JPH0825050A - Welding method of fixed tube in pipeline - Google Patents

Welding method of fixed tube in pipeline

Info

Publication number
JPH0825050A
JPH0825050A JP15902094A JP15902094A JPH0825050A JP H0825050 A JPH0825050 A JP H0825050A JP 15902094 A JP15902094 A JP 15902094A JP 15902094 A JP15902094 A JP 15902094A JP H0825050 A JPH0825050 A JP H0825050A
Authority
JP
Japan
Prior art keywords
welding
fixed pipe
fixed
pipeline
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15902094A
Other languages
Japanese (ja)
Inventor
Mitsunori Komori
光徳 小森
Yasushi Yamamoto
靖 山本
Shinya Suezawa
伸也 末澤
Fumito Yoshino
文人 芳野
Noriaki Okubo
典昭 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKO PLANT KENSETSU KK
Kobe Steel Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Original Assignee
SHINKO PLANT KENSETSU KK
Kobe Steel Ltd
Osaka Gas Co Ltd
Tokyo Gas Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKO PLANT KENSETSU KK, Kobe Steel Ltd, Osaka Gas Co Ltd, Tokyo Gas Co Ltd, Toho Gas Co Ltd filed Critical SHINKO PLANT KENSETSU KK
Priority to JP15902094A priority Critical patent/JPH0825050A/en
Publication of JPH0825050A publication Critical patent/JPH0825050A/en
Pending legal-status Critical Current

Links

Landscapes

  • Non-Disconnectible Joints And Screw-Threaded Joints (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)

Abstract

PURPOSE:To improve the welding efficiency by running two welding trucks installing welding torches on the outer circumference, and avoiding the upward welding by a plasma keyhole welding. CONSTITUTION:In a pipeline fixed tube welding method to butt a pipeline fixed tube 3 and to weld the butted end faces in the circumferential direction, two welding trucks 1, 2 moving in the circumferential direction on the outer circumference of the fixed tube 3 are installed. While both trucks 1, 2 are moved from the position of 12 of the upper part of the fixed tube 3 toward the lower part in mutually opposite directions, the initial layer welding is executed with plasma keyhole welding by using the welding torch installed on each welding truck, after the welding trucks 1, 2 are made reach the lower part of the fixed tube 3, they are turned back toward the upper part and the secondary layer is welded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はパイプライン固定管をプ
ラズマ溶接する方法に関し、特に固定管の外周面に2台
の溶接台車を走行させ、高能率で溶接するパイプライン
固定管溶接方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for plasma-welding a fixed pipe for a pipeline, and more particularly to a method for welding a fixed pipe for a pipeline in which two welding carriages are run on the outer peripheral surface of the fixed pipe to perform welding with high efficiency.

【0002】[0002]

【従来の技術】従来の水平固定管の全姿勢溶接工法にお
いては、通常、前記固定管の外周面にその円周方向に移
動する溶接台車を1台設け、この溶接台車に単電極の溶
接トーチを設置し、固定管の円周の沿って一方向に溶接
台車を走行させつつ、片面溶接している。
2. Description of the Related Art In the conventional all-position welding method for a horizontal fixed pipe, usually, one welding carriage which moves in the circumferential direction is provided on the outer peripheral surface of the fixed pipe, and a welding torch having a single electrode is attached to this welding carriage. Is installed and the welding carriage is run in one direction along the circumference of the fixed pipe, and one-side welding is performed.

【0003】この従来の単電極溶接においては、固定管
を連続溶接しようとすると、必然的に全ての姿勢が含ま
れた全姿勢溶接にならざるを得ない。
In this conventional single-electrode welding, when attempting to continuously weld a fixed pipe, it is inevitable that all-position welding including all positions is performed.

