JPH08253565A - Production of polyether ester polyol - Google Patents

Production of polyether ester polyol

Info

Publication number
JPH08253565A
JPH08253565A JP2484496A JP2484496A JPH08253565A JP H08253565 A JPH08253565 A JP H08253565A JP 2484496 A JP2484496 A JP 2484496A JP 2484496 A JP2484496 A JP 2484496A JP H08253565 A JPH08253565 A JP H08253565A
Authority
JP
Japan
Prior art keywords
methyl
valerolactone
polyether ester
tetrahydrofuran
ester polyol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2484496A
Other languages
Japanese (ja)
Inventor
Haruo Watanabe
治生 渡辺
Takeshi Sato
剛 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hodogaya Chemical Co Ltd
Original Assignee
Hodogaya Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hodogaya Chemical Co Ltd filed Critical Hodogaya Chemical Co Ltd
Priority to JP2484496A priority Critical patent/JPH08253565A/en
Publication of JPH08253565A publication Critical patent/JPH08253565A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE: To obtain a polyether ester polyol useful for e.g. an elastic fiber by polymerizing tetrahydrofuran, 3-methyltetra-hydrofuran and β-methyl-δ- valerolactone in the presence of a specified catalyst. CONSTITUTION: Tetrahydrofuran (A), 3-methyltetrahydrofuran (B) and β-methyl-δ- valerolactone (C) are polymerized together in the presence of a catalyst comprising perchloric acid and acetic anhydride to make a polyether ester polyol useful as a starting polyol for an elastomer having rubbery elasticity of polytetra- methylene ether glycol. The molar ratio A:B:C is 1:(0.01-0.6): (0.02-0.7). The amount of the perchloric acid used is 0.003-0.03mol, and that of the acetic anhydride used is 0.05-0.25mol. The obtained polyether ester polyol has a low crystalline melting point and is a starting material for a polyurethane resin, such as an elastic fiber or an elastomer, having good resistance to wet-heat decomposition.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、ポリエーテルエス
テルポリオールの製造方法に関する。更に詳しくは、ポ
リテトラメチレンエーテルグリコール(以後PTMEG
と略記する)が有するゴム弾性的性質を保持している、
弾性繊維やエラストマー原料のポリオールとして有用な
ポリエーテルエステルポリオールを製造する方法に関す
る。
TECHNICAL FIELD The present invention relates to a method for producing a polyetherester polyol. More specifically, polytetramethylene ether glycol (hereinafter PTMEG
(Abbreviated as)) has a rubber elastic property,
The present invention relates to a method for producing a polyether ester polyol useful as a polyol for elastic fibers and elastomer raw materials.

【0002】[0002]

【従来の技術】ポリエーテルポリオールであるPTME
Gは各種イソシアナート化合物との反応により、優れた
ゴム弾性や、耐摩耗性を有するポリウレタン樹脂を生成
する。このような樹脂は塗料や接着剤として、又自動車
部品、家電製品、機械部品等、熱可塑性、熱硬化性樹脂
として成形加工用材料に広く使用されている。そして優
れたゴム弾性を有することより数平均分子量500〜5
000のPTMEGは弾性繊維(スパンデックス)とし
ても利用されている。このような弾性繊維の特徴をさら
に高める一環として、得られた繊維の低温におけるヒー
トセット性の改良が要求されている。その対策として例
えば特開平2−19511には結晶性を低下させたポリ
エーテルポリオールを使用することが開示されている。
又塗料、接着剤の用途分野でも、混合作業性、硬化性の
点で樹脂及び原料の結晶性を低下させることによる低粘
性化が検討されている。
2. Description of the Related Art PTME, a polyether polyol
G reacts with various isocyanate compounds to form a polyurethane resin having excellent rubber elasticity and abrasion resistance. Such resins are widely used as materials for molding and processing as paints and adhesives, and as thermoplastic and thermosetting resins for automobile parts, home appliances, machine parts and the like. And since it has excellent rubber elasticity, it has a number average molecular weight of 500 to 5
000 PTMEG is also used as an elastic fiber (spandex). As a part of further enhancing the characteristics of such elastic fiber, improvement of heat setting property of the obtained fiber at low temperature is required. As a countermeasure, for example, Japanese Patent Application Laid-Open No. 2-19511 discloses the use of a polyether polyol having a reduced crystallinity.
Also, in the field of application of paints and adhesives, reduction of the viscosity by lowering the crystallinity of the resin and the raw materials is being studied from the viewpoint of workability and curability.

