JPH08250122A - Forming method for battery electrode - Google Patents
Forming method for battery electrodeInfo
- Publication number
- JPH08250122A JPH08250122A JP7074540A JP7454095A JPH08250122A JP H08250122 A JPH08250122 A JP H08250122A JP 7074540 A JP7074540 A JP 7074540A JP 7454095 A JP7454095 A JP 7454095A JP H08250122 A JPH08250122 A JP H08250122A
- Authority
- JP
- Japan
- Prior art keywords
- parts
- weight
- battery
- electrode
- butadiene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はサイクル性、保存特性、
安全性に優れた電池電極の形成方法に関するものであ
る。BACKGROUND OF THE INVENTION The present invention has a cycle property, a storage property,
The present invention relates to a method for forming a battery electrode having excellent safety.
【従来の技術】近年、電子機器の小型化軽量化は目ざま
しく、それに伴ない電源となる電池に対しても小型軽量
化の要望が非常に大きい。かかる要求を満足するには従
来の一般的な水系電解液を用いた電池では不可能なこと
から、非水系電池が注目されている。かかる非水系電池
は小型、軽量化という点で優れた性能を有しており、リ
チウム電池に代表される一次電池、さらにはリチウム/
二硫化チタン二次電池などが提案されており、その一部
についてはすでに実用化されている。しかしながら、か
かる非水系電池は高エネルギー密度、小型軽量といった
性能面では優れているものの、鉛電池に代表される水系
電池に比べ出力特性に難点があり、広く一般に用いられ
るまでに至っていない。特に出力特性が要求される二次
電池の分野ではこの欠点が実用化を妨げている一つの要
因となっている。非水系電池が出力特性に劣る原因は水
系電解液の場合イオン電導度が高く、通常10-1Ω-1C
M-1オーダーの値を有するのに対し、非水系の場合通常
10-2〜10-4Ω-1CM-1と低いイオン電導度しか有し
ていないことに起因する。かかる問題点を解決する一つ
の方法として電極面積を大きくすること、すなわち薄
膜、大面積電極を用いることが考えられる。従来電極の
成形方法としては、電極活物質と有機重合体を混合し、
圧縮形成する方法が一般的である。かかる方法の場合、
絶縁性物質であるバインダーの電極活物質に対する影響
が比較的少なく、また用いるバインダーの種類、形状も
制限が少ないという利点がある反面、薄膜・大面積の電
極を製造することが極めて困難である。一方薄膜・大面
積の電極を製造する手法として有機重合体の溶剤溶液に
電極活物質を分散した後、塗工乾燥することにより電極
を成形する方法が知られている。この方法によれば薄膜
・大面積の電極が容易に得られ非常に好都合である反
面、絶縁性物質であるバインダーの電極活物質に対する
影響が著しく大きく、該電極を電池に組み立てた場合、
例えば著しい過電圧の上昇がみられ実用的な方法ではな
かった。また、水系のバインダーとして、カルボキシル
メチルセルロース、ポリビニルアルコール、ポリアクリ
ル酸塩、スターチなどの水溶性ポリマーあるいはブタジ
エン結合含量が高いスチレン/ブタジエンラテックスが
知られている(特開平5−74461)。しかし、水溶
性ポリマーは電極活物質の表面に均一に付着するために
バインダー性能に劣り、また、高いブタジエン結合含量
のスチレン/ブタジエンラテックスでは粒子が柔らかい
ため電極活物質粒子の表面に付着した後、電池使用中に
変形移動するためと考えられるが、電池の使用中におけ
る特性変化が生じるとの問題があった。2. Description of the Related Art In recent years, electronic devices have been remarkably reduced in size and weight, and accordingly, there has been a great demand for reduction in size and weight of batteries as power sources. Non-aqueous batteries have been attracting attention because it is impossible to meet the above requirements with conventional batteries using general aqueous electrolytes. Such a non-aqueous battery has excellent performances in terms of size and weight reduction.
Titanium disulfide secondary batteries and the like have been proposed, and some of them have already been put to practical use. However, although such a non-aqueous battery is excellent in terms of performance such as high energy density and small size and light weight, it has a drawback in output characteristics as compared with a water battery represented by a lead battery, and has not yet been widely used. In particular, in the field of secondary batteries where output characteristics are required, this defect is one of the factors hindering practical use. The reason why non-aqueous batteries are inferior in output characteristics is high ionic conductivity, usually 10 -1 Ω -1 C in the case of aqueous electrolytes.
