JPH08251404A - Method and device for discriminating attribute of image area - Google Patents
Method and device for discriminating attribute of image areaInfo
- Publication number
- JPH08251404A JPH08251404A JP7052438A JP5243895A JPH08251404A JP H08251404 A JPH08251404 A JP H08251404A JP 7052438 A JP7052438 A JP 7052438A JP 5243895 A JP5243895 A JP 5243895A JP H08251404 A JPH08251404 A JP H08251404A
- Authority
- JP
- Japan
- Prior art keywords
- input
- layer
- image
- neural network
- area
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Facsimile Image Signal Circuits (AREA)
- Image Analysis (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、複写機などにおいて画
像処理を行う際に用いられる画像領域属性判別方法及び
装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an image area attribute discriminating method and apparatus used for image processing in a copying machine or the like.
【0002】[0002]
【従来の技術】従来より、複写機においては、原稿の画
像を読み取って得られた多値の画像データに対して、画
像品質の向上を図るために種々の画像処理が行われる。
その場合の画像処理は、画像の種類に応じて行われる。
例えば、文字画像に対しては文字を明瞭にするためにエ
ッジ強調処理や2値化処理が行われ、写真画像に対して
は階調性を重視した処理が行われ、網点画像に対しては
モアレ防止のために平滑化処理が行われる。2. Description of the Related Art Conventionally, in a copying machine, various image processing is performed on multi-valued image data obtained by reading an image of a document in order to improve image quality.
The image processing in that case is performed according to the type of image.
For example, edge enhancement processing and binarization processing are performed on a character image in order to clarify the character, gradation processing is performed on a photographic image, and halftone processing is performed on a halftone image. Is subjected to smoothing processing to prevent moire.
【0003】さて、複写原稿には、文字画像、写真画
像、網点画像などが混在している場合がある。その場合
には、原稿画像をそれぞれの領域に分割する必要があ
る。領域分割に当たっては、原稿画像から小領域である
ブロック領域を抽出し、抽出したブロック領域について
その属性を判別することが行われる。There are cases where character images, photographic images, halftone images and the like are mixed in a copy document. In that case, it is necessary to divide the document image into respective areas. In the area division, a block area, which is a small area, is extracted from the document image, and the attribute of the extracted block area is determined.
【0004】例えば特開平4−114560号公報に
は、原稿画像から64×64画素のブロック領域に対応
する画像データを抽出し、抽出した画像データに基づい
てヒストグラム特徴量及び線密度特徴量を抽出し、これ
をニューラルネットワークに入力して属性を判別するこ
とが提案されている。For example, in Japanese Unexamined Patent Publication No. 4-114560, image data corresponding to a block area of 64 × 64 pixels is extracted from a document image, and a histogram feature amount and a linear density feature amount are extracted based on the extracted image data. Then, it has been proposed to input this to a neural network to determine the attribute.
【0005】また、井上らの報告書「ニューラルネット
ワークを利用した画像領域の分離方式」(日本シミュレ
ーション学会第13回シミュレーション・テクノロジー
・コンファレンス、1994年6月)には、8×8画素
の小領域における平均輝度及び最大濃度差を特徴量とし
て抽出し、これをニューラルネットワークに入力して属
性を判別することが提案されている。Inoue et al.'S report, "Image Area Separation Method Using Neural Networks" (13th Simulation Technology Conference, Japan Society for Simulation Technology, June 1994), shows a small area of 8 × 8 pixels. It has been proposed to extract the average luminance and the maximum density difference in 1) as feature quantities and input them to a neural network to determine the attributes.
【0006】[0006]
【発明が解決しようとする課題】上述した従来からの種
々の提案においては、ニューラルネットワークとして、
入力層、中間層、及び出力層からなる3層のパーセプト
ロン、又はその改良型が用いられている。また、ニュー
ラルネットワークに与える入力信号として、ブロック領
域の画像データから抽出された種々の特徴量が用いられ
ている。つまり、従来においては、物理的な意味を有す
る種々の特徴量を組み合わせることによって、ニューラ
ルネットワークによる属性の判別が行われる。In the above-mentioned various conventional proposals, as a neural network,
A three-layer perceptron including an input layer, an intermediate layer, and an output layer, or a modified version thereof is used. Further, various feature quantities extracted from the image data of the block area are used as input signals given to the neural network. That is, conventionally, the attributes are discriminated by the neural network by combining various characteristic quantities having physical meanings.
【0007】しかし、複写機のように領域属性をリアル
タイムで判別する必要がある場合には、特徴量を抽出す
るための回路が複雑となり、回路を構成すること自体が
困難であるとともに、処理速度、柔軟性、コストの点で
も不利であった。また、種々の複写原稿に対して特徴量
毎に閾値を決定することが極めて困難であり、多くの経
験とノウハウを必要とし、閾値決定のための実験などに
多くの時間と労力を要するものであった。However, when it is necessary to discriminate the area attribute in real time as in a copying machine, the circuit for extracting the characteristic amount becomes complicated and it is difficult to configure the circuit itself, and the processing speed is high. It was also disadvantageous in terms of flexibility and cost. Further, it is extremely difficult to determine the threshold value for each feature amount for various copy originals, a lot of experience and know-how are required, and much time and labor are required for experiments for determining the threshold value. there were.
【0008】本発明は、上述の問題に鑑みてなされたも
ので、入力された画像データに基づいてその領域の属性
をより正確に且つ容易に判別することを目的とする。The present invention has been made in view of the above problems, and an object thereof is to more accurately and easily determine the attribute of the area based on the input image data.
【0009】[0009]
【課題を解決するための手段】請求項1の発明に係る方
法は、少なくとも1つの中間層のニューロン数が入力層
のニューロン数よりも小さく且つ入力層と出力層のニュ
ーロン数が互いに同一の第1のニューラルネットワーク
に対して恒等写像を学習させ、学習済の前記第1のニュ
ーラルネットワークのうちの前記入力層から前記中間層
までを特徴抽出用センサとし、前記特徴抽出用センサか
らの出力を、第2のニューラルネットワークの入力層に
入力するように結合し、前記特徴抽出用センサの入力層
に、特定の領域属性を有する画像データをサンプルデー
タとして入力し、前記特徴抽出用センサの結合係数を変
更することなく、前記第2のニューラルネットワークを
学習させた後、前記特徴抽出用センサの入力層に画像デ
ータを入力してその領域属性を判別させる。According to a first aspect of the present invention, there is provided a method wherein the number of neurons in at least one intermediate layer is smaller than the number of neurons in the input layer and the number of neurons in the input layer and the number of neurons in the output layer are the same. One neural network is trained to identify the identity map, and the input layer to the intermediate layer of the learned first neural network are used as the feature extraction sensor, and the output from the feature extraction sensor is , Inputting to the input layer of the second neural network, inputting image data having a specific region attribute as sample data to the input layer of the feature extracting sensor, and connecting coefficient of the feature extracting sensor. After the second neural network is trained without changing, the image data is input to the input layer of the feature extraction sensor and To determine the region attributes.