【0003】このような改良技術としてはPTMEGの
原料であるテトラヒドロフラン(以後THFと略記す
る)とエチレンオキサイド、プロピレンオキサイド、ア
ルキルテトラヒドロフラン等の環状エーテル化合物との
開環共重合反応により得られるポリオールが知られてい
る。またTHFと環状エステル化合物(ラクトン)との
共重合体も検討されており、例えば、THF、ラクト
ン、多価アルコールをヘテロポリ酸を用いて共重合させ
る方法が知られている。
As such an improved technique, a polyol obtained by a ring-opening copolymerization reaction of tetrahydrofuran (hereinafter abbreviated as THF) which is a raw material of PTMEG and a cyclic ether compound such as ethylene oxide, propylene oxide and alkyltetrahydrofuran is known. Has been. Further, a copolymer of THF and a cyclic ester compound (lactone) has also been studied, and for example, a method of copolymerizing THF, lactone and polyhydric alcohol with a heteropolyacid is known.

【0004】[0004]

【発明が解決しようとする課題】PTMEGが有する特
徴を保持しつつ結晶性を低下させる方法としては、TH
Fとアルキルテトラヒドロフランを共重合反応させるこ
とが知られているが、この方法では共重合反応が遅いこ
と、また、主鎖の中にアルキルテトラヒドロフランを多
量に含有させることが困難なこと、そしてアルキルテト
ラヒドロフランの含有量が少ない共重合性ポリオールで
は、ポリウレタン樹脂や他の樹脂の原料に使用した場
合、得られる樹脂の特徴が顕著でない等の問題がある。
また上記ヘテロポリ酸を用いてTHFとラクトンからの
共重合反応により得られるポリエーテルエステルポリオ
ールでは、(i)THFに由来する骨格を主鎖に導入す
るために、(ii)産業上有用な分子量である500〜5
000のポリエーテルエステルポリオールを得るために
は多価アルコールが必須であり、多価アルコールを用い
ないで製造した場合にラクトンに由来する基の含有量が
多くなり、加水分解を受け易くなったり、PTMEGの
特徴であるゴム弾性的性質が低下する等の問題点を有し
ている。
THM is a method for reducing the crystallinity while maintaining the characteristics of PTMEG.
It is known to copolymerize F with alkyltetrahydrofuran, but this method is slow in the copolymerization reaction, and it is difficult to contain a large amount of alkyltetrahydrofuran in the main chain. When a copolymerizable polyol having a low content of is used as a raw material for a polyurethane resin or another resin, there is a problem that the characteristics of the obtained resin are not remarkable.
Further, in the polyether ester polyol obtained by the copolymerization reaction of THF and lactone using the above heteropoly acid, (i) the backbone derived from THF is introduced into the main chain, and (ii) the industrially useful molecular weight is used. Yes 500-5
In order to obtain 000 polyether ester polyol, polyhydric alcohol is indispensable, and when it is produced without using polyhydric alcohol, the content of the group derived from lactone is increased, and it is easily hydrolyzed. There is a problem that the rubber elastic property, which is a characteristic of PTMEG, is deteriorated.

【0005】さらにこれらの共重合反応を、触媒として
発煙硫酸やフルオロスルホン酸系触媒で行うと、反応後
の後処理として加水分解を酸性下で行わなければならな
いので、β−メチル−δ−バレロラクトンに由来するエ
ステル結合部分が切断されて、目的とするポリオールを
得ることが出来ない。また、ラクトンの中でもε−カプ
ロラクトンを開環重合して得られるポリエステルポリオ
ールは、耐熱性には優れているものの耐湿熱分解性が悪
いという問題があった。本発明の目的はこれらのPTM
EGが有するゴム弾性的性質を保持しつつ、結晶性を低
下させた、耐湿熱分解性が良好な、弾性繊維やエラスト
マー原料として有用な数平均分子量500〜5000を
有するポリエーテルエステルポリオールの製造方法を提
供することにある。
Further, when these copolymerization reactions are carried out with a fuming sulfuric acid or fluorosulfonic acid type catalyst as a catalyst, hydrolysis must be carried out under acidic conditions as a post-treatment after the reaction, so that β-methyl-δ-valero is required. The ester bond portion derived from the lactone is cleaved, and the intended polyol cannot be obtained. Further, among the lactones, the polyester polyol obtained by ring-opening polymerization of ε-caprolactone has excellent heat resistance, but has a problem of poor wet heat decomposition resistance. The purpose of the present invention is to provide these PTMs.
A method for producing a polyether ester polyol having a number average molecular weight of 500 to 5,000, which is useful as a raw material for elastic fibers and elastomers, which has reduced crystallinity while maintaining the rubber elastic properties of EG and has good resistance to wet thermal decomposition. To provide.