【0004】一方、プラズマキーホール溶接は、非消耗
電極と被溶接材との間にプラズマガス流の存在下で高周
波電圧を印加してプラズマ柱を生起し、I形開先で突き
合わされた固定管同士をその円周方向に溶接するもので
ある。そして、このキーホール溶接においては、プラズ
マ柱が被溶接材をその厚さ方向に貫通し、溶接トーチ移
動方向の後方に溶融金属を形成し保持する。このプラズ
マキーホール溶接はプラズマが被溶接材を貫通して溶接
していくので、溶接原理上は、極めて溶接効率が高いと
いう利点がある。
On the other hand, in plasma keyhole welding, a high frequency voltage is applied between a non-consumable electrode and a material to be welded in the presence of a plasma gas flow to generate a plasma column, which is fixed at an I-shaped groove. The pipes are welded to each other in the circumferential direction. Then, in this keyhole welding, the plasma column penetrates the material to be welded in the thickness direction thereof, and forms and holds the molten metal behind the welding torch moving direction. This plasma keyhole welding has an advantage that the welding efficiency is extremely high because the plasma penetrates the material to be welded and welds.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、このプ
ラズマキーホール溶接により、円周方向に全姿勢溶接す
ると、刻々と変化する姿勢の中で、極めて効率が悪い溶
接姿勢が存在する。即ち、固定管の外周面を、その時計
方向に、12時の位置から6時の位置を経て12時まで
戻るように移動しつつ溶接する全姿勢溶接において、1
2の位置から6時の位置まで時計方向に回転するように
移動する場合は下進溶接となり、6時の位置から12時
の位置まで戻るように移動する場合は上進溶接となる。
この場合に、プラズマキーホール溶接においては、キー
ホールが貫通しているため、上進溶接の場合は溶融プー
ルが重力によって押し下げられ易くなり、溶融金属の保
持及び良好な溶接ビードを得るために、上進溶接を下進
溶接に比して遅くせざるを得ない。このため、上進溶接
時に溶接能率が低下してしまう。
However, if all positions are welded in the circumferential direction by the plasma keyhole welding, there are welding positions that are extremely inefficient among the positions that change from moment to moment. That is, in the all-position welding in which the outer peripheral surface of the fixed tube is welded while moving in the clockwise direction from the 12 o'clock position to the 6 o'clock position to the 12 o'clock position, 1
Downward welding is performed when moving clockwise from the position 2 to 6 o'clock, and upward welding is performed when moving back from the 6 o'clock position to the 12 o'clock position.
In this case, in the plasma keyhole welding, since the keyhole penetrates, in the case of upward welding, the molten pool is easily pushed down by gravity, in order to retain the molten metal and obtain a good weld bead, There is no choice but to make the upward welding slower than the downward welding. For this reason, the welding efficiency decreases during the upward welding.

【0006】本発明はかかる問題点に鑑みてなされたも
のであって、外周面に溶接トーチを設けた溶接台車を2
台走行させ、プラズマキーホール溶接による上進溶接を
回避することにより、溶接能率を向上させたパイプライ
ン固定管溶接方法を提供することを目的とする。
The present invention has been made in view of the above problems, and a welding carriage having a welding torch provided on the outer peripheral surface is provided.
An object of the present invention is to provide a pipeline fixed pipe welding method in which welding efficiency is improved by traveling on a platform and avoiding upward welding by plasma keyhole welding.

【0007】[0007]

【課題を解決するための手段】本発明に係るパイプライ
ン固定管溶接方法は、パイプライン固定管を突き合わ
せ、その突き合わせ端面を円周方向に溶接するパイプラ
イン固定管溶接方法において、前記固定管の外周面をそ
の円周方向に移動する2台の溶接台車を設け、両台車を
前記固定管の上部から下部に向けて相反する方向に移動
させつつ各溶接台車に設けた溶接トーチを使用してプラ
ズマキーホール溶接により初層盛溶接し、前記溶接台車
が固定管の下部に達した後、折り返して上部に向けて2
層盛溶接することを特徴とする。
A pipeline fixed pipe welding method according to the present invention is a pipeline fixed pipe welding method in which pipeline fixed pipes are butted and their abutting end faces are circumferentially welded to each other. Two welding carriages that move the outer peripheral surface in the circumferential direction are provided, and using the welding torches provided to each welding carriage while moving the two carriages in opposite directions from the upper part to the lower part of the fixed pipe. First layer welding is performed by plasma keyhole welding, and after the welding carriage reaches the bottom of the fixed pipe, fold it back to the top 2
It is characterized by layer welding.