【0010】請求項2の発明に係る装置は、少なくとも
1つの中間層のニューロン数が入力層のニューロン数よ
りも小さく且つ入力層と出力層のニューロン数が互いに
同一であり、恒等写像を学習済の第1のニューラルネッ
トワークのうちの前記入力層から前記中間層までで構成
される、1つ又は複数の特徴抽出用センサと、前記特徴
抽出用センサからの出力が入力されるように結合され、
前記特徴抽出用センサの入力層に入力される画像データ
に基づいて、前記画像データの領域属性についての判別
結果を出力する第2のニューラルネットワークと、から
なる。According to a second aspect of the present invention, the number of neurons in at least one intermediate layer is smaller than the number of neurons in the input layer and the number of neurons in the input layer and the number of neurons in the output layer are the same, and the identity map is learned. One or more feature extraction sensors formed from the input layer to the intermediate layer of the completed first neural network, and coupled so that the output from the feature extraction sensor is input. ,
A second neural network that outputs a determination result regarding the area attribute of the image data based on the image data input to the input layer of the feature extraction sensor.
【0011】請求項3の発明に係る装置は、各入力層が
互いに並列に接続された少なくとも2つの前記特徴抽出
用センサを有し、前記第2のニューラルネットワーク
は、前記特徴抽出用センサの1つに領域属性が写真画像
の平坦部である画像データをサンプルデータとして入力
して学習済であり、且つ前記特徴抽出用センサの他の1
つに領域属性が写真画像のエッジ部である画像データを
サンプルデータとして入力して学習済であるものが用い
られる。According to a third aspect of the present invention, there is provided at least two of the feature extracting sensors, each input layer of which is connected in parallel with each other, and the second neural network includes one of the feature extracting sensors. First, image data whose area attribute is a flat portion of a photographic image has been input as sample data and has already been learned, and another one of the above-mentioned feature extraction sensors is used.
The image data whose area attribute is the edge portion of the photographic image and which has been learned by inputting as sample data is used.
【0012】[0012]
【作用】特徴抽出用センサによって、入力される画像デ
ータの特徴量が抽出される。この場合の特徴量は、物理
的に明確な意味を持った特徴量ではない。例えば、入力
として文字画像又は写真画像などの画像データを入力し
た場合は、「文字画像らしさ」「写真画像らしさ」など
といった画像の性質を表すようなものである。The feature extracting sensor extracts the feature amount of the input image data. The feature amount in this case is not a feature amount having a physically clear meaning. For example, when image data such as a character image or a photographic image is input as an input, the image properties such as “character image-likeness” and “photo image-likeness” are displayed.
【0013】第2のニューラルネットワークからは、学
習によって、特徴抽出用センサにより抽出される特徴量
に対応した出力が得られる。ニューラルネットワークに
よって、入力された画像データに対して、文字領域、写
真平坦領域、写真エッジ領域、網点領域などの領域属性
が判別される。From the second neural network, an output corresponding to the feature quantity extracted by the feature extracting sensor is obtained by learning. The neural network determines the area attributes such as the character area, the photograph flat area, the photograph edge area, and the halftone area for the input image data.
【0014】[0014]
【実施例】図1は本発明に係る属性判別装置1の構成を
示すブロック図、図2は原稿PPから抽出されるブロッ
ク領域BAを説明する図、図3はニューラルネットワー
ク12の構成を示す図、図4は特徴抽出用ネットワーク
12aの作成過程を示す図、図5は砂時計型のニューラ
ルネットワークNNAの例を示す図、図6は領域判別用
ネットワーク12bの例を示す図、図7はニューラルネ
ットワーク12の作成方法を示すフローチャートであ
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a block diagram showing a structure of an attribute discrimination device 1 according to the present invention, FIG. 2 is a view for explaining a block area BA extracted from a document PP, and FIG. 3 is a view for showing a structure of a neural network 12. 4, FIG. 4 is a diagram showing a process of creating the feature extraction network 12a, FIG. 5 is a diagram showing an example of an hourglass-type neural network NNA, FIG. 6 is a diagram showing an example of the region discrimination network 12b, and FIG. 7 is a neural network. 12 is a flowchart showing a method of creating No. 12.
【0015】属性判別装置1は、例えば図示しないデジ
タル式の複写機に組み込まれている。複写機のイメージ
リーダ部が原稿台にセットされた原稿PPを読み取るこ
とによって、原稿PPの画像(原画像)PMについての
多値の画像データDMが得られる。イメージリーダ部
は、読み取り密度が例えば400dpiのラインセンサ
を備えており、原稿PPを縦方向(副走査方向)に走査
することによって、例えば256階調の画像データDM
を得る。属性判別装置1は、得られた画像データDMに
基づいて、原画像PMに含まれる小領域であるブロック
領域BAについての属性ATを判別する。The attribute discriminating apparatus 1 is incorporated in, for example, a digital copying machine (not shown). The image reader unit of the copying machine reads the document PP set on the document table, whereby multivalued image data DM of the image (original image) PM of the document PP is obtained. The image reader unit includes a line sensor having a reading density of, for example, 400 dpi, and scans the document PP in the vertical direction (sub-scanning direction) to generate image data DM with 256 gradations, for example.
Get. The attribute discrimination device 1 discriminates the attribute AT for the block area BA, which is a small area included in the original image PM, based on the obtained image data DM.
【0016】図1に示すように、属性判別装置1は、ブ
ロック領域抽出部11、及びニューラルネットワーク1
2から構成されている。ブロック領域抽出部11は、入
力された画像データDMに対して、ブロック領域BAに
対応する画像データDMaを抽出する。ブロック領域B
Aは、例えば8×8画素の正方形の領域であり、原画像
PMに対して各ブロック領域BAが互いに重ならないよ
うに割り当てられている。ブロック領域抽出部11に
は、原画像PMの画像データDMが1ライン毎又は複数
ライン毎に入力されるので、例えば入力された画像デー
タDMを画素のアドレスに応じて適当なメモリに格納す
ることによって、ブロック領域BAに対応した画像デー
タDMaを抽出することができる。As shown in FIG. 1, the attribute discriminating apparatus 1 includes a block area extracting section 11 and a neural network 1.