【0006】[0006]

【課題を解決するための手段】本発明の課題は、THF
と3−メチル−テトラヒドロフランとβ−メチル−δ−
バレロラクトの3者を、THF:3ーメチルーテトラヒ
ドロフラン:β−メチル−δ−バレロラクトンン=1:
0.01〜0.6:0.02〜0.70の仕込みモル比
で、過塩素酸と無水酢酸の触媒の存在下に重合させ、目
的とするポリエーテルエステルポリオールを得るという
製造方法によって達成することができる。本製造方法
は、触媒量、反応温度、反応時間を適宜調整することに
よって、数平均分子量が500〜5000、好ましくは
1000〜4000のポリエーテルエステルポリオール
を得ることができる。
The object of the present invention is to obtain THF.
And 3-methyl-tetrahydrofuran and β-methyl-δ-
The three valero lactons were converted into THF: 3-methyl-tetrahydrofuran: β-methyl-δ-valerolactonone = 1: 3.
Achieved by a production method in which a target polyetherester polyol is obtained by polymerizing in the presence of a catalyst of perchloric acid and acetic anhydride at a charged molar ratio of 0.01 to 0.6: 0.02 to 0.70. can do. In the present production method, a polyether ester polyol having a number average molecular weight of 500 to 5,000, preferably 1,000 to 4,000 can be obtained by appropriately adjusting the amount of catalyst, the reaction temperature, and the reaction time.

【0007】この製造方法によって、PTMEGが有す
るゴム弾性的性質を保持しつつ、結晶性を低下させた、
耐湿熱分解性が良好な、弾性繊維やエラストマー等のポ
リウレタン樹脂の原料として有用な数平均分子量500
〜5000を有するポリエーテルエステルポリオールを
得ることが可能である。このポリエーテルエステルポリ
オールを製造する際に、3−メチル−テトラヒドロフラ
ンを使用しないで上記と同様の条件で重合させると、得
られるポリエーテルエステルポリオールは、本発明の製
造方法で得られるポリエーテルエステルポリオールと比
較して融点が著しく高く、本発明の目的を達成すること
ができない。
By this manufacturing method, the crystallinity is lowered while maintaining the rubber elastic properties of PTMEG.
A number average molecular weight of 500, which is good as a raw material for polyurethane resins such as elastic fibers and elastomers, which has good resistance to moist heat decomposition.
It is possible to obtain polyetherester polyols having ˜5000. When producing this polyether ester polyol, polymerization is performed under the same conditions as above without using 3-methyl-tetrahydrofuran, and the obtained polyether ester polyol is the polyether ester polyol obtained by the production method of the present invention. The melting point is remarkably high as compared with, and the object of the present invention cannot be achieved.

【0008】[0008]

【発明の実施の形態】本発明のポリエーテルエステルポ
リオールの製造方法は次のようにして実施できる。TH
Fと3−メチル−テトラヒドロフランを仕込みモル比
で、1:0.01〜0.6の割合で混合し、過塩素酸を
0.003〜0.03モル仕込み、5℃以下に冷却して
その混合液を5℃以下に保ちながら、上記THF1モル
に対して0.02〜0.70のβ−メチル−δ−バレロ
ラクトンと0.05〜0.25モルの無水酢酸を滴下す
る。滴下終了後は10〜20℃付近まで昇温させて熟成
反応を行う。反応時間は1〜15時間である。
BEST MODE FOR CARRYING OUT THE INVENTION The method for producing a polyetherester polyol of the present invention can be carried out as follows. TH
F and 3-methyl-tetrahydrofuran were charged at a mixing molar ratio of 1: 0.01 to 0.6, and perchloric acid was charged at 0.003 to 0.03 mol, and the mixture was cooled to 5 ° C. or lower. While maintaining the mixture at 5 ° C. or lower, 0.02 to 0.70 of β-methyl-δ-valerolactone and 0.05 to 0.25 mol of acetic anhydride are added dropwise to 1 mol of the above THF. After completion of the dropping, the temperature is raised to around 10 to 20 ° C. to perform the aging reaction. The reaction time is 1 to 15 hours.