【0008】[0008]

【作用】本発明においては、固定管の外周面に2台の溶
接台車を相反する方向に走行させ、一方の溶接台車に搭
載した溶接トーチにより固定管の右半分の部分を下進溶
接させ、他方の溶接台車に搭載した溶接トーチにより固
定管の左半分の部分を下進溶接する。そして、これらの
溶接台車が固定管の下部で折り返して上方に向かう場合
には、初層盛の上に溶接金属を盛りつける2層盛を行わ
せる。
In the present invention, two welding carriages are run on the outer peripheral surface of the fixed pipe in opposite directions, and the right half portion of the fixed pipe is downwardly welded by the welding torch mounted on one of the welding carriages. The welding torch mounted on the other welding carriage downwardly welds the left half of the fixed pipe. Then, when these welding carriages are folded back at the lower part of the fixed pipe and directed upward, a two-layer welding is carried out in which the weld metal is placed on the initial welding.

【0009】このため、キーホールが形成されるキーホ
ール溶接は、いずれの台車も初層盛のときの下進溶接の
みとなり、その溶接能率は高い。一方、上進溶接となる
のは、既に初層が形成されている2層盛又はその後の積
層盛の場合であるので、キーホールが形成される場合と
異なり、溶接能率が低下することはない。このように、
本発明にお手は、プラズマキーホール溶接で非効率な上
進溶接が回避されるので、その溶接能率は極めて高い。
Therefore, the keyhole welding in which the keyhole is formed is only the downward welding when the trolley is in the first layer, and the welding efficiency is high. On the other hand, since the upward welding is performed in the case of the two-layer welding in which the first layer has already been formed or the subsequent laminated welding, unlike the case of forming the keyhole, the welding efficiency does not decrease. . in this way,
The present invention has extremely high welding efficiency because inefficient upward welding is avoided by plasma keyhole welding.

【0010】[0010]

【実施例】以下、本発明の実施例について添付の図面を
参照して具体的に説明する。図1は本発明の第1実施例
方法を説明する模式図である。この図は、固定管3の外
周面を2台の溶接台車1、2が円周方向に沿って移動す
る状態を示す図であり、固定管3の最上部を時計の12
時に見立て、固定管3の最下部を時計の6時に見立てて
説明する。なお、図示しないが、溶接台車1、2には、
溶接トーチが搭載されており、溶接電源から溶接電圧が
溶接トーチに供給され、シールドガス流に囲まれた状態
でプラズマガスが溶接トーチから噴出され、これにより
プラズマが生起されるようになっている。
Embodiments of the present invention will be specifically described below with reference to the accompanying drawings. FIG. 1 is a schematic diagram for explaining the method of the first embodiment of the present invention. This figure is a view showing a state in which two welding carriages 1 and 2 move on the outer peripheral surface of the fixed pipe 3 along the circumferential direction.
The lowermost part of the fixed tube 3 will be described at 6 o'clock of the timepiece. Although not shown, the welding carriages 1 and 2 are
The welding torch is installed, the welding voltage is supplied from the welding power source to the welding torch, and the plasma gas is ejected from the welding torch in the state of being surrounded by the shield gas flow, thereby generating plasma. .

【0011】この図1に示すように、先ず両溶接台車
1、2は12時の位置に位置している。そして、溶接台
車1はこの12時の位置にて溶接を開始し、軌跡R1に
沿って図示の時計方向に移動し、3時の位置を経由して
固定管3の右半分を下進溶接する。この溶接方法はプラ
ズマキーホール溶接である。また、溶接台車2は12時
の位置から軌跡R3に沿って図示の反時計方向に移動
し、9時の位置を経由して固定管3の左半分を下進溶接
する。この場合も、プラズマキーホール溶接により溶接
される。
As shown in FIG. 1, first, both welding carriages 1 and 2 are located at the 12 o'clock position. Then, the welding carriage 1 starts welding at this 12 o'clock position, moves clockwise in the drawing along the locus R1, and downwardly welds the right half of the fixed pipe 3 via the 3 o'clock position. . This welding method is plasma keyhole welding. The welding carriage 2 moves counterclockwise from the 12 o'clock position along the locus R3, and downwardly welds the left half of the fixed pipe 3 via the 9 o'clock position. Also in this case, plasma keyhole welding is used.