It consists of two. The block area extraction unit 11 extracts image data DMa corresponding to the block area BA from the input image data DM. Block area B
A is, for example, a square area of 8 × 8 pixels, and is assigned to the original image PM so that the block areas BA do not overlap each other. The image data DM of the original image PM is input to the block area extraction unit 11 line by line or line by line. Therefore, for example, the input image data DM should be stored in an appropriate memory according to the pixel address. Thus, the image data DMa corresponding to the block area BA can be extracted.
【0017】ニューラルネットワーク12は、ブロック
領域抽出部11からブロック領域BA毎に出力される6
4個の画像データDMaに基づいて、各ブロック領域B
Aの属性ATが文字領域、写真平坦領域、写真エッジ領
域、又は網点領域であるか否かについての判別結果を出
力する。ニューラルネットワーク12は、特徴抽出用ネ
ットワーク12a、及び第2のニューラルネットワーク
としての領域判別用ネットワーク12bからなってい
る。The neural network 12 is output from the block area extraction unit 11 for each block area BA 6
Based on the four image data DMa, each block area B
The determination result as to whether the attribute AT of A is a character area, a photograph flat area, a photograph edge area, or a halftone dot area is output. The neural network 12 includes a feature extracting network 12a and a region identifying network 12b as a second neural network.
【0018】次に、ニューラルネットワーク12の作成
方法について図7を参照して説明する。まず、特徴抽出
用ネットワーク12aの作成方法について説明する。す
なわち、図4に示すように、第1のニューラルネットワ
ークとしての4個のニューラルネットワークNNA(N
NA1〜4)を準備する(ステップ#1)。図5に示す
ように、各ニューラルネットワークNNAは、砂時計型
の5層のものであり、第1層(入力層)から第5層(出
力層)までの各ニューロン数が、64,60,10,6
0,64である。つまり、ニューラルネットワークNN
Aは、第3層(中間層)のニューロン数が入力層のニュ
ーロン数よりも小さく、入力層と出力層のニューロン数
が互いに同一であり、第3層を中心として左右対称形で
ある。Next, a method of creating the neural network 12 will be described with reference to FIG. First, a method of creating the feature extraction network 12a will be described. That is, as shown in FIG. 4, four neural networks NNA (N
NA1 to 4) are prepared (step # 1). As shown in FIG. 5, each neural network NNA has five hourglass-type layers, and the number of neurons from the first layer (input layer) to the fifth layer (output layer) is 64, 60, and 10. , 6
0 and 64. That is, the neural network NN
In A, the number of neurons in the third layer (intermediate layer) is smaller than the number of neurons in the input layer, the number of neurons in the input layer is the same as the number of neurons in the input layer, and is symmetrical with respect to the third layer.
【0019】また、各ニューラルネットワークNNAに
おいて、入力層S、中間層(第3層)Ab、及び出力層
Rの応答関数はリニア関数であり、中間層(第2層)A
a及び中間層(第4層)Acの応答関数はシグモイド関
数である。第1層から第3層までの部分が特徴抽出用セ
ンサとしてのネットワークA1〜4であり、第4層及び
第5層の部分がネットワークB1〜4である。In each neural network NNA, the response function of the input layer S, the intermediate layer (third layer) Ab, and the output layer R is a linear function, and the intermediate layer (second layer) A
The response function of a and the intermediate layer (fourth layer) Ac is a sigmoid function. The portions from the first layer to the third layer are networks A1 to 4 as the feature extraction sensor, and the portions of the fourth and fifth layers are the networks B1 to B4.
【0020】これらの各ニューラルネットワークNNA
に対し、それぞれ特定の分布的特徴を有した入力信号を
入力層に入力してその恒等写像を学習させる(ステップ
#2)。Each of these neural networks NNA
On the other hand, input signals each having a specific distribution characteristic are input to the input layer to learn the identity map (step # 2).
【0021】すなわち、1つ目のニューラルネットワー
クNNA1には、入力層Sに学習用の文字画像を入力
し、入力した文字画像と同じ画像(復元文字画像)を出
力層Rから出力するように学習させる。その場合には、
各入力層への入力値と各入力層に対応する各出力層から
の出力値とが等しくなる。That is, in the first neural network NNA1, learning is performed so that a learning character image is input to the input layer S and the same image as the input character image (restored character image) is output from the output layer R. Let In that case,
The input value to each input layer and the output value from each output layer corresponding to each input layer become equal.
【0022】2つ目のニューラルネットワークNNA2
には、入力層Sに学習用の写真平坦画像を入力し、入力
した写真平坦画像と同じ画像(復元写真平坦画像)を出
力層Rから出力するように学習させる。Second neural network NNA2
For input, a learning photo flat image is input to the input layer S, and learning is performed so that the same image as the input photo flat image (restored photo flat image) is output from the output layer R.
【0023】3つ目のニューラルネットワークNNA3
には、入力層Sに学習用の写真エッジ画像を入力し、入
力した写真エッジ画像と同じ画像(復元写真エッジ画
像)を出力層Rから出力するように学習させる。Third neural network NNA3
For input, a learning photo edge image is input to the input layer S, and learning is performed so that the same image as the input photo edge image (restored photo edge image) is output from the output layer R.
【0024】4つ目のニューラルネットワークNNA4
には、入力層Sに学習用の網点画像を入力し、入力した
写真エッジ画像と同じ画像(復元網点画像)を出力層R
から出力するように学習させる。Fourth neural network NNA4
, A halftone image for learning is input to the input layer S, and the same image as the input photo edge image (restored halftone image) is output to the output layer R.
Make it learn to output from.
【0025】ニューラルネットワークNNAの学習は、
周知の技術であるバックプロパゲーション法による。学
習においては、文字画像、写真平坦画像、写真エッジ画
像、及び網点画像の各サンプルを多数作成し、それらの
各サンプルから得られた8×8画素についての画像デー
タを、サンプルデータとして入力層Sに入力する。各ニ
ューラルネットワークNNAについて、サンプル全体に
対する平均二乗誤差が小さくなるように学習を行う。The learning of the neural network NNA is
According to the well-known technique of back propagation. In learning, many samples of a character image, a photo flat image, a photo edge image, and a halftone dot image are created, and 8 × 8 pixel image data obtained from each sample is used as sample data in the input layer. Enter in S. For each neural network NNA, learning is performed so that the mean square error for the entire sample becomes small.