【0009】後処理は、反応液を中性にして未反応原料
を回収した後、1−ブタノールを生成物油層100gに
対して150mlと30%水酸化ナトリウム水溶液を5
〜80ml加えて、70〜95℃で2〜5時間加熱かく
拌することにより、生成物、末端アセテートを加水分解
し、終了後、中和、脱水、ろ過の操作を行って1−ブタ
ノールを除去することにより、目的とするポリエーテル
エステルポリオールを得ることができる。得られる共重
合体であるポリエーテルエステルポリオールを構成する
成分の組成比は、THF由来の構成単位50モル%に対
して、3−メチル−テトラヒドロフランが5〜45モル
%、β−メチル−δ−バレロラクトンが5〜45モル%
である。
In the post-treatment, after neutralizing the reaction solution and recovering unreacted raw materials, 150 ml of 1-butanol was added to 100 g of the product oil layer and 5% of 30% sodium hydroxide aqueous solution was added.
-80 ml is added and the product and terminal acetate are hydrolyzed by heating and stirring at 70 to 95 ° C for 2 to 5 hours, and after completion, neutralization, dehydration and filtration operations are performed to remove 1-butanol. By doing so, the intended polyether ester polyol can be obtained. The composition ratio of the components constituting the obtained polyetherester polyol which is a copolymer is 5 to 45 mol% of 3-methyl-tetrahydrofuran and β-methyl-δ-based on 50 mol% of the structural unit derived from THF. Valerolactone is 5-45 mol%
Is.

【0010】[0010]

【実施例】次に実施例により詳細に説明する。なお実施
例中に示した数平均分子量は無水フタル酸分析法により
求めた水酸基価に基づく。又生成ポリオールの共重合組
成比及び結晶質融点は1H−NMR測定及び示差走査熱
量計による測定から求めた。
EXAMPLES Next, examples will be described in detail. The number average molecular weights shown in the examples are based on the hydroxyl value determined by the phthalic anhydride analysis method. The copolymerization composition ratio and crystalline melting point of the produced polyol were determined by 1 H-NMR measurement and measurement with a differential scanning calorimeter.

【0011】〔実施例−1〕かく拌装置、温度計及び滴
下ロートを付けた1lの四ツ口フラスコにTHFを26
6.4gと3−メチル−テトラヒドロフラン74.5g
を仕込み、0℃まで冷却し、71%過塩素酸水溶液1
0.2gを添加した。そして0℃に保持した後、無水酢
酸73.8gの約20%(15g)を30分間で滴下し
その時点でβ−メチル−δ−バレロラクトン16.1g
も滴下開始し20分間で滴下を終了した。無水酢酸はこ
の間も滴下を続け1時間30分で全量滴下した。なお滴
下中は内温を10℃まで昇温し、4時間反応を続けた。
反応終了時点で水を加え静置すると油層と水層に分離す
ることから水層を除去後、油層を水洗し液性を中性にし
た。次に1−ブタノール100mlと30重量%の水酸
化ナトリウム水溶液40mlを加え85〜90℃の温度
で3時間、加水分解を行った。加水分解後水洗をした
後、塩酸水溶液を加え、液を酸性下、45〜50℃で3
0分間攪拌を行った。攪拌後水洗し、液を中性とした
後、脱水、ろ過操作を行い、1−ブタノールを減圧蒸留
により留去すると、無色透明な粘性液体185gを得
た。この生成物の数平均分子量、結晶質融点及びTH
F、3−メチル−テトラヒドロフラン、β−メチル−δ
−バレロラクトンに由来する構成単位含有量を表1に示
した。表1中、−O(CH24−:テトラヒドロフラン
に由来する基 −CH2CH(R1)CH(R2)CH2O−:3−メチル
−テトラヒドロフランに由来する基(ただし、R1,R2
のどちらか一方は水素でもう一方はメチル基である。) −O(CH22CH(CH3)CH2CO−:β−メチル
−δ−バレロラクトンに由来する基
[Example-1] THF was added to a 1-liter four-necked flask equipped with a stirrer, a thermometer and a dropping funnel.
6.4 g and 3-methyl-tetrahydrofuran 74.5 g
, Cool to 0 ° C, and add 71% perchloric acid aqueous solution 1
0.2 g was added. Then, after maintaining at 0 ° C., about 20% (15 g) of 73.8 g of acetic anhydride was added dropwise over 30 minutes, and at that time, 16.1 g of β-methyl-δ-valerolactone.
Also, the dropping was started, and the dropping was completed in 20 minutes. During this period, acetic anhydride was continuously added dropwise, and the whole amount was added dropwise in 1 hour and 30 minutes. During the dropping, the internal temperature was raised to 10 ° C. and the reaction was continued for 4 hours.
When water was added at the end of the reaction and left to stand, an oil layer and an aqueous layer were separated, so the aqueous layer was removed, and then the oil layer was washed with water to make the liquid neutral. Next, 100 ml of 1-butanol and 40 ml of a 30% by weight sodium hydroxide aqueous solution were added, and hydrolysis was carried out at a temperature of 85 to 90 ° C. for 3 hours. After hydrolysis and washing with water, an aqueous hydrochloric acid solution is added, and the solution is acidified at 45 to 50 ° C. for 3 days.
Stir for 0 minutes. After stirring and washing with water to make the liquid neutral, dehydration and filtration operations were performed, and 1-butanol was distilled off under reduced pressure to obtain 185 g of a colorless transparent viscous liquid. The number average molecular weight, crystalline melting point and TH of this product
F, 3-methyl-tetrahydrofuran, β-methyl-δ
-The content of the structural unit derived from valerolactone is shown in Table 1. In Table 1, a group derived from —O (CH 2 ) 4 —: tetrahydrofuran —CH 2 CH (R 1 ) CH (R 2 ) CH 2 O—: a group derived from 3-methyl-tetrahydrofuran (provided that R 1 , R 2
One of them is hydrogen and the other is a methyl group. ) —O (CH 2 ) 2 CH (CH 3 ) CH 2 CO—: a group derived from β-methyl-δ-valerolactone

