comparative method. Similarly, Table 4 shows the corrosion method corresponding to claim 2 of the present invention, and Table 5 shows the results of corrosion by the comparative method. Since all of Examples 1 to 10 in Table 2 are in accordance with the method of the present invention, the developed structure could very clearly express the low-angle grain boundaries. However, in Comparative Example 1 of Table 3, 0.05N
Preliminary corrosion with hydrochloric acid was omitted, and the removal of the film was not sufficient, so the low-angle grain boundaries were unclear. Comparative Example 2
No water washing after pre-corrosion was omitted, uneven corrosion occurred and the structure was partially blurred. Comparative Example 3,
In Nos. 4, 9 and 10, the mixing ratio of the mixed corrosive liquid deviated from the regulation, and the acid corrosion was so strong that the grain boundaries were bleeding. Comparative Examples 5, 7 and 8 are also examples in which the mixing ratio of the mixed corrosive liquid deviates from the regulation, but the corrosive power of the acid is weak and the corrosion of the grain boundaries was unclear. Comparative Example 4 was an example in which alcohol was not mixed, and pits were formed on the corroded surface.

【0023】[0023]

【表2】 [Table 2]

【0024】[0024]

【表3】 [Table 3]

【0025】なお図1に表2の実施例4で得られた鉄鋼
試料の腐食面の写真(走査型電子顕微鏡二次電子像)、
および図2に同一試料の同一箇所をさらに研磨しなおし
てから、0.15規定硝酸エタノール溶液(ナイタール
腐食)にて15秒腐食した、腐食面を図2と同一倍率で
撮影した写真(走査型電子顕微鏡二次電子像)を示す。
これらから結晶の粒界が溝状に腐食され、従来のナイタ
ール腐食法では結晶粒界に囲まれた部分が、減肉されて
腐食されていることがわかる。またナイタール法で現出
できなかった、より微細な組織の現出が可能になってい
ることがわかる。
Incidentally, FIG. 1 is a photograph of the corroded surface of the steel sample obtained in Example 4 of Table 2 (scanning electron microscope secondary electron image),
2 and FIG. 2, the same portion of the same sample was further repolished, and then corroded with 0.15N nitric acid ethanol solution (nital corrosion) for 15 seconds. The corroded surface was taken at the same magnification as in FIG. 2 (scanning type). Electron microscope secondary electron image) is shown.
From these, it can be seen that the grain boundaries of the crystals are corroded in a groove shape, and that the portion surrounded by the crystal grain boundaries is corroded by thinning in the conventional nital corrosion method. Also, it can be seen that it is possible to reveal a finer structure that could not be revealed by the Nital method.

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【表5】 [Table 5]

【0028】表4の実施例1〜10で腐食されたサンプ
ルは、いずれも大傾角粒界と小傾角粒界を識別でき、極
めて明確な腐食面を有していた。しかし表5の比較例1
のサンプルは0.05N塩酸による予備腐食を省略して
おり、皮膜の除去が十分でないため、大傾角粒界が鮮明
に認められるものの、小傾角粒界が不鮮明であった。比
較例2は予備腐食後の水洗を省略しており、小傾角粒界
の腐食ムラが生じ、組織が部分的に不鮮明になってい
た。比較例3は混合腐食液の混合比が規定から逸脱する
もので、酸の腐食が強すぎて特に小傾角粒界が滲んでい
た。比較例5も混合腐食液の混合比が規定から逸脱する
例であるが、酸の腐食力が弱い例となっており、小傾角
粒界の腐食が不鮮明であった。比較例4はアルコールの
混合をしなかった例で、腐食面にピットが発生してい
た。比較例6〜10は大傾角粒界を現出するための腐食
が、規定度の強い酸で行われているために、その後の腐
食によっても小傾角粒界が明確にできなかった例であ
る。
The samples corroded in Examples 1 to 10 in Table 4 were able to discriminate between large-angle tilt boundaries and small-angle tilt boundaries, and had extremely clear corrosion surfaces. However, Comparative Example 1 in Table 5
The sample No. 1 omits preliminary corrosion with 0.05 N hydrochloric acid, and the film is not sufficiently removed, so that the large-angle tilt boundaries are clearly recognized, but the small-angle tilt boundaries are unclear. In Comparative Example 2, washing with water after pre-corrosion was omitted, and corrosion unevenness occurred at the low-angle grain boundaries, and the structure was partially unclear. In Comparative Example 3, the mixing ratio of the mixed corrosive liquid deviated from the regulation, and the acid corrosion was so strong that the small-angle tilt grain boundary was bleeding. Comparative Example 5 is also an example in which the mixing ratio of the mixed corrosive liquid deviates from the regulation, but it is an example in which the corrosive force of acid is weak, and the corrosion at the low-angle tilt grain boundary was unclear. Comparative Example 4 was an example in which alcohol was not mixed, and pits were formed on the corroded surface. Comparative Examples 6 to 10 are examples in which the small-angle grain boundaries could not be clarified by the subsequent corrosion because the corrosion for revealing the large-angle grain boundaries was performed with the acid having a high normality. .