【0026】各ニューラルネットワークNNAは、学習
することによって、それぞれの中間層Abに「文字画像
らしさ」「写真平坦画像らしさ」「写真エッジ画像らし
さ」「網点画像らしさ」といった各画像の性質を表すよ
うな特徴量が取得される。つまり、ニューラルネットワ
ークNNAの学習によって、各画像の特徴量が取得され
る。但し、この場合の特徴量は、物理的に明確な意味を
持った特徴量ではない。各中間層Abは各入力層Sより
もニューロン数が小さく、したがって中間層Abには、
入力層Sに入力された情報の特徴が圧縮され又は集約さ
れて現れていると考えることができる。なお、ニューラ
ルネットワークの中間層における特徴量の取得に関して
は、入江らの報告書「多層パーセプトロンによる内部表
現の獲得」(電子情報通信学会文誌 Vol.J73−
D−II、No.8、P1173〜8、1990年8月)
を参照することができる。Each neural network NNA learns the characteristics of each image such as “character image likeness”, “photo flat image likeness”, “photograph edge image likeness”, and “halftone dot image likeness” in each intermediate layer Ab. Such a feature amount is acquired. That is, the feature amount of each image is acquired by learning the neural network NNA. However, the feature amount in this case is not a feature amount having a physically clear meaning. Each intermediate layer Ab has a smaller number of neurons than each input layer S. Therefore, the intermediate layer Ab has
It can be considered that the characteristics of the information input to the input layer S appear compressed or aggregated. Regarding the acquisition of the feature quantity in the middle layer of the neural network, the report of Irie et al., "Acquisition of Internal Representation by Multilayer Perceptron" (IEICE Transactions Vol. J73-
D-II, No. 8, P1173-8, August 1990)
Can be referred to.
【0027】学習済のニューラルネットワークNNA1
〜4の各第1層から第3層までの部分(ネットワークA
1〜4)を取り出したものが、特徴抽出用ネットワーク
12aである(ステップ#3)。特徴抽出用ネットワー
ク12aは、各ネットワークA1〜4の入力層S同士は
並列に接続され、64(=8×8)個の画像データが各
ネットワークA1〜4に同時に入力される。ネットワー
クA1〜4における出力層からは、40(=10×4)
個のデータが出力される。Learned neural network NNA1
4 to the third to third layers (network A)
The extracted features 1 to 4) are the feature extraction network 12a (step # 3). In the feature extraction network 12a, the input layers S of the networks A1 to A4 are connected in parallel, and 64 (= 8 × 8) pieces of image data are simultaneously input to the networks A1 to A4. 40 (= 10 × 4) from the output layer in the networks A1 to A4
Data is output.
【0028】図6に示すように、領域判別用ネットワー
ク12bは3層のものであり、入力層S、中間層A、出
力層Rの各ニューロン数は、40,40,4である。入
力層Sの応答関数はリニア関数であり、中間層A及び出
力層Rの応答関数はシグモイド関数である。領域判別用
ネットワーク12bの入力層Sに、特徴抽出用ネットワ
ーク12aの出力層を接続する(ステップ#4)。As shown in FIG. 6, the region discriminating network 12b has three layers, and the numbers of neurons in the input layer S, the intermediate layer A, and the output layer R are 40, 40, and 4, respectively. The response function of the input layer S is a linear function, and the response functions of the intermediate layer A and the output layer R are sigmoid functions. The output layer of the feature extraction network 12a is connected to the input layer S of the area discrimination network 12b (step # 4).
【0029】上述のように構成されたニューラルネット
ワーク12に対して、ニューラルネットワークNNAを
学習させたのと同じ分布的特徴を有する入力信号を入力
し、特徴抽出用ネットワーク12aの結合係数を変更す
ることなく、領域判別用ネットワーク12bを学習させ
る(ステップ#5)。To the neural network 12 configured as described above, an input signal having the same distributive feature as the one learned by the neural network NNA is input and the coupling coefficient of the feature extracting network 12a is changed. Instead, the area discrimination network 12b is learned (step # 5).
【0030】すなわち、ニューラルネットワーク12に
対して、まず学習用の文字画像を入力し、領域判別用ネ
ットワーク12bの出力層Rのニューロンr1の出力が
「1」となるように学習させる。次に、学習用の写真平
坦画像を入力し、領域判別用ネットワーク12bのニュ
ーロンr2の出力が「1」となるように学習させる。さ
らに、学習用の写真エッジ画像及び網点画像を順次入力
し、領域判別用ネットワーク12bのニューロンr3,
4の出力が「1」となるようにそれぞれ学習させる。こ
の学習過程において、領域判別用ネットワーク12bの
結合係数が変化する。なお、ニューラルネットワークN
NAの学習は、周知の技術であるバックプロパゲーショ
ン法による。学習に用いられるサンプルは、ニューラル
ネットワークNNAの学習において用いたサンプルと同
一のものでもよく又は異なるものでもよい。文字画像、
写真平坦画像、写真エッジ画像、及び網点画像のそれぞ
れについて、平均二乗誤差が小さくなるように学習を行
う。That is, first, a learning character image is input to the neural network 12, and learning is performed so that the output of the neuron r1 of the output layer R of the area discrimination network 12b becomes "1". Next, a learning photo flat image is input, and learning is performed so that the output of the neuron r2 of the area discrimination network 12b becomes "1". Further, the photograph edge image and the halftone dot image for learning are sequentially input, and the neuron r3 of the area discrimination network 12b is input.
4 is learned so that the output of 4 becomes "1". In this learning process, the coupling coefficient of the area discrimination network 12b changes. The neural network N
The learning of NA is based on the back propagation method which is a well-known technique. The sample used for learning may be the same as or different from the sample used for learning the neural network NNA. Character image,
Learning is performed so that the mean square error becomes small for each of the photograph flat image, the photograph edge image, and the halftone dot image.