【0012】[0012]

【表1】 [Table 1]

【0013】〔実施例−2〕実施例−1と同様の装置に
THF266.4gと3−メチル−テトラヒドロフラン
58.1gを仕込み、0℃まで冷却し、71%の過塩素
酸水溶液7.3gを後、液温を0℃に保持し無水酢酸7
4.0gとβ−メチル−δ−バレロラクトン37.6g
を滴下した。滴下所要時間は無水酢酸が1時間40分、
β−メチル−δ−バレロラクトンが1時間であった。滴
下終了後、10℃にて4時間反応を続け、実施例−1と
同様の後処理を行うことにより、無色透明な粘性液体1
67gを得た。この生成物の数平均分子量、結晶質融点
及びTHF、3−メチル−テトラヒドロフラン、β−メ
チル−δ−バレロラクトンに由来する構成単位含有量を
表1に示した。
[Example-2] 266.4 g of THF and 58.1 g of 3-methyl-tetrahydrofuran were charged in the same apparatus as in Example-1, cooled to 0 ° C, and 7.3 g of 71% perchloric acid aqueous solution was added. After that, the liquid temperature was maintained at 0 ° C. and acetic anhydride 7
4.0 g and β-methyl-δ-valerolactone 37.6 g
Was dripped. The time required for dripping is 1 hour 40 minutes for acetic anhydride,
β-methyl-δ-valerolactone was 1 hour. After the dropping, the reaction is continued at 10 ° C. for 4 hours and the same post-treatment as in Example 1 is performed to obtain a colorless transparent viscous liquid 1.
67 g was obtained. Table 1 shows the number average molecular weight, crystalline melting point, and constituent unit contents derived from THF, 3-methyl-tetrahydrofuran, and β-methyl-δ-valerolactone of this product.

【0014】〔実施例−3〕実施例−1と同様の装置
に、THF266.4gと3−メチル−テトラヒドロフ
ラン40.8gを仕込み0℃に冷却し、71%過塩素酸
水溶液7.1gを添加後、液温を0℃に保持し、無水酢
酸72.7gとβ−メチル−δ−バレロラクトン53.
4gを滴下した。滴下所要時間は、無水酢酸が1時間5
0分、β−メチル−δ−バレロラクトンが1時間であっ
た。滴下終了後10℃にて4時間反応を続け、実施例−
1と同様の後処理を行うことにより、無色透明な粘性液
体145gを得た。この生成物の数平均分子量、結晶質
融点、および3−メチル−テトラヒドロフラン、β−メ
チル−δ−バレロラクトンに由来する構成単位含有量を
表1に示した。
[Example-3] 266.4 g of THF and 40.8 g of 3-methyl-tetrahydrofuran were charged in the same apparatus as in Example-1, cooled to 0 ° C, and 7.1 g of 71% aqueous perchloric acid solution was added. After that, the liquid temperature was maintained at 0 ° C., and 72.7 g of acetic anhydride and β-methyl-δ-valerolactone 53.
4 g was added dropwise. The time required for dripping is 5 hours for acetic anhydride.
0 minutes, β-methyl-δ-valerolactone was 1 hour. After completion of dropping, the reaction was continued at 10 ° C. for 4 hours, and
By performing the same post-treatment as in Example 1, 145 g of a colorless transparent viscous liquid was obtained. Table 1 shows the number average molecular weight, crystalline melting point, and constituent unit content derived from 3-methyl-tetrahydrofuran and β-methyl-δ-valerolactone of this product.