【0029】なお図3に鉄鋼試料の腐食面をさらに研磨
しなおしてから、0.15規定硝酸エタノール溶液(ナ
イタール腐食)にて15秒腐食した腐食面の写真(走査
型電子顕微鏡二次電子像)、および図4に同一試料の同
一箇所をさらに本発明請求項2に示した表4の実施例4
で得られた腐食面の写真(走査型電子顕微鏡二次電子
像)を示す。これらから従来のナイタール腐食法で現出
された凸状の大傾角粒界のほかに、小傾角粒界が溝状に
腐食され、同時に識別できることがわかる。
Incidentally, FIG. 3 is a photograph of the corroded surface corroded for 15 seconds with 0.15N ethanolic ethanol solution (nital corrosion) after the corroded surface of the steel sample was further polished (scanning electron microscope secondary electron image). ), And the same portion of the same sample shown in FIG.
The photograph (scanning electron microscope secondary electron image) of the corroded surface obtained in 1. is shown. From these, it can be seen that, in addition to the convex large-angle grain boundaries revealed by the conventional Nital corrosion method, the small-angle grain boundaries are corroded in a groove shape and can be distinguished at the same time.

【0030】[0030]

【発明の効果】本発明の腐食方法は鉄鋼材料の金属組織
の現出方法であり、腐食面を光学顕微鏡および走査型電
子顕微鏡で観察することにより、小傾角粒界および小傾
角粒界と大傾角粒界の識別を、同一試料上で容易に行え
る腐食方法で、鉄鋼材料の小傾角粒界を均一明確に現出
でき、また大傾角粒界と小傾角粒界の同時識別が可能な
腐食面が得ることができ、これにより、従来のように透
過型電子顕微鏡(TEM)などを利用し、特殊な技能を
要する結晶方位解析などの手法を使用することなく、簡
単に、しかも短時間にして小傾角粒界の確認および大傾
角粒界と小傾角粒界の同時識別を、光学顕微鏡等の安価
で容易に使用できる機器で可能になった。
EFFECT OF THE INVENTION The corrosion method of the present invention is a method of revealing the metallographic structure of a steel material, and by observing the corroded surface with an optical microscope and a scanning electron microscope, it is possible to obtain a small tilt angle boundary and a small tilt angle boundary. Corrosion method that can easily identify tilt angle boundaries on the same sample by uniformly and clearly revealing small tilt boundaries of steel materials and simultaneously identifying large tilt boundaries and small tilt boundaries It is possible to obtain a plane, which makes it possible to use a transmission electron microscope (TEM), etc. as in the past, without using a method such as crystal orientation analysis that requires special skill, and simply and in a short time. It is now possible to confirm small-angle tilt boundaries and simultaneously identify large-angle tilt boundaries and small-angle tilt boundaries with an inexpensive and easy-to-use device such as an optical microscope.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明請求項1に対応する実施例4の鉄鋼試料
金属組織の腐食面を示す写真であり、これは走査型電子
顕微鏡による二次電子像として撮影したものである。
FIG. 1 is a photograph showing a corroded surface of a steel sample metal structure of Example 4 corresponding to claim 1 of the present invention, which was taken as a secondary electron image by a scanning electron microscope.

【図2】従来のナイタール腐食法により得られた鉄鋼試
料金属組織の腐食面の写真で、走査型電子顕微鏡による
二次電子像として撮影したものである。
FIG. 2 is a photograph of a corroded surface of a steel sample metal structure obtained by a conventional nital corrosion method, which is taken as a secondary electron image by a scanning electron microscope.

【図3】従来のナイタール腐食法により得られた鉄鋼試
料金属組織の腐食面の写真で、走査型電子顕微鏡二次電
子像として撮影したものである。
FIG. 3 is a photograph of a corroded surface of a metal structure of a steel sample obtained by a conventional nital corrosion method, which is taken as a scanning electron microscope secondary electron image.

【図4】本発明請求項2に対応する実施例4の鉄鋼試料
金属組織の腐食面の写真であり、これは走査型電子顕微
鏡二次電子像として撮影したものである。
FIG. 4 is a photograph of a corroded surface of a steel microstructure of a steel sample of Example 4 corresponding to claim 2 of the present invention, which was taken as a scanning electron microscope secondary electron image.