【0012】溶接台車1が固定管下部の6時の位置に到
達すると折り返し、固定管3の右半分を軌跡R2に沿っ
て5時の方向に移動する。この6時の位置から5時の位
置までは空走行し、溶接は休止する。そして、5時の位
置から溶接を再開し、上進溶接しつつ、3時の位置を経
て12時の位置を通り過ぎ、11時の位置まで溶接を継
続する。この5時の位置から11時の位置までの反時計
方向への移動により、溶接台車1は、溶接台車1自身の
初層盛と、溶接台車2による初層盛との上に溶接金属を
盛る2層盛を行う。
When the welding carriage 1 reaches the position of the lower portion of the fixed pipe at 6 o'clock, it is folded back and moves the right half of the fixed pipe 3 along the locus R2 in the direction of 5 o'clock. From this 6 o'clock position to the 5 o'clock position, the vehicle runs idle and welding is stopped. Then, the welding is restarted from the 5 o'clock position, the upward welding is performed, the 3 o'clock position is passed, the 12 o'clock position is passed, and the welding is continued until the 11 o'clock position. By the movement in the counterclockwise direction from the position of 5 o'clock to the position of 11 o'clock, the welding carriage 1 deposits the weld metal on the initial overlay of the welding carriage 1 itself and the initial overlay of the welding carriage 2. Perform two-layer filling.

【0013】一方、溶接台車2は6時の位置までキーホ
ール下進溶接した後、更に5時までプラズマ非キーホー
ル溶接による重ね溶接を継続し、この5時の位置で折り
返し、最下部の6時の位置を通り過ぎて12時の位置ま
で上進溶接する。従って、この溶接台車2の時計方向へ
の移動により、5時から11時までの間で、溶接台車1
による初層盛と、溶接台車2自身の初層盛との上に溶接
金属を盛る2層盛がなされ、11時から12時まではラ
ップ溶接がなされて、溶接が終了する。
On the other hand, the welding carriage 2 is keyhole down welded to the 6 o'clock position, and then continues the lap welding by the plasma non-keyhole welding until 5 o'clock, and is folded back at the 5 o'clock position, and the bottom 6 Weld up through the hour position to the 12 o'clock position. Therefore, the movement of the welding carriage 2 in the clockwise direction causes the welding carriage 1 to move from 5 o'clock to 11 o'clock.
The two-layer welding with the weld metal is performed on the first welding and the first welding of the welding carriage 2 itself, and the lap welding is performed from 11:00 to 12:00 and the welding is completed.

【0014】このようにして、図2に溶接部断面を示す
ように、プラズマキーホール溶接による初層盛の部分
と、プラズマ非キーホール溶接による2層盛の部分とが
形成される。
Thus, as shown in the cross section of the welded portion in FIG. 2, a first layer buildup portion by plasma keyhole welding and a two layer buildup portion by plasma non-keyhole welding are formed.

【0015】なお、3層盛溶接する場合には、以降も同
様にしてこの固定管の右半分と左半分とを、若干ラップ
溶接しながら、夫々個別の溶接台車1、2で走行し、繰
り返して順次溶接を行う。
In the case of three-layer welding, the right and left halves of this fixed pipe are similarly lap-welded in the same manner, while running on separate welding carriages 1 and 2 and repeated. Welding sequentially.

【0016】この溶接工法は、プラズマキーホール溶接
による初層盛の工法が、下進溶接のみとなっており、上
進溶接より下進溶接の方が溶接速度及び安定性の面から
効率が良いという利点を生かしている。即ち、キーホー
ルが形成される初層盛溶接においては、上進溶接を回避
している。これにより、溶接能率の向上が図られると共
に、溶接品質の向上も確保される。
In this welding method, only the downward welding is used for the first layer deposition by plasma keyhole welding, and the downward welding is more efficient than the upward welding in terms of welding speed and stability. Is taking advantage of that. That is, in the first layer build-up welding in which the keyhole is formed, the upward welding is avoided. As a result, the welding efficiency is improved and the welding quality is ensured.