【0031】このようにしてニューラルネットワーク1
2が作成される。作成されたニューラルネットワーク1
2に画像データDMaが入力されると、出力層Rの4個
のニューロンr1〜4からは、それぞれ、文字領域、写
真平坦領域、写真エッジ領域、網点領域に対応する出力
S1〜4が得られる。つまり、ニューラルネットワーク
12は、ネットワークA1〜4の入力層Sに入力された
データに基づいてブロック領域BAの属性ATを判別
し、それが文字領域である場合にはニューロンr1の出
力S1が「1」に近くなり、写真平坦領域である場合に
はニューロンr2の出力S2が「1」に近くなり、写真
エッジ領域である場合にはニューロンr3の出力S3が
「1」に近くなり、網点領域である場合にはニューロン
r4の出力S4が「1」に近くなる。In this way, the neural network 1
2 is created. Created neural network 1
When the image data DMa is input to 2, the four neurons r1 to r4 of the output layer R obtain outputs S1 to 4 corresponding to the character area, the photograph flat area, the photograph edge area, and the halftone dot area, respectively. To be That is, the neural network 12 determines the attribute AT of the block area BA based on the data input to the input layer S of the networks A1 to 4, and when it is the character area, the output S1 of the neuron r1 is "1". , The output S2 of the neuron r2 is close to “1” in the case of a photograph flat area, and the output S3 of the neuron r3 is close to “1” in the case of a photograph edge area. , The output S4 of the neuron r4 is close to “1”.
【0032】ニューラルネットワーク12からの出力S
1〜4に基づいて、当該ブロック領域BAの属性ATが
決定される。例えば、ある1つの出力が「1」である場
合にその出力に対応する領域であると決定する。又は、
ある閾値を越える1つの出力があったときにその出力に
対応する領域であると決定する。又は、最も大きい出力
に対応する領域をその領域と決定する。Output S from the neural network 12
Based on 1 to 4, the attribute AT of the block area BA is determined. For example, when one output is "1", it is determined to be the area corresponding to the output. Or
When there is one output that exceeds a certain threshold, it is determined to be a region corresponding to that output. Alternatively, the area corresponding to the largest output is determined as the area.
【0033】また、このようにして決定された各ブロッ
ク領域BAの属性ATに基づいて、モルフォロジーなど
による平滑化を行い、これによってブロック領域BA毎
の判別結果を補正し、各領域を大きくして誤判別の低減
を行う。これによって、原画像PMは、文字領域、写真
平坦領域、写真エッジ領域、網点領域の4つの領域に分
割される。Further, based on the attribute AT of each block area BA determined in this way, smoothing by morphology or the like is performed, thereby correcting the determination result for each block area BA and enlarging each area. Reduce misjudgment. As a result, the original image PM is divided into four areas, that is, a character area, a photograph flat area, a photograph edge area, and a halftone dot area.
【0034】文字領域に対しては、例えばエッジ強調処
理、2値化処理が行われ、写真平坦領域及び写真エッジ
画像に対しては自然な階調性を得るための処理又は特定
の階調を強調する処理が行われ、網点領域に対してはモ
アレ防止のために平滑化処理が行われる。For example, edge enhancement processing and binarization processing are performed on the character area, and processing for obtaining natural gradation or specific gradation is performed on the photograph flat area and the photograph edge image. A process of emphasizing is performed, and a smoothing process is performed on the halftone dot area to prevent moire.
【0035】なお、写真画像とは、銀塩写真のように、
原画像PMの読み取り密度に対して充分に画素密度の大
きい濃淡画像ののことであり、写真平坦画像はそのうち
の濃度変化の少ない部分、写真エッジ画像はそのうちの
濃度変化の大きい部分である。写真平坦画像は、文字画
像の白地部分と区別される。例えば、文字画像の白地部
分については白化処理が行われるに対し、写真平坦画像
については階調性を生かした処理が行われる。また、網
点画像は、網点が細かくなるにしたがって写真画像との
差異が少なくなる。例えば、原画像PMの読み取り密度
が400dpiである場合には、網点の密度が200線
/インチになると、読み取った画像データDMは写真画
像の場合と異ならない。したがって、その場合には、2
00線/インチ以上の網点画像は写真画像に含めてもよ
い。A photographic image is, like a silver salt photograph,
It refers to a grayscale image having a sufficiently high pixel density with respect to the reading density of the original image PM, a photographic flat image is a portion where the density change is small, and a photographic edge image is a portion where the density change is large. The photographic flat image is distinguished from the white background portion of the character image. For example, the whitening process is performed on the white background portion of the character image, while the process utilizing the gradation is performed on the photographic flat image. Further, the difference between the dot image and the photographic image decreases as the dot becomes finer. For example, when the read density of the original image PM is 400 dpi and the dot density is 200 lines / inch, the read image data DM is not different from that of a photographic image. Therefore, in that case, 2
A halftone dot image of 00 lines / inch or more may be included in the photographic image.
【0036】上述の実施例によると、ニューラルネット
ワーク12に対して、画像データDMから抽出した64
個の生の画像データDMaをそのまま入力することによ
り、そのブロック領域BAの属性ATを判別することが
できる。つまり、ニューラルネットワーク12への入力
信号として特徴量を与える必要がなく、判別対象となる
画像データをそのまま入力することができるので、ニュ
ーラルネットワーク12への入力が容易である。According to the above-described embodiment, 64 extracted from the image data DM to the neural network 12 is used.
By directly inputting each piece of raw image data DMa, the attribute AT of the block area BA can be determined. That is, it is not necessary to give a feature amount as an input signal to the neural network 12, and the image data to be discriminated can be input as it is. Therefore, the input to the neural network 12 is easy.
【0037】したがって、従来のように物理的な意味を
持った特徴量を予め抽出しておく必要がなく、そのため
の回路又はプログラムなどが不要であり、回路構成、処
理速度、柔軟性、コストなどの点で有利である。Therefore, it is not necessary to previously extract a characteristic amount having a physical meaning as in the conventional case, and a circuit or a program therefor is unnecessary, and the circuit configuration, processing speed, flexibility, cost, etc. Is advantageous in that.
【0038】上述の実施例によると、属性ATの判別に
ニューラルネットワーク12を用いているので、ニュー
ラルネットワーク12の学習効果によって簡単に属性A
Tの判別が行われ、確実な属性ATの判別が行われる。According to the above-described embodiment, since the neural network 12 is used to discriminate the attribute AT, the learning effect of the neural network 12 facilitates the attribute A.
The determination of T is performed, and the reliable determination of the attribute AT is performed.