【0015】〔実施例−4〕実施例−1と同様の装置
に、THF266.4gと3−メチル−テトラヒドロフ
ラン28.6gを仕込み、0℃に冷却し、71%過塩素
酸水溶液7.3gを添加後、液温を0℃に保持し、無水
酢酸73.9gとβ−メチル−δ−バレロラクトン7
6.4gを滴下した。滴下所要時間は無水酢酸が1時間
40分、β−メチル−δ−バレロラクトンが1時間20
分であった。滴下終了後10℃にて4時間反応を続け、
実施例−1と同様な処理を行うことにより、無色透明な
粘性液体120gを得た。この生成物の数平均分子量、
結晶質融点、およびTHF、3−メチル−テトラヒドロ
フラン、β−メチル−δ−バレロラクトンに由来する構
成単位含有量を表1に示した。
Example 4 266.4 g of THF and 28.6 g of 3-methyl-tetrahydrofuran were charged in the same apparatus as in Example 1, cooled to 0 ° C., and 7.3 g of 71% perchloric acid aqueous solution was added. After the addition, the liquid temperature was maintained at 0 ° C., and 73.9 g of acetic anhydride and β-methyl-δ-valerolactone 7 were added.
6.4 g was added dropwise. The time required for the dropping was 1 hour 40 minutes for acetic anhydride and 1 hour 20 for β-methyl-δ-valerolactone.
It was a minute. After the dropping is completed, the reaction is continued at 10 ° C for 4 hours,
By performing the same treatment as in Example-1, 120 g of a colorless and transparent viscous liquid was obtained. The number average molecular weight of this product,
Table 1 shows the crystalline melting point and the content of the structural units derived from THF, 3-methyl-tetrahydrofuran and β-methyl-δ-valerolactone.

【0016】〔実施例−5〜8〕実施例−1〜4で得ら
れた、ポリエーテルエステルポリオールを4,4’−ジ
フェニルメタンジイソシアネート(MDI)過剰下で、
ウレタン化反応を行うことにより、プレポリマーを作製
し、1,4−ブタンジオール(1,4BD)で鎖長延長
させ、注型し、100℃、16時間加熱硬化を行った
後、試験片をJISK−6301に準じて機械的性質の
測定を行った。結果を表2に示した。
[Examples 5 to 8] The polyether ester polyols obtained in Examples 1 to 4 were mixed with 4,4'-diphenylmethane diisocyanate (MDI) in excess.
A urethanization reaction is performed to prepare a prepolymer, the chain length of which is extended with 1,4-butanediol (1,4BD), casting is performed, and heat curing is performed at 100 ° C. for 16 hours. The mechanical properties were measured according to JISK-6301. The results are shown in Table 2.

【0017】[0017]

【表2】 [Table 2]

【0018】〔実施例−9〕実施例−5(実施例−1で
のポリオールを使用)で得られたポリウレタン樹脂の試
験片を70℃×95%RHの恒温恒湿槽に入れ、1週間
毎にサンプリングした。サンプリング後24時間以上放
置してから、その引っ張り物性を測定した。結果を表3
に示した。
[Example-9] The test piece of the polyurethane resin obtained in Example-5 (using the polyol of Example-1) was placed in a constant temperature and humidity chamber at 70 ° C x 95% RH for 1 week. It sampled every time. After being left for 24 hours or more after sampling, its tensile properties were measured. The results are shown in Table 3.
It was shown to.