【0017】また、その上に2層以降の肉盛溶接を行う
ときも、溶接台車は下進してきた順路を後戻りしつつ、
上進溶接するので、溶接台車の空走時間も最小限とな
り、ケーブルの巻き取り直し及び戻し作業も不要であ
る。従って、極めて高効率で溶接が実施される。
Also, when overlay welding of two or more layers is performed on it, the welding carriage is reversing the downward route and
Since the welding is performed in the upward direction, the idle time of the welding carriage is minimized, and the work of rewinding and returning the cable is unnecessary. Therefore, welding is performed with extremely high efficiency.

【0018】直径が400mmを超える大径パイプの溶
接を考える場合、上述の如く、2電極振り分け溶接工法
により、高速・高効率のプラズマ溶接が可能になり、極
めて有益であるが、このような肉厚が厚い大径パイプの
場合には、以下に示すように、パイプの内部に第3の溶
接台車及び溶接トーチを設けることにより、更に一層溶
接時間の短縮が可能である。
When considering welding of a large-diameter pipe having a diameter of more than 400 mm, high-speed and high-efficiency plasma welding is possible by the two-electrode distribution welding method as described above, which is extremely useful. In the case of a large diameter pipe having a large thickness, the welding time can be further shortened by providing a third welding carriage and a welding torch inside the pipe as shown below.

【0019】図3は固定管の内部にその内周面に沿って
円周方向に走行する溶接台車4を設け、この溶接台車4
を軌跡R5に沿って1周させる。この間に、溶接台車4
に搭載した溶接トーチにより裏波ビードを形成すべくプ
ラズマ非キーホール溶接する。
In FIG. 3, a welding carriage 4 running in the circumferential direction along the inner peripheral surface of the fixed pipe is provided inside the fixed pipe.
Is rotated once along the locus R5. During this time, the welding carriage 4
Plasma non-keyhole welding is performed to form a backside bead by a welding torch mounted on.

【0020】これにより、図4に示すように、初層盛の
プラズマキーホール溶接による溶接金属部分と、2層盛
のプラズマ非キーホール溶接による溶接金属部分と、裏
波ビード形成のプラズマ非キーホール溶接による溶接金
属部分とが形成される。
As a result, as shown in FIG. 4, a weld metal portion formed by plasma keyhole welding of the first layer, a weld metal portion formed by plasma non-keyhole welding of the two layers, and a plasma non-key formed by the backside bead formation. A weld metal portion is formed by hole welding.

【0021】図1に示す2電極振り分け溶接工法では、
裏波ビード形状は、初層盛のキーホール溶接により形成
され、そのままの状態で溶接が終了する。裏波ビード形
状を高品質に保つことができる下進溶接姿勢といえど
も、この裏波形状を高品質に保持するためには、溶接速
度にはある程度の制約があり、一層の高速・高効率化に
はこれが制限因子となってしまう。
In the two-electrode distribution welding method shown in FIG. 1,
The backside bead shape is formed by keyhole welding of the first layer, and the welding is completed in that state. Even in the downward welding position where the bead shape can be maintained in high quality, in order to maintain the bead shape in high quality, the welding speed is limited to some extent, and higher speed and higher efficiency are achieved. This becomes a limiting factor for the conversion.

【0022】換言すれば、図3に示す実施例のように、
裏波形状を第3の溶接台車により形成することとすれ
ば、溶接台車1、2による初層盛においては、裏波ビー
ドの形状を問題にする必要がないので、この固定管3の
外周面に設けた2台の溶接台車1、2は、更に高効率溶
接が可能になる。
In other words, as in the embodiment shown in FIG.
If the backside wave shape is formed by the third welding carriage, the shape of the backside bead does not need to be a problem in the first build-up by the welding carriages 1 and 2, so the outer peripheral surface of the fixed pipe 3 The two welding carriages 1 and 2 provided in the above can perform higher efficiency welding.