This is because the non-aqueous system usually has a low ionic conductivity of 10 −2 to 10 −4 Ω −1 CM −1 while having a value on the order of M −1. As one method for solving such a problem, it is possible to increase the electrode area, that is, to use a thin film or a large area electrode. As a conventional method for forming an electrode, an electrode active material and an organic polymer are mixed,
The method of compression forming is common. With such a method,
While it has the advantages that the binder, which is an insulating material, has a relatively small effect on the electrode active material and that the type and shape of the binder used are also limited, it is extremely difficult to manufacture a thin film / large area electrode. On the other hand, as a method for producing a thin film / large area electrode, a method is known in which an electrode active material is dispersed in a solvent solution of an organic polymer and then the electrode is formed by coating and drying. According to this method, a thin film / large area electrode can be easily obtained, which is very convenient, but on the other hand, the influence of the binder, which is an insulating material, on the electrode active material is significantly large, and when the electrode is assembled into a battery,
For example, a remarkable increase in overvoltage was observed, which was not a practical method. Also known as water-based binders are water-soluble polymers such as carboxymethyl cellulose, polyvinyl alcohol, polyacrylic acid salts and starch, or styrene / butadiene latex having a high butadiene bond content (JP-A-5-74461). However, the water-soluble polymer is inferior in binder performance because it is uniformly attached to the surface of the electrode active material, and the styrene / butadiene latex having a high butadiene bond content has a soft particle, so that it adheres to the surface of the electrode active material. It is considered that this is due to deformation and movement during use of the battery, but there was a problem that characteristics change during use of the battery.
【発明が解決しようとする課題】上記の状況をもとに、
本発明では炭素質材料を電極活物質とする電池、主に二
次電池において、電池使用中あるいは保存中において特
性変化の少ない性能を示す電極を形成するための水系バ
インダーを提供する。On the basis of the above situation,
The present invention provides a water-based binder for forming an electrode exhibiting performance with little characteristic change during use or storage of a battery, mainly in a secondary battery, which uses a carbonaceous material as an electrode active material.
【0002】[0002]
【課題を解決するための手段】本発明者らは、各種の水
系ポリマーラテックスを鋭意検討し、従来、電流効率と
特性変化の点で使用できないとされていたブタジエン結
合含量の低いスチレン/ブタジエンラテックスを一定条
件で加熱乾燥することで、驚くべきことには特性変化の
少ない電池電極が形成されることを見い出して、本発明
に到達した。すなわち、本発明は、基板上にブタジエン
結合含量が10〜40重量%であるスチレンブタジエン
共重合体ラテックスと炭素質材料との混合物を塗布し、
50℃以上の温度で乾燥することを特徴とする電池電極
の形成方法を提供するものである。DISCLOSURE OF THE INVENTION The inventors of the present invention diligently studied various water-based polymer latices and found that styrene / butadiene latices having a low butadiene bond content, which were conventionally considered unusable from the viewpoints of current efficiency and characteristic changes. The present invention was surprisingly found by heating and drying under constant conditions to form a battery electrode with little change in characteristics, and arrived at the present invention. That is, the present invention applies a mixture of a styrene-butadiene copolymer latex having a butadiene bond content of 10 to 40% by weight and a carbonaceous material onto a substrate,
The present invention provides a method for forming a battery electrode, which comprises drying at a temperature of 50 ° C or higher.
【0003】以下に本発明を詳細に説明する。本発明で
使用されるスチレンブタジエン共重合体ラテックスは、