フロントページの続き (72)発明者 薬真寺 忠則 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 (72)発明者 佐伯 和夫 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 (72)発明者 藤原 稔 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 (72)発明者 地主 修一 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内 (72)発明者 長谷川 俊永 大分県大分市大字西ノ洲1番地 新日本製 鐵株式会社大分製鐵所内Front page continuation (72) Inventor Tadanori Yakushinji 1st Nishinosu, Oita-shi, Oita Pref. Nippon Steel Co., Ltd. Oita Works (72) Inventor Kazuo Saeki 1st Nishinosu, Oita-shi, Oita New Nippon Steel Oita Steel Co., Ltd. (72) Minor Fujiwara Minoru Fujiwara, Oita City, Oita Prefecture 1 Nishinosu, Nippon Steel Co., Ltd. Oita Steel Co., Ltd. (72) Inventor, Shuichi Oita City, Oita Prefecture Nishinosu 1 No. 1 Nippon Steel Oita Steel Co., Ltd. (72) Inventor Toshinaga Hasegawa 1st Nishinosu, Oita City, Oita Prefecture Shin Nippon Steel Co., Ltd. Oita Steel Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 鉄鋼材料に研磨を施し、0.03〜0.
1規定塩酸で予備腐食した後、水洗し、0.1〜0.2
規定蓚酸と重量%比で30〜40%の過酸化水素を含む
過酸化水素水と、0.1〜0.2規定硫酸およびメタノ
ールまたはメタノールに替わるエタノールを下記の体積
%の比で混合した混合溶液中に、3〜20秒浸漬するこ
とを特徴とする鉄鋼材料の小傾角粒界現出腐食方法。 蓚酸:過酸化水素水:硫酸:メタノールまたはエタノール =45〜55:45〜55:7〜18:1(体積%比)
1. A steel material is polished to 0.03 to 0.
After pre-corrosion with 1N hydrochloric acid, wash with water and 0.1-0.2
A mixture of hydrogen peroxide solution containing normal oxalic acid and 30 to 40% by weight of hydrogen peroxide, 0.1 to 0.2 normal sulfuric acid and methanol or ethanol instead of methanol in the following volume ratio. A low-angle grain boundary-exposing corrosion method for a steel material, comprising immersing in a solution for 3 to 20 seconds. Oxalic acid: Hydrogen peroxide water: Sulfuric acid: Methanol or ethanol = 45-55: 45-55: 7-18: 1 (volume% ratio)
【請求項2】 鉄鋼材料に研磨を施し、まず大傾角粒界
で囲まれた結晶粒の部分を減肉する腐食を行い大傾角粒
界を現出させた後、続いて0.03〜0.1規定塩酸で
試料表面皮膜を除去するための腐食をした後、水洗し、
0.1〜0.2規定蓚酸と重量%比で30〜40%の過
酸化水素を含む過酸化水素水と、0.1〜0.2規定硫
酸およびメタノールまたはメタノールに替わるエタノー
ルを下記の体積%の比で、混合した混合溶液中に、3〜
20秒浸漬することを特徴とする鉄鋼材料の小傾角粒界
現出腐食方法。 蓚酸:過酸化水素水:硫酸:メタノールまたはエタノール =45〜55:45〜55:7〜18:1(体積%比)
2. A steel material is polished, and first, corrosion is performed to reduce the thickness of the crystal grains surrounded by the high-angle grain boundaries to expose the high-angle grain boundaries, and then 0.03 to 0 is added. 1. After corroding with 1N hydrochloric acid to remove the sample surface film, wash with water,
A volume of hydrogen peroxide solution containing 0.1 to 0.2 normal oxalic acid and 30 to 40% by weight of hydrogen peroxide, 0.1 to 0.2 normal sulfuric acid and methanol or ethanol replacing methanol is used in the following volume. % Of 3 to 3 in the mixed mixed solution.
A low-angle tilt grain boundary emergence corrosion method for a steel material, characterized by immersing for 20 seconds. Oxalic acid: Hydrogen peroxide water: Sulfuric acid: Methanol or ethanol = 45-55: 45-55: 7-18: 1 (volume% ratio)
JP8090595A 1995-03-14 1995-03-14 Method for revealing small inclination grain boundary in steel material and corroding the same Withdrawn JPH08253879A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8090595A JPH08253879A (en) 1995-03-14 1995-03-14 Method for revealing small inclination grain boundary in steel material and corroding the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8090595A JPH08253879A (en) 1995-03-14 1995-03-14 Method for revealing small inclination grain boundary in steel material and corroding the same

Publications (1)

Publication Number Publication Date
JPH08253879A true JPH08253879A (en) 1996-10-01