【0023】これにより、裏波ビード形状の問題、即
ち、ビード表面の凹凸及びビード自体のへこみという問
題が生じることなく、更に一層の高速化が可能となる。
特に、大径管になると、裏波ビード形成が最も困難とな
る上向き溶接姿勢の時間域が長くなるため、外側からの
一方向溶接で高品質なビードが得られ難くなるが、本実
施例においては、この問題が解消され、特に大径管にお
いて有益である。
Thus, the problem of the backside bead shape, that is, the problem of unevenness of the bead surface and the dent of the bead itself does not occur, and the speed can be further increased.
In particular, in the case of a large-diameter pipe, since the time zone of the upward welding posture where the backside bead formation is most difficult becomes long, it becomes difficult to obtain a high-quality bead by one-way welding from the outside, but in the present embodiment, Solves this problem and is particularly useful for large diameter pipes.

【0024】また、内側に溶接台車4を設置すること
で、固定管裏面についても、表面に形成するような良好
なビードが簡単に形成でき、更に表面用溶接台車1、2
の受け持つ溶接量を低減することができるので、溶接時
間の短縮にも効果的である。
Further, by installing the welding carriage 4 inside, a good bead like that formed on the front surface can be easily formed on the rear surface of the fixed tube, and further, the welding carriages 1 and 2 for surface use.
It is also effective in shortening the welding time, because the amount of welding that is taken care of by can be reduced.

【0025】次に、本発明の実施例方法により実際に溶
接を行った場合の全体の溶接時間について、従来例と比
較して下記表1に示す。但し、表1の数値は、従来の単
電極溶接方法で溶接した所要時間を100としたときの
夫々の実施例で溶接に要した所要時間(%)を表す。
Next, the total welding time when welding is actually performed by the method of the embodiment of the present invention is shown in Table 1 below in comparison with the conventional example. However, the numerical values in Table 1 represent the required time (%) required for welding in each example when the required time for welding by the conventional single electrode welding method is 100.

【0026】[0026]

【表1】 [Table 1]

【0027】この表1から明らかなように、本発明の実
施例により、溶接速度が著しく向上する。
As is apparent from Table 1, the embodiment of the present invention significantly improves the welding speed.

【0028】[0028]

【発明の効果】以上説明したように、本発明は2台の溶
接台車を使用し、この2台の溶接台車を固定管上部から
相反する方向に移動させつつ、初層盛溶接をいずれの台
車による場合も下進溶接としたので、上進溶接によりプ
ラズマキーホール溶接する場合の不都合が回避され、高
能率であるというプラズマキーホール溶接の特徴を生か
して、高速度でパイプライン固定管を円周方向にプラズ
マ溶接することができる。
As described above, according to the present invention, two welding carriages are used, and the two welding carriages are moved in the opposite directions from the upper portion of the fixed pipe while any of the carriages for the first layer welding is used. In this case, since the downward welding is used, the inconvenience of plasma keyhole welding by upward welding is avoided, and the advantage of high efficiency plasma keyhole welding is that the fixed pipeline pipe can be circled at high speed. Plasma welding can be performed in the circumferential direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例方法を説明する図であ
る。
FIG. 1 is a diagram illustrating a method according to a first embodiment of the present invention.

【図2】この方法により得られた溶接金属を示す断面図
である。
FIG. 2 is a sectional view showing a weld metal obtained by this method.

【図3】本発明の第2の実施例方法を説明する図であ
る。
FIG. 3 is a diagram illustrating a second embodiment method of the present invention.

【図4】この方法により得られた溶接金属を示す断面図
である。
FIG. 4 is a cross-sectional view showing a weld metal obtained by this method.

【符号の説明】[Explanation of symbols]