【0039】因みに、ニューラルネットワーク12を用
いることなく、例えば特徴量である空間周波数スペクト
ル成分に応じた閾値によって網点領域であるか否かを判
別するとした場合には、目の粗い網点画像は低周波のス
ペクトル成分が多くなり、目の細かい網点画像は高周波
のスペクトル成分が多くなるため、空間周波数スペクト
ル成分の多少に応じて単純に網点画像であるか否かを判
別することができず、閾値を決定するのに多くの経験と
ノウハウを必要とし、しかも誤判別の多発を免れない。Incidentally, if it is determined whether or not it is a halftone dot area by using a threshold value according to the spatial frequency spectrum component which is a feature amount without using the neural network 12, a halftone dot image with coarse mesh is obtained. Since the low-frequency spectrum component increases and the halftone dot image with fine meshes has the high-frequency spectrum component, it is possible to simply determine whether or not the halftone dot image is according to the spatial frequency spectrum component. First, it requires a lot of experience and know-how to determine the threshold, and inevitably causes a lot of misjudgment.
【0040】ニューラルネットワーク12を学習させた
後では、入力されるデータと学習によって得られた結合
係数との積和演算、及び応答関数を表したテーブルの検
索などによって判別のための処理を行うことが可能であ
るので、演算の処理速度の向上を図ることができる。特
に、各ネットワークA1〜4の結合係数は変化しないの
で、ニューラルネットワークNNAの学習によって得ら
れた結合係数のみを転用することによって容易に特徴抽
出用ネットワーク12aを構成することができ、しかも
演算処理を単純化することができるので演算速度が速
い。After the neural network 12 is trained, a process for discrimination is performed by a product-sum operation of input data and a coupling coefficient obtained by learning, and a search of a table showing a response function. Therefore, the processing speed of the calculation can be improved. In particular, since the coupling coefficients of the networks A1 to A4 do not change, the feature extracting network 12a can be easily configured by diverting only the coupling coefficient obtained by learning of the neural network NNA, and the arithmetic processing can be performed. The calculation speed is high because it can be simplified.
【0041】したがって、属性判別装置1を用いた複写
機では、原稿PPの領域分割を正確に行うことができ、
原稿PPから得られた画像データDMに対し、その領域
に応じた適切な処理をリアルタイムで行なって明瞭な複
写画像を出力することができる。Therefore, in the copying machine using the attribute discriminating apparatus 1, it is possible to accurately divide the area of the original PP.
The image data DM obtained from the document PP can be subjected to appropriate processing in real time according to the area, and a clear copy image can be output.
【0042】上述の実施例においては、8×8画素の正
方形の領域をブロック領域BAとしたが、4×4画素、
3×3画素、16×16画素、64×64画素など、種
々のサイズの領域をブロック領域BAとしてよい。正方
形でなくてもよい。また、原画像PMに対して各ブロッ
ク領域が重ならないように割り当てたが、ブロック領域
が重なるように順次ずらせて割り当ててもよい。In the above embodiment, the square area of 8 × 8 pixels is set as the block area BA, but 4 × 4 pixels,
Areas of various sizes such as 3 × 3 pixels, 16 × 16 pixels, and 64 × 64 pixels may be used as the block area BA. It does not have to be a square. Further, although the block areas are allocated so as not to overlap with the original image PM, they may be sequentially shifted and allocated so as to overlap with each other.
【0043】すなわち、図8(A)に示すように、原画
像PMについて、属性を判別すべき1個の画素PXaに
対して、その周辺の8×8画素分のブロック領域BAa
の画像データを画素PXaに対応する画像データDMa
として抽出するとともに、ブロック領域BAaを1画素
分ずつ順次ずらせるようにすることが可能である。That is, as shown in FIG. 8A, with respect to the original image PM, for one pixel PXa whose attribute is to be discriminated, a block area BAa for 8 × 8 pixels around the pixel PXa is provided.
Image data DMa corresponding to the pixel PXa
And the block area BAa can be sequentially shifted by one pixel.
【0044】また、図8(B)に示すように、属性を判
別すべき4(=2×2)個の画素PXbに対して、その
周辺の8×8画素分のブロック領域BAbの画像データ
を画素PXbに対応する画像データDMaとして抽出す
るとともに、ブロック領域BAbを2画素分ずつずらせ
るようにすることが可能である。Further, as shown in FIG. 8B, with respect to 4 (= 2 × 2) pixels PXb whose attributes are to be discriminated, image data of a block area BAb for 8 × 8 pixels around the pixel PXb Can be extracted as the image data DMa corresponding to the pixel PXb, and the block area BAb can be shifted by two pixels.
【0045】上述の実施例においては、文字領域、写真
平坦領域、写真エッジ領域、網点領域の4種類の属性判
別を行ったが、3種類以下又は5種類以上の属性判別を
行うように構成してもよい。In the above-described embodiment, four types of attribute determinations, that is, a character region, a photo flat region, a photo edge region, and a halftone dot region are performed, but it is configured to perform three or less types or five or more types of attribute determinations. You may.
【0046】上述の実施例において、ブロック領域抽出
部11は、プログラム及びデータが格納されたメモリと
プログラムを実行するCPUによってソフト的に実現さ
れている。また、ニューラルネットワーク12は、コン
ピュータによるシミュレータによって実現されている。
したがって、上述したように、ニューラルネットワーク
12は、学習済の結合係数と応答関数を表したテーブ
ル、及びそれらを演算及び検索するためのプログラムか
ら実現することが可能である。このような態様も本発明
のニューラルネットワークに含まれる。また、ニューラ
ルネットワークをハードウエアで直接実現してもよい。In the above embodiment, the block area extraction unit 11 is realized by software by a memory storing programs and data and a CPU executing the programs. The neural network 12 is realized by a computer simulator.
Therefore, as described above, the neural network 12 can be realized by a table showing the learned coupling coefficient and response function, and a program for calculating and searching them. Such an aspect is also included in the neural network of the present invention. Further, the neural network may be directly realized by hardware.