Family

ID=13731399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8090595A Withdrawn JPH08253879A (en) 1995-03-14 1995-03-14 Method for revealing small inclination grain boundary in steel material and corroding the same

Country Status (1)

Country Link
JP (1) JPH08253879A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890027A (en) * 2012-09-29 2013-01-23 攀钢集团攀枝花钢铁研究院有限公司 Metallographic structure display method of interstitial free (IF) steel cold-rolled sheet containing titanium (Ti)
CN107192660A (en) * 2017-05-27 2017-09-22 中国科学院上海技术物理研究所 It is a kind of to be used for the apparatus and method that dynamic observes Cdl-x_Znx_Te chemical attack hole
CN111366526A (en) * 2020-03-27 2020-07-03 阳春新钢铁有限责任公司 Corrosive agent for dendritic structure of 20MnSiV steel and display method
CN112781964A (en) * 2021-01-07 2021-05-11 人本股份有限公司 Etching solution and method for displaying grain size of 0Cr17Ni4Cu4Nb precipitation-hardened stainless steel
KR20210076682A (en) * 2019-12-16 2021-06-24 주식회사 포스코 Polishing composition for aluminum alloy, manufacturing method thereof, and polishing method using thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102890027A (en) * 2012-09-29 2013-01-23 攀钢集团攀枝花钢铁研究院有限公司 Metallographic structure display method of interstitial free (IF) steel cold-rolled sheet containing titanium (Ti)
CN107192660A (en) * 2017-05-27 2017-09-22 中国科学院上海技术物理研究所 It is a kind of to be used for the apparatus and method that dynamic observes Cdl-x_Znx_Te chemical attack hole
CN107192660B (en) * 2017-05-27 2023-09-12 中国科学院上海技术物理研究所 Device and method for dynamically observing tellurium-zinc-cadmium material chemical corrosion pits
KR20210076682A (en) * 2019-12-16 2021-06-24 주식회사 포스코 Polishing composition for aluminum alloy, manufacturing method thereof, and polishing method using thereof
CN111366526A (en) * 2020-03-27 2020-07-03 阳春新钢铁有限责任公司 Corrosive agent for dendritic structure of 20MnSiV steel and display method
CN112781964A (en) * 2021-01-07 2021-05-11 人本股份有限公司 Etching solution and method for displaying grain size of 0Cr17Ni4Cu4Nb precipitation-hardened stainless steel

Similar Documents

Publication Publication Date Title
JPH08253879A (en) Method for revealing small inclination grain boundary in steel material and corroding the same
EP0414820B1 (en) Method of treating a titanium structure
US5985048A (en) Method for developing an enhanced oxide coating on a component formed from stainless steel or nickel alloy steel
EP1281783A1 (en) Stainless steel for ozone added water and manufacturing method thereof
JP5219334B2 (en) Semiconductor substrate manufacturing method and quality evaluation method
EP1898454B1 (en) Alkaline etching method for a semiconductor wafer
JPH0613756B2 (en) Ferrite grain boundary developing solution and etching method
JPH05163590A (en) Etching solution for steel material with composite structure and etching method
CN111638113B (en) Precipitation strengthening martensite stainless steel prior austenite grain boundary corrosion method
JPH0750097B2 (en) Ultra-low carbon steel structure revealing liquid and revealing method
CN108693103B (en) Dendritic crystal corrosion and measurement method for high-carbon steel casting blank
Cochran et al. Effects of surface preparation on stress corrosion cracking of type 310 stainless steel in boiling 42% magnesium chloride
CN112461618B (en) Method for displaying metallographic structure of ultralow-carbon cold-rolled annealed interstitial-free steel plate
CN113866055A (en) Method for detecting grain size of quenched and tempered steel
US5227035A (en) Nitrohydrofluoric development bath for titanium alloy components
US5039612A (en) Method for detecting surface oxidation on titanium aluminide metallic material
Ambrož et al. Automation of Metallographic Sample Etching Process
JP2004045106A (en) Method for measuring grain boundary of steel having prior austenite grain boundary structure
Warke et al. Techniques for Electron Microscopic Fractography
Lockwood et al. Pitting corrosion of 5052 aluminum alloy
JP2864336B2 (en) Method for detecting solidification structure of ultra-low carbon steel
KR960000597B1 (en) Etching solution for viewing a structure of a very low carbon steel and etching method thereby
Trasatti et al. Influence of the exposure of AISI 304L stainless steel at moderately high temperature on the susceptibility to crevice corrosion
CN114855168B (en) Corrosive agent for displaying undissolved high alloy phase in steel and metallographic display method
KR960007623B1 (en) Method of acid dip cold mill sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020604