1、2、4:溶接台車 3:固定管 1, 2, 4: Welding trolley 3: Fixed pipe

───────────────────────────────────────────────────── フロントページの続き (71)出願人 591278666 神鋼プラント建設株式会社 兵庫県神戸市灘区岩屋北町4丁目5番22号 (72)発明者 小森 光徳 神奈川県横浜市瀬谷区宮沢町1144−3 (72)発明者 山本 靖 愛知県名古屋市熱田区桜田町19番18号 東 邦瓦斯株式会社供給管理部導管技術センタ ー内 (72)発明者 末澤 伸也 大阪府大阪市中央区平野町四丁目1番2号 大阪瓦斯株式会社内 (72)発明者 芳野 文人 神奈川県藤沢市宮前字裏河内100番1 株 式会社神戸製鋼所藤沢事業所内 (72)発明者 大久保 典昭 兵庫県神戸市灘区岩屋北町4丁目5番22号 神鋼プラント建設株式会社内 ─────────────────────────────────────────────────── ─── Continued Front Page (71) Applicant 591278666 Shinko Plant Construction Co., Ltd. 4-5-22 Iwayakitamachi, Nada-ku, Kobe-shi, Hyogo (72) Inventor Mitsunori Komori 1144-3, Miyazawa-cho, Seya-ku, Yokohama, Kanagawa (72) Inventor Yasushi Yamamoto 19-18 Sakurada-cho, Atsuta-ku, Nagoya-shi, Aichi Toho Gas Co., Ltd., Supply Control Department, Pipeline Technology Center (72) Inventor Shinya Suezawa 4-chome, Hirano-cho, Chuo-ku, Osaka-shi, Osaka 1-2 No. 2 in Osaka Gas Co., Ltd. (72) Inventor Fumito Yoshino 100-1 Urakawachi, Miyamae, Fujisawa-shi, Kanagawa Incorporated company Kobe Steel Works, Fujisawa Works (72) Inventor Noriaki Okubo Iwaya, Nada-ku, Kobe-shi, Hyogo 4-5-22 Kitamachi Shinko Plant Construction Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 パイプライン固定管を突き合わせ、その
突き合わせ端面を円周方向に溶接するパイプライン固定
管溶接方法において、前記固定管の外周面をその円周方
向に移動する2台の溶接台車を設け、両台車を前記固定
管の上部から下部に向けて相反する方向に移動させつつ
各溶接台車に設けた溶接トーチを使用してプラズマキー
ホール溶接により初層盛溶接し、前記溶接台車が固定管
の下部に達した後、折り返して上部に向けて2層盛溶接
することを特徴とするパイプライン固定管溶接方法。
1. A pipeline fixed pipe welding method for abutting pipeline fixed pipes and welding the abutting end faces thereof in the circumferential direction, wherein two welding carriages for moving the outer peripheral surface of the fixed pipe in the circumferential direction are provided. The welding torch is fixed by plasma keyhole welding using the welding torch provided on each welding trolley while moving both trolleys from the upper part to the lower part of the fixed pipe in opposite directions. After reaching the lower part of the pipe, the pipe is folded and welded in two layers toward the upper part, so that the fixed pipe welding method for a pipeline is characterized.
【請求項2】 3層盛溶接又はそれ以上の溶接は、前記
溶接台車を前記固定管の上部から下部に向けて移動させ
る工程と、下部で折り返して下部から上部に向けて移動
させる工程とを順次繰り返して行うことを特徴とする請
求項1に記載のパイプライン固定管溶接方法。
2. The three-layer welding or more welding includes a step of moving the welding carriage from the upper part to the lower part of the fixed pipe, and a step of folding it back at the lower part and moving it from the lower part to the upper part. The pipeline fixed pipe welding method according to claim 1, wherein the method is performed sequentially and repeatedly.
【請求項3】 前記2層盛溶接は、その始点を前記固定
管の最下部を外した位置とし、その終点を前記固定管の
最上部を外した位置とすることを特徴とする請求項1に
記載のパイプライン固定管溶接方法。
3. The two-layer welding is characterized in that a starting point thereof is a position where a lowermost portion of the fixed tube is removed and an end point thereof is a position where an uppermost portion of the fixed tube is removed. Pipeline fixed pipe welding method described in.
【請求項4】 前記固定管の内部にその内周面を円周方
向に移動する1台の溶接台車を設け、前記固定管外周面
に設けた2台の溶接台車の移動と連動して前記内周面の
溶接台車を移動させつつこの溶接台車に設けた溶接トー
チにより前記固定管の内周面側部分を溶接することを特
徴とする請求項1乃至3のいずれか1項に記載のパイプ
ライン固定管溶接方法。
4. One fixed welding carriage is provided inside the fixed pipe, the inner circumference of which is moved in the circumferential direction, and the welding carriage is interlocked with the movement of two welding carriages provided on the outer circumference of the fixed pipe. The pipe according to any one of claims 1 to 3, wherein the inner peripheral surface side portion of the fixed tube is welded by a welding torch provided on the inner peripheral surface of the welding carriage while moving the welding carriage. Line fixed pipe welding method.
JP15902094A 1994-07-11 1994-07-11 Welding method of fixed tube in pipeline Pending JPH0825050A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15902094A JPH0825050A (en) 1994-07-11 1994-07-11 Welding method of fixed tube in pipeline