【0019】[0019]

【表3】 [Table 3]

【0020】〔比較例−1〕実施例−1と同様の装置に
THF250.0gを仕込み、0℃に冷却し71%過塩
素酸水溶液8.3gを添加後、液温を0℃に保持し、無
水酢酸60.6gとβ−メチル−δ−バレロラクトン4
3.9gを滴下した。滴下所要時間は無水酢酸が1時間
50分、β−メチル−δ−バレロラクトンが1時間であ
った。滴下終了後10℃にて4時間反応を続け、実施例
−1と同様な処理を行うことにより、無色透明な粘性液
体149gを得た。この生成物の数平均分子量、結晶質
融点およびTHF、β−メチル−δ−バレロラクトンに
由来する構成単位含有量を表1に示した。
Comparative Example-1 250.0 g of THF was charged in the same apparatus as in Example-1, cooled to 0 ° C., 8.3 g of 71% perchloric acid aqueous solution was added, and the liquid temperature was kept at 0 ° C. , 60.6 g of acetic anhydride and β-methyl-δ-valerolactone 4
3.9 g was added dropwise. The time required for the dropping was 1 hour and 50 minutes for acetic anhydride and 1 hour for β-methyl-δ-valerolactone. After the dropping was completed, the reaction was continued at 10 ° C. for 4 hours and the same treatment as in Example-1 was performed to obtain 149 g of a colorless transparent viscous liquid. Table 1 shows the number average molecular weight, crystalline melting point, and constituent units derived from THF and β-methyl-δ-valerolactone of this product.

【0021】〔比較例−2〕実施例−1と同様の装置に
THF150.0gを仕込み、0℃に冷却し71%過塩
素酸水溶液5.7gを添加後、液温を0℃に保持した
後、無水酢酸40.9gとβ−メチル−δ−バレロラク
トン59.4gを滴下した。滴下所要時間は無水酢酸が
1時間40分、β−メチル−δ−バレロラクトンが1時
間であった。滴下終了後10℃にて4時間反応を続け、
実施例−1と同様な処理を行うことにより、無色透明な
粘性液体65gを得た。この生成物の数平均分子量、結
晶質融点、およびTHF、β−メチル−δ−バレロラク
トンに由来する構成単位含有量を表1に示した。
Comparative Example-2 150.0 g of THF was charged in the same apparatus as in Example-1, cooled to 0 ° C., 5.7 g of 71% perchloric acid aqueous solution was added, and the liquid temperature was kept at 0 ° C. Then, 40.9 g of acetic anhydride and 59.4 g of β-methyl-δ-valerolactone were added dropwise. The time required for the dropping was 1 hour and 40 minutes for acetic anhydride and 1 hour for β-methyl-δ-valerolactone. After the dropping is completed, the reaction is continued at 10 ° C for 4 hours,
By performing the same treatment as in Example-1, 65 g of a colorless transparent viscous liquid was obtained. Table 1 shows the number average molecular weight, crystalline melting point, and constituent unit contents derived from THF and β-methyl-δ-valerolactone of this product.

【0022】〔比較例−3及び−4〕比較例−1及び−
2で得られた、ポリエーテルエステルポリオールを4,
4’−ジフェニルメタンジイソシアナート(MDI)過
剰下で、ウレタン化反応を行うことにより、プレポリマ
ーを作製し、1,4−ブタンジオール(1,4BD)で
鎖長延長することにより、硬化した樹脂の、機械的性質
を表2に示した。
Comparative Examples -3 and -4 Comparative Examples -1 and-
The polyether ester polyol obtained in 2 was added to 4,
A resin cured by preparing a prepolymer by carrying out a urethanization reaction in the presence of excess 4′-diphenylmethane diisocyanate (MDI) and extending the chain length with 1,4-butanediol (1,4BD). The mechanical properties of are shown in Table 2.

【0023】〔比較例−5〕ε−カプロラクトンを開環
重合して得られたポリカプロラクトン(PCL;ダイセ
ル社製;数平均分子量1989)を実施例−5と同様に
ポリウレタン樹脂(過剰NCO6.3%;プレポリマー
/1,4−BD当量比1.05)を作製した。この試験
片を実施例−9と同様にして、耐湿熱分解性の測定を行
い、結果を表3に示した。
[Comparative Example-5] Polycaprolactone obtained by ring-opening polymerization of ε-caprolactone (PCL; manufactured by Daicel Corp .; number average molecular weight 1989) was used in the same manner as in Example-5 to prepare a polyurethane resin (excess NCO 6.3). %; Prepolymer / 1,4-BD equivalent ratio 1.05) was prepared. Moisture and thermal decomposition resistance of this test piece was measured in the same manner as in Example-9, and the results are shown in Table 3.