【0047】上述の実施例において、ニューラルネット
ワークNNAとして5層のものを用いたが、4層以下又
は6層以上のものでもよい。4個のネットワークA1〜
4を用いたが、3個以下又は5個以上でもよい。領域判
別用ネットワーク12bとして3層のものを用いたが、
4層、5層、又はそれ以上のものでもよい。全部のネッ
トワークA1〜4に対して1つの領域判別用ネットワー
ク12bを結合したが、各ネットワークA1〜4に対応
してそれぞれ別個の領域判別用ネットワークを結合して
もよい。各層のニューロン数、結合係数の有無、応答関
数の種類、学習方法などは、上述した以外に種々変更す
ることができる。その他、属性判別装置1の各部又は全
体の構成、処理内容、処理順序などは、本発明の主旨に
沿って適宜変更することができる。In the above embodiment, the neural network NNA having five layers is used, but it may have four layers or less or six layers or more. Four networks A1
Although 4 was used, 3 or less or 5 or more may be used. Although a three-layer network is used as the area discrimination network 12b,
It may have four, five, or more layers. Although one area discriminating network 12b is connected to all the networks A1 to A4, separate area discriminating networks may be connected to the networks A1 to A4. The number of neurons in each layer, the presence / absence of coupling coefficient, the type of response function, the learning method, and the like can be variously changed other than the above. In addition, the configuration, processing content, processing order, etc. of each part or the whole of the attribute determination device 1 can be appropriately changed in accordance with the gist of the present invention.
【0048】[0048]
【発明の効果】請求項1乃至請求項3の発明によると、
入力された画像データに基づいてその領域の属性をより
正確に且つ容易に判別することができる。According to the inventions of claims 1 to 3,
The attribute of the area can be more accurately and easily determined based on the input image data.
【0049】また、ニューラルネットワークを学習させ
た後では、入力されるデータと学習によって得られた結
合係数との積和演算、及び応答関数を表したテーブルの
検索などによって判別のための情報処理を行うことがで
きるので、演算速度の向上を図ることができる。After learning the neural network, information processing for discrimination is performed by sum-of-products calculation of input data and the coupling coefficient obtained by learning, and retrieval of a table showing a response function. Since it can be performed, the calculation speed can be improved.
【0050】また、特徴抽出用ネットワークの結合係数
は、学習済の第1のニューラルネットワークの結合係数
をそのまま転用することが可能であるので、特徴抽出用
ネットワークを容易に構成することができ、しかも演算
処理を単純化することができるので演算速度の向上を図
ることができる。As the coupling coefficient of the feature extracting network, the coupling coefficient of the learned first neural network can be diverted as it is, so that the feature extracting network can be easily constructed, and Since the calculation process can be simplified, the calculation speed can be improved.
【0051】請求項3の発明によると、写真画像の平坦
部であるか否か、又は写真画像のエッジ部であるか否か
が判別することができる。According to the third aspect of the present invention, it is possible to determine whether it is a flat portion of the photographic image or whether it is an edge portion of the photographic image.
【図1】本発明に係る属性判別装置の構成を示すブロッ
ク図である。FIG. 1 is a block diagram showing a configuration of an attribute discriminating apparatus according to the present invention.
【図2】原稿から抽出されるブロック領域を説明する図
である。FIG. 2 is a diagram illustrating a block area extracted from a document.
【図3】ニューラルネットワークの構成を示す図であ
る。FIG. 3 is a diagram showing a configuration of a neural network.
【図4】特徴抽出用ネットワークの作成過程を示す図で
ある。FIG. 4 is a diagram showing a process of creating a feature extraction network.
【図5】砂時計型のニューラルネットワークの例を示す
図である。FIG. 5 is a diagram showing an example of an hourglass-type neural network.
【図6】領域判別用ネットワークの例を示す図である。FIG. 6 is a diagram showing an example of an area discrimination network.
【図7】ニューラルネットワークの作成方法を示すフロ
ーチャートである。FIG. 7 is a flowchart showing a method for creating a neural network.
【図8】ブロック領域の割り当て方法の他の例を説明す
るための図である。FIG. 8 is a diagram for explaining another example of a block area allocation method.
1 属性判別装置(画像領域属性判別装置) 12 ニューラルネットワーク 12a 特徴抽出用ネットワーク 12b 領域判別用ネットワーク(第2のニューラルネ
ットワーク) NNA ニューラルネットワーク(第1のニューラルネ
ットワーク) A1〜4 ネットワーク(特徴抽出用センサ)1 Attribute Discrimination Device (Image Region Attribute Discrimination Device) 12 Neural Network 12a Feature Extraction Network 12b Region Discrimination Network (Second Neural Network) NNA Neural Network (First Neural Network) A1-4 Networks (Feature Extraction Sensor) )
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 紳二 大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル ミノルタ株式会社内 (72)発明者 伊藤 哲也 大阪府大阪市中央区安土町二丁目3番13号 大阪国際ビル ミノルタ株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Shinji Okamoto 2-3-13 Azuchi-cho, Chuo-ku, Osaka-shi, Osaka, Osaka International Building Minolta Co., Ltd. (72) Inventor Tetsuya Ito Azuchi-cho, Chuo-ku, Osaka-shi, Osaka 2-chome 3-13 Osaka International Building Minolta Co., Ltd.
Claims (3)
入力層のニューロン数よりも小さく且つ入力層と出力層
のニューロン数が互いに同一の第1のニューラルネット
ワークに対して恒等写像を学習させ、 学習済の前記第1のニューラルネットワークのうちの前
記入力層から前記中間層までを特徴抽出用センサとし、 前記特徴抽出用センサからの出力を、第2のニューラル
ネットワークの入力層に入力するように結合し、 前記特徴抽出用センサの入力層に、特定の領域属性を有
する画像データをサンプルデータとして入力し、前記特
徴抽出用センサの結合係数を変更することなく、前記第
2のニューラルネットワークを学習させた後、 前記特徴抽出用センサの入力層に画像データを入力して
その領域属性を判別させる、 ことを特徴とする画像領域属性判別方法。1. A first neural network in which the number of neurons in at least one intermediate layer is smaller than the number of neurons in the input layer and the number of neurons in the input layer and the number of neurons in the output layer are the same, the identity map is learned. The input layer to the intermediate layer of the learned first neural network are used as the feature extraction sensor, and the output from the feature extraction sensor is input to the input layer of the second neural network. Image data having a specific region attribute is input as sample data to the input layer of the feature extraction sensor, and the second neural network is learned without changing the coupling coefficient of the feature extraction sensor. After that, the image data is input to the input layer of the feature extraction sensor to discriminate the region attribute thereof. Image area attribute determination process.