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15902094A JPH0825050A (en) 1994-07-11 1994-07-11 Welding method of fixed tube in pipeline

Publications (1)

Publication Number Publication Date
JPH0825050A true JPH0825050A (en) 1996-01-30

Family

ID=15684506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15902094A Pending JPH0825050A (en) 1994-07-11 1994-07-11 Welding method of fixed tube in pipeline

Country Status (1)

Country Link
JP (1) JPH0825050A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0884126A1 (en) * 1997-06-10 1998-12-16 Friedel Paul Kalberg Method for arc welding a closed two dimensional seam in a vertical plane, in particular for welding pipes adapted to be cleaned using a pig
WO2009095166A1 (en) * 2008-02-01 2009-08-06 Saipem S.P.A. Method and apparatus for the welding of pipes
CN103949764A (en) * 2014-04-23 2014-07-30 唐山开元焊接自动化技术研究所有限公司 Welding method of partitioning strips of plate layer of freeze-drying machine

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0884126A1 (en) * 1997-06-10 1998-12-16 Friedel Paul Kalberg Method for arc welding a closed two dimensional seam in a vertical plane, in particular for welding pipes adapted to be cleaned using a pig
WO2009095166A1 (en) * 2008-02-01 2009-08-06 Saipem S.P.A. Method and apparatus for the welding of pipes
US8864012B2 (en) 2008-02-01 2014-10-21 Saipem S.P.A. Method and apparatus for the welding of pipes
CN103949764A (en) * 2014-04-23 2014-07-30 唐山开元焊接自动化技术研究所有限公司 Welding method of partitioning strips of plate layer of freeze-drying machine
CN103949764B (en) * 2014-04-23 2015-12-30 唐山开元焊接自动化技术研究所有限公司 A kind of welding method of freeze dryer flaggy parting bead

Similar Documents

Publication Publication Date Title
US20200156172A1 (en) Synchronized rotating arc welding method and system
US6683268B2 (en) Application of a hybrid arc/laser process to the welding of pipe
US8324527B2 (en) Hybrid laser arc welding system and method for railroad tank car fabrication
CN102151959B (en) High-speed welding production process and device for thin-walled steel tubes
WO2022012000A1 (en) All-position consumable electrode arc-laser double-sided hybrid welding process and device thereof
JP2001340981A (en) Laser and arc hybrid welding method using suitable gas mixture
US3139511A (en) Fusion cladding technique and product
CN111730177A (en) Low-dilution-rate double-filler-wire TIG surfacing process and application thereof
CN112692410A (en) All-position automatic wire filling TIG welding method for steel pipe
JP6898187B2 (en) Joining method and structure of laminated molding parts, and laminated molding parts
JPH0825050A (en) Welding method of fixed tube in pipeline
JP6964530B2 (en) Pipe joining structure and joining method
EP1025944B1 (en) Method for making a welding joint
CN111715998A (en) Laser welding method
JPH0623553A (en) Manufacture of welded steel tube
JPS60154875A (en) Longitudinal seam welding of uoe steel pipe
JP3079486B2 (en) Welding apparatus and welding method for square steel pipe
JPH11129068A (en) Circumferential welding for pipe line fixed pipe
JP2833279B2 (en) Steel pipe welding method
JPH11129069A (en) Circumferential welding of pipe line fixed tube
JPH06335768A (en) Method for welding fixed tube
JPH0960728A (en) Pressure container made of aluminum or aluminum alloy and its manufacture
JPH0623544A (en) Back-bead welding method
JP3947422B2 (en) MIG welding method of titanium or titanium alloy
JPS6123594A (en) Circumferential welding of thick steel tubes with large diameter