ブタジエン結合含量が10〜40重量%、好ましくは2
0〜40重量%、スチレン含量が40〜90重量%、好
ましくは30〜80重量%、これらと共重合可能な単量
体0〜50重量%、好ましくは0〜40重量%の単量体
を乳化重合して得られる。また、本発明のブタジエン、
スチレン以外の共重合可能なモノマーとしては、例え
ば、メチル(メタ)アクリレート、エチル(メタ)アク
リレート、ブチル(メタ)アクリレート、(メタ)アク
リロニトリル、ヒドロキシエチル(メタ)アクリレート
などのエチレン性不飽和カルボン酸エステル、さらにア
クリル酸、メタクリル酸、イタコン酸、フマル酸、マレ
イン酸などのエチレン性不飽和カルボン酸を使用するこ
とができる。特にエチレン性不飽和カルボン酸としては
イタコン酸、フマル酸、マレイン酸等のジカルボン酸を
使用することが、電極の接着強度の面で好ましい。ブタ
ジエン結合含量が40重量%を超えると得られる電池電
極は電池使用時、あるいは保管中での電池の特性変化が
大きい。また、ブタジエン結合含量が10重量%未満で
は、柔軟性に欠けるほか電極形成の乾燥の際の乾燥温度
を高くしても電極の接着強度に劣る。さらに該スチレン
ブタジエン共重合体ラテックスを乾燥させて得られるポ
リマーのゲル含量が10〜100重量%、好ましくは5
0〜100重量%である。ここでゲル含量とは、トルエ
ンに対するポリマーの不溶分をいう。ラテックス中のゲ
ル含量が10重量%未満では電極を形成し加熱乾燥する
ときにポリマーフローが生じて活物質を過度に覆い、過
電圧が上昇し使用できなくなる。ゲル含量の調整には、
重合温度の調整、重合開始剤量の調整、重合転化率の調
整、連鎖移動剤量の調整などの一般的な方法が用いられ
る。特に限定するものではないが、好ましくは該ラテッ
クスの粒子径は0.01〜0.5μ、より好ましくは
0.01〜0.3μである。 炭素質材料 本発明で用いる炭素質材料の平均粒径は電流効率の低
下、塗工液の安定性の低下、また得られる電極の塗膜内
での粒子間抵抗の増大などの問題より、0.1〜50μ
m、好ましくは3〜25μm、さらに好ましくは5〜1
5μmの範囲であることが好適である。The present invention will be described in detail below. The styrene-butadiene copolymer latex used in the present invention is
The butadiene bond content is 10 to 40% by weight, preferably 2
0 to 40% by weight, styrene content of 40 to 90% by weight, preferably 30 to 80% by weight, and 0 to 50% by weight, preferably 0 to 40% by weight of a monomer copolymerizable therewith. Obtained by emulsion polymerization. In addition, butadiene of the present invention,
Examples of copolymerizable monomers other than styrene include ethylenically unsaturated carboxylic acids such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, and hydroxyethyl (meth) acrylate. Esters and also ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid, maleic acid and the like can be used. In particular, as the ethylenically unsaturated carboxylic acid, it is preferable to use a dicarboxylic acid such as itaconic acid, fumaric acid and maleic acid from the viewpoint of the adhesive strength of the electrode. When the butadiene bond content exceeds 40% by weight, the battery electrode obtained has a large change in battery characteristics during use or storage. When the content of butadiene bond is less than 10% by weight, the flexibility is poor and the adhesive strength of the electrode is inferior even if the drying temperature for drying the electrode is increased. Furthermore, the gel content of the polymer obtained by drying the styrene-butadiene copolymer latex is 10 to 100% by weight, preferably 5
It is 0 to 100% by weight. Here, the gel content means the insoluble content of the polymer in toluene. If the gel content in the latex is less than 10% by weight, polymer flow occurs when the electrode is formed and dried by heating, and the active material is excessively covered, and the overvoltage increases and it cannot be used. To adjust the gel content,
General methods such as adjustment of the polymerization temperature, adjustment of the amount of polymerization initiator, adjustment of the polymerization conversion rate, adjustment of the amount of chain transfer agent, etc. are used. Although not particularly limited, the particle size of the latex is preferably 0.01 to 0.5 µ, more preferably 0.01 to 0.3 µ. Carbonaceous Material The average particle size of the carbonaceous material used in the present invention is 0 because of problems such as a decrease in current efficiency, a decrease in stability of the coating liquid, and an increase in interparticle resistance in the resulting electrode coating film. .1 to 50 μ
m, preferably 3 to 25 μm, more preferably 5 to 1
The range is preferably 5 μm.
【0004】該ラテックスの配合量は特に限定するもの
ではないが、通常炭素質材料100重量部に対して固形
分で0.1〜20重量部、好ましくは0.5〜10重量
部である。ラテックスの配合量が0.1重量部未満では
良好な接着力が得られず、20重量部を超えると過電圧
が著しく上昇し電池特性に悪影響をおよぼす。また、ラ