入力層のニューロン数よりも小さく且つ入力層と出力層
のニューロン数が互いに同一であり、恒等写像を学習済
の第1のニューラルネットワークのうちの前記入力層か
ら前記中間層までで構成される、1つ又は複数の特徴抽
出用センサと、 前記特徴抽出用センサからの出力が入力されるように結
合され、前記特徴抽出用センサの入力層に入力される画
像データに基づいて、前記画像データの領域属性につい
ての判別結果を出力する第2のニューラルネットワーク
と、 からなることを特徴とする画像領域属性判別装置。2. The number of neurons in the at least one intermediate layer is smaller than the number of neurons in the input layer, the number of neurons in the input layer is the same as the number of neurons in the output layer, and the first neural network for which the identity mapping has been learned. One or a plurality of feature extraction sensors configured from the input layer to the intermediate layer, and an output of the feature extraction sensor are coupled so as to be input, and an input of the feature extraction sensor An image area attribute discriminating apparatus comprising: a second neural network which outputs a discrimination result about the area attribute of the image data based on the image data input to the layer.
とも2つの前記特徴抽出用センサを有し、 前記第2のニューラルネットワークは、前記特徴抽出用
センサの1つに領域属性が写真画像の平坦部である画像
データをサンプルデータとして入力して学習済であり、
且つ前記特徴抽出用センサの他の1つに領域属性が写真
画像のエッジ部である画像データをサンプルデータとし
て入力して学習済である、 請求項2記載の画像領域属性判別装置。3. The input layer has at least two feature extracting sensors connected in parallel with each other, wherein the second neural network has one of the feature extracting sensors having a region attribute of a photographic image. Image data that is a flat part has been input as sample data and has been learned,
The image area attribute determination device according to claim 2, wherein the image area attribute determination apparatus has already learned by inputting image data whose area attribute is an edge portion of a photographic image as sample data to another one of the feature extraction sensors.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7052438A JPH08251404A (en) | 1995-03-13 | 1995-03-13 | Method and device for discriminating attribute of image area |
US08/613,319 US5884296A (en) | 1995-03-13 | 1996-03-11 | Network and image area attribute discriminating device and method for use with said neural network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7052438A JPH08251404A (en) | 1995-03-13 | 1995-03-13 | Method and device for discriminating attribute of image area |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08251404A true JPH08251404A (en) | 1996-09-27 |
Family
ID=12914756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7052438A Pending JPH08251404A (en) | 1995-03-13 | 1995-03-13 | Method and device for discriminating attribute of image area |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08251404A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110070483A (en) * | 2019-03-26 | 2019-07-30 | 中山大学 | A kind of portrait cartooning method based on production confrontation network |
WO2020054188A1 (en) | 2018-09-14 | 2020-03-19 | 富士フイルム株式会社 | Medical image processing device, method, and program |
WO2020188794A1 (en) * | 2019-03-20 | 2020-09-24 | 株式会社日立国際電気 | Video system, imaging device, and video processing device |
US11176413B2 (en) | 2018-10-01 | 2021-11-16 | Fujifilm Corporation | Apparatus, method, and program for training discriminator discriminating disease region, discriminator discriminating disease region, disease region discrimination apparatus, and disease region discrimination program |
US11244455B2 (en) | 2018-10-01 | 2022-02-08 | Fujifilm Corporation | Apparatus, method, and program for training discriminator discriminating disease region, discriminator discriminating disease region, disease region discrimination apparatus, and disease region discrimination program |
US11430241B2 (en) | 2018-01-30 | 2022-08-30 | Mitsubishi Electric Corporation | Entry field extraction device and computer readable medium |
-
1995
- 1995-03-13 JP JP7052438A patent/JPH08251404A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11430241B2 (en) | 2018-01-30 | 2022-08-30 | Mitsubishi Electric Corporation | Entry field extraction device and computer readable medium |
WO2020054188A1 (en) | 2018-09-14 | 2020-03-19 | 富士フイルム株式会社 | Medical image processing device, method, and program |
US11915414B2 (en) | 2018-09-14 | 2024-02-27 | Fujifilm Corporation | Medical image processing apparatus, method, and program |
US11176413B2 (en) | 2018-10-01 | 2021-11-16 | Fujifilm Corporation | Apparatus, method, and program for training discriminator discriminating disease region, discriminator discriminating disease region, disease region discrimination apparatus, and disease region discrimination program |
US11244455B2 (en) | 2018-10-01 | 2022-02-08 | Fujifilm Corporation | Apparatus, method, and program for training discriminator discriminating disease region, discriminator discriminating disease region, disease region discrimination apparatus, and disease region discrimination program |
WO2020188794A1 (en) * | 2019-03-20 | 2020-09-24 | 株式会社日立国際電気 | Video system, imaging device, and video processing device |
US11881013B2 (en) | 2019-03-20 | 2024-01-23 | Hitachi Kokusai Electric Inc. | Video system |
CN110070483A (en) * | 2019-03-26 | 2019-07-30 | 中山大学 | A kind of portrait cartooning method based on production confrontation network |
CN110070483B (en) * | 2019-03-26 | 2023-10-20 | 中山大学 | Portrait cartoon method based on generation type countermeasure network |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2702928B2 (en) | Image input device | |
US6298151B1 (en) | Method and apparatus for automatic image segmentation using template matching filters | |
US4506382A (en) | Apparatus for detecting two-dimensional pattern and method for transforming the pattern into binary image | |
US5884296A (en) | Network and image area attribute discriminating device and method for use with said neural network | |
JPH0737087A (en) | Picture processor | |
US7411699B2 (en) | Method and apparatus to enhance digital image quality | |
JPH1084475A (en) | Image area discrimination method and image-processing unit | |
JPH08251404A (en) | Method and device for discriminating attribute of image area | |
US11423635B2 (en) | Method for processing image using fully connected convolutional neural network and circuit system | |
US5384647A (en) | Image processing apparatus comprising means for judging image area of pseudo half-tone image | |
JPH10271326A (en) | Image processor | |
JP2003087562A (en) | Image processor and image processing method | |
JPH08249300A (en) | Neural network and its forming method | |
JPH04227581A (en) | Binarizing-threshold calculation device for image | |
JPH08251405A (en) | Device for discriminating attribute of image area | |
JPH08251403A (en) | Device for discriminating attribute of image area | |
JP4116377B2 (en) | Image processing method and image processing apparatus | |
JPH0818785A (en) | Image output device | |
JPH1070652A (en) | Image area attribute discrimination device | |
JPH0965032A (en) | Facsimile communication method and facsimile equipment | |
JP3434373B2 (en) | Halftone area determination device | |
JP3136595B2 (en) | Area separation method | |
JP2581049B2 (en) | Image area determination device | |
JP2613211B2 (en) | Image input device | |
CN115018778A (en) | False official seal image detection method in electronic office scene |