【0024】[0024]

【発明の効果】本発明の製造方法によれば、主鎖に容易
にTHF、3−メチル−テトラヒドロフラン、β−メチ
ル−δ−バレロラクトンに由来する基を導入でき、より
低い結晶質融点を有し、耐湿熱分解性が良好な、弾性繊
維やエラストマー等のポリウレタン樹脂の原料として、
優れた機械的性質を与えるポリエーテルエステルポリオ
ールを製造することが出来る。
EFFECTS OF THE INVENTION According to the production method of the present invention, a group derived from THF, 3-methyl-tetrahydrofuran or β-methyl-δ-valerolactone can be easily introduced into the main chain, and it has a lower crystalline melting point. As a raw material for polyurethane resins such as elastic fibers and elastomers, which have good resistance to moisture and thermal decomposition,
It is possible to produce polyetherester polyols that give excellent mechanical properties.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 テトラヒドロフラン、3−メチル−テト
ラヒドロフラン、β−メチル−δ−バレロラクトンを過
塩素酸と無水酢酸の触媒の存在下に重合させることを特
徴とするポリエーテルエステルポリオールの製造方法。
1. A method for producing a polyether ester polyol, which comprises polymerizing tetrahydrofuran, 3-methyl-tetrahydrofuran, and β-methyl-δ-valerolactone in the presence of a catalyst of perchloric acid and acetic anhydride.
JP2484496A 1995-01-20 1996-01-19 Production of polyether ester polyol Pending JPH08253565A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2484496A JPH08253565A (en) 1995-01-20 1996-01-19 Production of polyether ester polyol

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-24569 1995-01-20
JP2456995 1995-01-20
JP2484496A JPH08253565A (en) 1995-01-20 1996-01-19 Production of polyether ester polyol

Publications (1)

Publication Number Publication Date
JPH08253565A true JPH08253565A (en) 1996-10-01

Family

ID=26362115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2484496A Pending JPH08253565A (en) 1995-01-20 1996-01-19 Production of polyether ester polyol

Country Status (1)

Country Link
JP (1) JPH08253565A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193987A (en) * 2012-07-30 2014-10-09 Sanyo Chem Ind Ltd Polyurethane resin
CN110387032A (en) * 2019-07-25 2019-10-29 万华化学集团股份有限公司 A kind of polyester ether polylol, preparation method and its polyurethane elastomer of preparation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014193987A (en) * 2012-07-30 2014-10-09 Sanyo Chem Ind Ltd Polyurethane resin
CN110387032A (en) * 2019-07-25 2019-10-29 万华化学集团股份有限公司 A kind of polyester ether polylol, preparation method and its polyurethane elastomer of preparation

Similar Documents

Publication Publication Date Title
DE60015147T2 (en) Moisture-curable compositions containing silane end groups
CN1125104C (en) Thermoplastic polyether urethane
JPH07116276B2 (en) Method for producing polyurethane resin
JPH05239202A (en) Diol-terminated polycarbonate
JPS587648B2 (en) Method for producing polyether urethane polymer
KR20060053971A (en) Low-viscosity polyurethane prepolymers based on 2,4'-mdi
CN110028664B (en) Silane-terminated polyether and preparation method thereof
JPS625932B2 (en)
CN103665805B (en) Glass fibre/lactic acid composite material of a kind of lactic acid oligomer modification of isocyanato end-blocking and preparation method thereof
JP2525181B2 (en) Silicone-modified polyurethane and method for producing the same
US5494990A (en) Thermoplastic polyurethane resin having broad rubbery-state region and process for producing the same
CN109824853B (en) Method for synthesizing polyurethane prepolymer, prepolymer and casting polyurethane elastomer
JP2008095109A5 (en)
JP2008514760A (en) In situ chain extended RTV cured polyether
JPH08253565A (en) Production of polyether ester polyol
CN116284683A (en) Oxygen heterocyclic end-capped resin and adhesive using same
CN114008101A (en) Process for producing NDI prepolymers
US5284980A (en) Block copolyethers via oxonium coupling of poly(tetramethylene ether) glycols
EP0850258A1 (en) Compositions of polytetramethylene ether glycols and polyoxy alkylene polyether polyols having a low degree of unsaturation
KR101156599B1 (en) Silane modified polyurethane prepolymer and preparation method thereof
KR100945300B1 (en) Improving hydrolysis-proof additives of polyurethane compounds, Preparing method thereof and Polyurethane composition using there
JP7380676B2 (en) Polyalkylene ether glycol composition and method for producing polyurethane using the same
KR102316790B1 (en) Biodegradable polyester resin made by addition of biomass derived reaction rate control agent and molecular weight extender and the manufacturing method thereof
CN114133518B (en) Thermoplastic polyurethane elastomer with excellent heat resistance and preparation method thereof
EP0604825B1 (en) Low-temperature liquid urethane prepolymer