テックスと炭素質材料との混合物(以下、「塗工液」と
いう)の固形分濃度は特に限定するものではないが、通
常30〜65重量%、好ましくは40〜65重量%であ
る。さらに本発明において塗工液には、添加剤として水
溶性増粘剤をラテックス固形分100重量部に対して2
〜60重量部用いてもよい。水溶性増粘剤としては、カ
ルボキシメチルセルロース、メチルセルロース、ヒドロ
キシメチルセルロース、エチルセルロース、ポリビニル
アルコール、ポリアクリル酸(塩)、酸化スターチ、リ
ン酸化スターチ、カゼインなどが含まれる。本発明の電
池電極は、活物質とスチレンブタジエン共重合体ラテッ
クスと必要に応じて水溶性増粘剤からなるが、必ずしも
これ以外の成分を排除するものではない。例えば、ヘキ
サメタリン酸ソーダ、トリポリリン酸ソーダ、ピロリン
酸ソーダ、ポリアクリル酸ソーダなどの分散剤、さらに
ラテックスの安定化剤としてのノニオン性、アニオン性
界面活性剤などの添加剤を加えたものも含まれる。本発
明においては、塗工液を基材に塗布し乾燥する乾燥温度
は50℃以上、好ましくは70〜250℃、さらに好ま
しくは90〜200℃である。ここで乾燥において加熱
しない、あるいは50℃未満の乾燥温度である時は、バ
インダーの造膜性が不足して電極の接着強度に劣る。ま
た、250℃を超える乾燥温度ではバインダーが劣化し
てやはり接着強度が劣化する。なお、本発明での乾燥温
度とは乾燥工程での基材の最高温度を言う。塗工液は基
材上に塗布し、前記の条件での加熱、乾燥され、電池負
極が形成される。この時要すれば集電体材料と共に成形
してもよいし、また別法としてアルミ箔、銅箔などの集
電体を基材として用いることもできる。また、かかる塗
布方法としてリバースロール法、コンマバー法、グラビ
ヤ法、エアーナイフ法など任意のコーターヘッドを用い
ることができる。乾燥方法としては基材および塗工物を
前記の温度に加熱できるものであれば特に制限はない
が、温風乾燥機、赤外線加熱機、遠赤外線加熱機などが
使用できる。The amount of the latex compounded is not particularly limited, but is usually 0.1 to 20 parts by weight, preferably 0.5 to 10 parts by weight, based on 100 parts by weight of the carbonaceous material as a solid content. If the content of the latex is less than 0.1 part by weight, good adhesive strength cannot be obtained, and if it exceeds 20 parts by weight, the overvoltage is remarkably increased and the battery characteristics are adversely affected. The solid content concentration of the mixture of latex and carbonaceous material (hereinafter referred to as "coating liquid") is not particularly limited, but is usually 30 to 65% by weight, preferably 40 to 65% by weight. Furthermore, in the present invention, the coating liquid contains a water-soluble thickener as an additive in an amount of 2 per 100 parts by weight of the latex solid content.
-60 parts by weight may be used. Examples of the water-soluble thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch and casein. The battery electrode of the present invention comprises an active material, a styrene-butadiene copolymer latex and, if necessary, a water-soluble thickener, but does not necessarily exclude other components. For example, dispersants such as sodium hexametaphosphate, sodium tripolyphosphate, sodium pyrophosphate, sodium polyacrylate, etc., and those to which additives such as nonionic and anionic surfactants as a latex stabilizer are added are also included. . In the present invention, the drying temperature at which the coating liquid is applied to the substrate and dried is 50 ° C or higher, preferably 70 to 250 ° C, more preferably 90 to 200 ° C. If the heating is not performed in the drying or the drying temperature is lower than 50 ° C., the film-forming property of the binder is insufficient and the adhesive strength of the electrode is poor. In addition, at a drying temperature higher than 250 ° C, the binder deteriorates and the adhesive strength also deteriorates. The drying temperature in the present invention means the maximum temperature of the base material in the drying step. The coating liquid is applied on a substrate, heated and dried under the above conditions to form a battery negative electrode. At this time, if necessary, it may be molded together with the current collector material, or alternatively, a current collector such as an aluminum foil or a copper foil may be used as the base material. Further, as such a coating method, an arbitrary coater head such as a reverse roll method, a comma bar method, a gravure method or an air knife method can be used. The drying method is not particularly limited as long as it can heat the substrate and the coated product to the above temperature, but a warm air dryer, an infrared heater, a far infrared heater and the like can be used.
【0005】本発明により形成される電池電極は水系電
池、非水系電池のいずれにも使用し得るが、非水系電池
の負極として用いた場合、特に優れた電池性能を得るこ
とができる。本発明により形成された電池電極を用い
て、非水系電池を組み立てる場合、非水系電解液の電解
質としては特に限定されないが、アルカリ二次電池での
例を示せば、LiClO4 、LiBF4 、LiAsF6
、CF3 SO3 Li、LiPF6 、LiI、LiAl
Cl4 、NaClO4 、NaBF4 、NaI、(n−B
u)4 NClO4 、(n−Bu)4 NBF4 、KPF6
などが挙げられる。また用いられる電解液の有機溶媒と
しては、例えばエーテル類、ケトン類、ラクトン類、ニ
トリル類、アミン類、アミド類、硫黄化合物、塩素化炭
化水素類、エステル類、カーボネート類、ニトロ化合
物、リン酸エステル系化合物、スルホラン系化合物など
を用いることができるが、これらのうちでもエーテル
類、ケトン類、ニトリル類、塩素化炭化水素類、カーボ
ネート類、スルホラン系化合物が好ましい。これらの代
表例としては、テトラヒドロフラン、2−メチルテトラ
ヒドロフラン、1,4−ジオキサン、アニソール、モノ
グライム、アセトニトリル、プロピオニトリル、4−メ
チル−2−ペンタノン、ブチロニトリル、バレロニトリ
ル、ベンゾニトリル、1,2−ジクロロエタン、γ−ブ
チロラクトン、ジメトキシエタン、メチルフオルメイ
ト、プロピレンカーボネート、エチレンカーボネート、
ジメチルホルムアミド、ジメチルスルホキシド、ジメチ
ルチオホルムアミド、スルホラン、3−メチル−スルホ
ラン、リン酸トリメチル、リン酸トリエチルおよびこれ
らの混合溶媒などを挙げることができるが、必ずしもこ
れらに限定されるものではない。また、用いる正極材料
としては特に限定されるものではないが、例示すれば、
MnO2 、MoO3 、V2 O5 、V6 O13、Fe2 O3
、Fe3 O4 、Li(1-x) CoO2 、Li(1-x) ・N
iO2 、Lix Coy Snz O2 、TiS2 、TiS3
、MoS3 、FeS2 、CuF2 、NiF2 などの無
機化合物、フッ化カーボン、グラファイト、気相成長炭
素繊維および/またはその粉砕物、PAN系炭素繊維お
よび/またはその粉砕物、ピッチ系炭素繊維および/ま
たはその粉砕物などの炭素材料、ポリアセチレン、ポリ
−p−フェニレン等の導電性高分子などが挙げられる。
特にLi(1-x) CoO2 、Li(1-x) NiO2 、Lix
Coy Snz O2 、Li(1-X) Co(1-x) Niy O2 な
どのリチウムイオン含有複合酸化物を用いた場合、正負
極共に放電状態で組み立てることが可能となり好ましい
組み合わせとなる。さらに、要すればセパレーター、集
電体、端子、絶縁板などの部品を用いて電池が構成され
る。また、電池の構造としては、特に限定されるもので
はないが、正極、負極、さらに要すればセパレーターを
単層または複層としたペーパー型電池、または正極、負
極、さらに要すればセパレーターをロール状に巻いた円
筒状電池などの形態が一例として挙げられる。The battery electrode formed by the present invention can be used in both aqueous and non-aqueous batteries, but when used as the negative electrode of a non-aqueous battery, particularly excellent battery performance can be obtained. When assembling a non-aqueous battery using the battery electrode formed according to the present invention, the electrolyte of the non-aqueous electrolyte is not particularly limited, but examples of alkaline secondary batteries include LiClO4, LiBF4, LiAsF6.
, CF3 SO3 Li, LiPF6, LiI, LiAl
Cl4, NaClO4, NaBF4, NaI, (n-B
u) 4 NClO4, (n-Bu) 4 NBF4, KPF6
And the like. Examples of the organic solvent of the electrolytic solution used include ethers, ketones, lactones, nitriles, amines, amides, sulfur compounds, chlorinated hydrocarbons, esters, carbonates, nitro compounds, and phosphoric acid. Although ester compounds, sulfolane compounds, etc. can be used, among these, ethers, ketones, nitriles, chlorinated hydrocarbons, carbonates, sulfolane compounds are preferable. As typical examples of these, tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, anisole, monoglyme, acetonitrile, propionitrile, 4-methyl-2-pentanone, butyronitrile, valeronitrile, benzonitrile, 1,2- Dichloroethane, γ-butyrolactone, dimethoxyethane, methyl formate, propylene carbonate, ethylene carbonate,
Examples thereof include, but are not limited to, dimethylformamide, dimethylsulfoxide, dimethylthioformamide, sulfolane, 3-methyl-sulfolane, trimethyl phosphate, triethyl phosphate, and mixed solvents thereof. Further, the positive electrode material used is not particularly limited, but, for example,
MnO2, MoO3, V2 O5, V6 O13, Fe2 O3
, Fe3 O4, Li (1-x) CoO2, Li (1-x) .N
iO2, Lix Coy Snz O2, TiS2, TiS3
, MoS3, FeS2, CuF2, NiF2 and other inorganic compounds, fluorinated carbon, graphite, vapor grown carbon fiber and / or pulverized product thereof, PAN-based carbon fiber and / or pulverized product thereof, pitch-based carbon fiber and / or its produced product Examples thereof include carbon materials such as pulverized products, and conductive polymers such as polyacetylene and poly-p-phenylene.
In particular, Li (1-x) CoO2, Li (1-x) NiO2, Lix
When a lithium ion-containing composite oxide such as Coy Snz O2 or Li (1-X) Co (1-x) Niy O2 is used, both the positive and negative electrodes can be assembled in a discharged state, which is a preferable combination. Furthermore, if necessary, a battery is constructed by using components such as a separator, a current collector, a terminal, and an insulating plate. Further, the structure of the battery is not particularly limited, but a positive electrode, a negative electrode, if necessary, a paper-type battery having a separator in a single layer or a multilayer, or a positive electrode, a negative electrode, if necessary, a separator roll. An example is a form of a cylindrical battery that is wound into a shape.
【0006】[0006]
【実施例】以下に実施例にて本発明をさらに詳しく説明
する。なお、本発明でゲル含量は下記のようにして求め
る。 ゲル含量の測定法;0.5Nアンモニア水および0.5
N塩酸でpH8に調整したラテックスを120℃で1時
間乾燥させて成膜させた後、ポリマー重量の100重量
部のトルエンに浸せきし、3時間振とう後200メッシ
ュのフィルターで濾過して不溶分を採取し、120℃で
1時間乾燥させて不溶分の重量を測定し、次式でゲル含
量を求めた。 ゲル含量=(トルエン不溶分重量/浸せき前重量)×1
00(%) 実施例1〜5、比較例1〜5 ニードルコークス粉砕品(平均粒径12μm)100重
量部と表1のポリマー組成で乳化重合して得られたラテ
ックス固形分で6重量部、増粘剤としてカルボキシメチ
ルセルロース水溶液を固形分で1重量部、0.5Nアン
モニア水0.5重量部を加え、よく混合分解して塗工液
を得た。厚さ10μmのニッケル金属箔を基材としてロ
ールコーターでこの塗工液を120g/m2 の厚さで塗
工し、直ちに内温150℃の熱風乾燥機に15分入れ、
乾燥を行なった。この乾燥において基材は最高147℃
まで上昇した。これにより、厚さ130μmのシート状
の負電極を得た。一方平均粒径2μのLi1.03Co0.95
Sn0.042 O2 100重量部とグラファイト粉7.5重
量部、アセチレンブラック2.5重量部を混合し、フッ
素ゴムのメチルイソブチルケトン溶液(濃度4重量%)
を50重量部加え混合攪拌し塗工液とした。市販Al箔
(厚さ15μ)を基材としてこの塗工液を290g/m
2で塗布乾燥し、厚さ110μの正極電極を得た。この
負極、正極電極を0.9cm×5.5cmに切り出して
リチウム二次電池を組み立てた。これを実施例1〜5、
比較例1〜3とする。また、比較例4、5では乾燥塗工
液の乾燥条件を25℃×16時間および45℃×4時間
とした以外は実施例1と同様にした。この電池を4.2
Vまで充電し、10mAで2.5Vまで放電するサイク
ルを繰り返した。これらの電池の充放電サイクルにおけ
る過電圧、充放電サイクルでの容量保持率、促進保存条
件下での容量変化を表2に示す。The present invention will be described in more detail with reference to the following examples. In the present invention, the gel content is determined as follows. Method for measuring gel content; 0.5N aqueous ammonia and 0.5
A latex adjusted to pH 8 with N hydrochloric acid was dried at 120 ° C. for 1 hour to form a film, then dipped in 100 parts by weight of polymer, toluene, shaken for 3 hours, filtered through a 200-mesh filter, and insoluble. Was collected, dried at 120 ° C. for 1 hour, the weight of the insoluble matter was measured, and the gel content was determined by the following formula. Gel content = (toluene insoluble content weight / weight before immersion) x 1
00 (%) Examples 1 to 5, Comparative Examples 1 to 5 100 parts by weight of needle coke pulverized product (average particle size 12 μm) and 6 parts by weight of latex solid content obtained by emulsion polymerization with the polymer composition shown in Table 1. As a thickener, 1 part by weight of a carboxymethylcellulose aqueous solution as a solid content and 0.5 part by weight of 0.5N ammonia water were added, and they were thoroughly mixed and decomposed to obtain a coating solution. This coating liquid was applied to a thickness of 120 g / m @ 2 with a roll coater using a nickel metal foil having a thickness of 10 .mu.m as a base material and immediately put in a hot air dryer having an internal temperature of 150.degree. C. for 15 minutes,
It was dried. The base material is 147 ℃ at maximum during this drying
Rose to. As a result, a sheet-shaped negative electrode having a thickness of 130 μm was obtained. On the other hand, Li1.03Co0.95 with an average particle size of 2μ
100 parts by weight of Sn0.042 O2, 7.5 parts by weight of graphite powder and 2.5 parts by weight of acetylene black are mixed, and a solution of fluororubber in methyl isobutyl ketone (concentration 4% by weight).
Was added to 50 parts by weight and mixed and stirred to obtain a coating liquid. 290 g / m 2 of this coating liquid using a commercially available Al foil (thickness 15μ) as a base material
It was applied and dried in 2 to obtain a positive electrode having a thickness of 110 μm. The negative electrode and the positive electrode were cut out into 0.9 cm × 5.5 cm to assemble a lithium secondary battery. This is described in Examples 1 to 5,
It is set as Comparative Examples 1 to 3. Further, Comparative Examples 4 and 5 were the same as Example 1 except that the drying conditions of the dry coating liquid were 25 ° C. × 16 hours and 45 ° C. × 4 hours. This battery is 4.2
The cycle of charging to V and discharging to 2.5 V at 10 mA was repeated. Table 2 shows the overvoltage in the charge / discharge cycle of these batteries, the capacity retention rate in the charge / discharge cycle, and the capacity change under accelerated storage conditions.
【0007】[0007]
【表1】 [Table 1]
【0008】[0008]
【表2】 [Table 2]
【0009】[0009]
【発明の効果】本発明の電池バインダーは高性能の電
池、特に充放電回数が大きく、長期の使用と保存に耐え
る二次電池を得るために好適である。INDUSTRIAL APPLICABILITY The battery binder of the present invention is suitable for obtaining a high-performance battery, particularly a secondary battery which has a large number of charge / discharge cycles and can withstand long-term use and storage.
Claims (1)
0重量%であるスチレンブタジエン共重合体ラテックス
と炭素質材料との混合物を塗布し、50℃以上の温度で
乾燥することを特徴とする電池電極の形成方法。1. A butadiene bond content of 10 to 4 on a substrate.
A method for forming a battery electrode, which comprises applying a mixture of 0% by weight of a styrene-butadiene copolymer latex and a carbonaceous material, and drying the mixture at a temperature of 50 ° C. or higher.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7074540A JPH08250122A (en) | 1995-03-07 | 1995-03-07 | Forming method for battery electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7074540A JPH08250122A (en) | 1995-03-07 | 1995-03-07 | Forming method for battery electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08250122A true JPH08250122A (en) | 1996-09-27 |
Family
ID=13550213
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7074540A Pending JPH08250122A (en) | 1995-03-07 | 1995-03-07 | Forming method for battery electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08250122A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10270046A (en) * | 1997-03-27 | 1998-10-09 | Nippon Zeon Co Ltd | Binder composition for battery, slurry for battery electrode, electrode and battery |
WO1999008335A1 (en) * | 1997-08-11 | 1999-02-18 | Sony Corporation | Nonaqueous electrolyte secondary battery |
US6225003B1 (en) | 1998-10-26 | 2001-05-01 | Mitsubishi Chemical Corporation | Electrode materials having an elastomer binder and associated electrochemical and fabrication process |
JP2006269847A (en) * | 2005-03-25 | 2006-10-05 | Shinshu Univ | Electrode for electric double layer capacitor |
JP2010146871A (en) * | 2008-12-19 | 2010-07-01 | Nippon A&L Inc | Binder for nonaqueous electrolytic solution secondary battery electrode |
WO2011077500A1 (en) * | 2009-12-25 | 2011-06-30 | 日本エイアンドエル株式会社 | Binder for secondary battery electrode |
WO2011122297A1 (en) * | 2010-03-29 | 2011-10-06 | 日本ゼオン株式会社 | Lithium-ion secondary battery |
-
1995
- 1995-03-07 JP JP7074540A patent/JPH08250122A/en active Pending
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10270046A (en) * | 1997-03-27 | 1998-10-09 | Nippon Zeon Co Ltd | Binder composition for battery, slurry for battery electrode, electrode and battery |
WO1999008335A1 (en) * | 1997-08-11 | 1999-02-18 | Sony Corporation | Nonaqueous electrolyte secondary battery |
US6225003B1 (en) | 1998-10-26 | 2001-05-01 | Mitsubishi Chemical Corporation | Electrode materials having an elastomer binder and associated electrochemical and fabrication process |
JP2006269847A (en) * | 2005-03-25 | 2006-10-05 | Shinshu Univ | Electrode for electric double layer capacitor |
JP4660239B2 (en) * | 2005-03-25 | 2011-03-30 | 国立大学法人信州大学 | Electrode for electric double layer capacitor |
JP2010146871A (en) * | 2008-12-19 | 2010-07-01 | Nippon A&L Inc | Binder for nonaqueous electrolytic solution secondary battery electrode |
JP5329559B2 (en) * | 2009-12-25 | 2013-10-30 | 日本エイアンドエル株式会社 | Secondary battery electrode binder |
CN102203990A (en) * | 2009-12-25 | 2011-09-28 | 日本A&L株式会社 | Binder for secondary battery electrode |
DE112009005473T5 (en) | 2009-12-25 | 2012-10-31 | Nippon A&L Inc. | Binder for secondary battery electrodes |
KR101313493B1 (en) * | 2009-12-25 | 2013-10-01 | 니폰 에이 엔 엘 가부시키가이샤 | Binder for secondary battery electrodes |
WO2011077500A1 (en) * | 2009-12-25 | 2011-06-30 | 日本エイアンドエル株式会社 | Binder for secondary battery electrode |
US9090728B2 (en) | 2009-12-25 | 2015-07-28 | Nippon A & L Inc. | Binder for secondary battery electrodes |
DE112009005473B4 (en) | 2009-12-25 | 2022-02-17 | Nippon A&L Inc. | Binders for secondary battery electrodes |
WO2011122297A1 (en) * | 2010-03-29 | 2011-10-06 | 日本ゼオン株式会社 | Lithium-ion secondary battery |
CN102859777A (en) * | 2010-03-29 | 2013-01-02 | 日本瑞翁株式会社 | Lithium-ion secondary battery |
JP5626336B2 (en) * | 2010-03-29 | 2014-11-19 | 日本ゼオン株式会社 | Lithium ion secondary battery |
CN102859777B (en) * | 2010-03-29 | 2015-08-26 | 日本瑞翁株式会社 | Lithium rechargeable battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08250123A (en) | Aqueous binder for forming battery electrode | |
JP3101775B2 (en) | Secondary battery negative electrode | |
JP3601250B2 (en) | Binder for non-aqueous battery electrode | |
JP3567618B2 (en) | Conductive binder composition for secondary battery electrode and method for producing the same | |
KR102178203B1 (en) | Slurry composition for negative electrode for lithium-ion secondary battery, negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery | |
JP6451732B2 (en) | Binder composition for secondary battery porous membrane, slurry for secondary battery porous membrane, porous membrane for secondary battery, and secondary battery | |
JP3721727B2 (en) | Battery electrode binder | |
JP7020118B2 (en) | Binder composition for non-aqueous secondary battery electrodes, slurry composition for non-aqueous secondary battery electrodes, electrodes for non-aqueous secondary batteries, and non-aqueous secondary batteries | |
WO2015045350A1 (en) | Lithium ion secondary battery | |
KR20170078623A (en) | Paste composition for negative electrode for lithium-ion rechargeable battery, composite particles for negative electrode for lithium-ion rechargeable battery, slurry composition for negative electrode for lithium-ion rechargeable battery, negative electrode for lithium-ion rechargeable battery, and lithium-ion rechargeable battery | |
JP6601413B2 (en) | Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery | |
JP6273956B2 (en) | Binder for secondary battery porous membrane, slurry composition for secondary battery porous membrane, porous membrane for secondary battery, and secondary battery | |
WO2012026462A1 (en) | Binder composition for secondary battery negative electrode, slurry composition for secondary battery negative electrode, secondary battery negative electrode, secondary battery, and method for producing binder composition for secondary battery negative electrode | |
JPH09289023A (en) | Electrode binder solution, electrode mixture, electrode structure, and battery | |
JP6645430B2 (en) | Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery | |
JPWO2015098008A1 (en) | Lithium ion secondary battery negative electrode binder composition, lithium ion secondary battery negative electrode slurry composition, lithium ion secondary battery negative electrode and lithium ion secondary battery | |
WO2015133154A1 (en) | Binder composition for lithium ion secondary battery, slurry composition for lithium ion secondary battery electrode, slurry composition for lithium ion secondary battery porous membrane, electrode for lithium ion secondary battery, and lithium ion secondary battery | |
WO2015174036A1 (en) | Binder composition for secondary battery electrodes, slurry composition for secondary battery electrodes, electrode for secondary batteries, production method therefor, and secondary battery | |
US5714282A (en) | Coating paste and a nonaqueous electrode for a secondary battery | |
WO2019004459A1 (en) | Binder composition for electrochemical elements, slurry composition for electrochemical element functional layer, slurry composition for electrochemical element adhesion layer, and composite membrane | |
JP3540097B2 (en) | Electrode mixture for non-aqueous battery and non-aqueous battery | |
JPH08250122A (en) | Forming method for battery electrode | |
JP2022064465A (en) | Negative electrode slurry, negative electrode, and secondary battery | |
JP6340826B2 (en) | Secondary battery porous membrane slurry, manufacturing method, secondary battery porous membrane, and secondary battery | |
JP3414039B2 (en) | Battery electrode |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20031125 |