JPH08248384A - Liquid crystal display device - Google Patents

Liquid crystal display device

Info

Publication number
JPH08248384A
JPH08248384A JP4864495A JP4864495A JPH08248384A JP H08248384 A JPH08248384 A JP H08248384A JP 4864495 A JP4864495 A JP 4864495A JP 4864495 A JP4864495 A JP 4864495A JP H08248384 A JPH08248384 A JP H08248384A
Authority
JP
Japan
Prior art keywords
liquid crystal
voltage
value
transmittance
driving voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4864495A
Other languages
Japanese (ja)
Inventor
Tokuo Koma
徳夫 小間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4864495A priority Critical patent/JPH08248384A/en
Publication of JPH08248384A publication Critical patent/JPH08248384A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)

Abstract

PURPOSE: To prevent residual images or the drop of the contrast ratio and to improve display quality by setting the Δn.d value of liquid crystal at a value larger than one obtained from a specified first minimum condition and thereby by making the lower limit of the driving voltage range higher than the threshold value which allows the liquid crystal to be driven. CONSTITUTION: The product, An-d, where Δn and d are double refraction index and the thickness of liquid crystal layer respectively is set at a value larger than the one obtained from the first minimum condition that is represented by the formula shown where u=πdΔn/θλ, θ: the tortional angle of liquid crystal, λ: the wavelength of light. Consequently a humpy section giving a peak of the transmission curve appears on the right-hand side of the threshold value voltage Vth. Therefore, the initial voltage Vor as the lower limit of the driving voltage region VR is set at the voltage value which maximizes transmittance T. And the upper limit of the driving voltage region VR is set at 7V. By this, the driving voltage region is reduced without lowering the contrast ratio and thereby the delay in the reaction of liquid crystal is prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶表示装置に関し、特
に、駆動電圧幅を最適に設定することにより液晶の応答
速度の遅れを防ぎ、残像の無い画像を提供することを成
し得た液晶表示装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display device, and more particularly to a liquid crystal display capable of providing an image having no afterimage by preventing the delay of the response speed of the liquid crystal by optimally setting the driving voltage width. Regarding display device.

【0002】[0002]

【従来の技術】液晶表示装置は小型、薄型、低消費電力
などの利点があり、OA機器、AV機器などの分野で実
用化が進んでいる。特に、液晶駆動用の透明電極を交差
配置して表示点をマトリクス的に選択しながら電圧を印
加するマトリクス型、更には、液晶駆動用の画素電極を
複数、共通電極に対向配置させ、各画素電極にスイッチ
素子を接続することにより、線順次に書き換え画素を選
択しながら、信号電圧を保持させていくアクティブマト
リクス型は、高精細、高コントラスト比の動画表示が可
能となり、パーソナルコンピュータのディスプレイ、テ
レヴィジョンなどに実用化されている。
2. Description of the Related Art Liquid crystal display devices have advantages such as small size, thin shape, and low power consumption, and are being put to practical use in fields such as OA equipment and AV equipment. In particular, a matrix type in which transparent electrodes for driving liquid crystal are crossed and voltage is applied while selecting display points in a matrix, and further, a plurality of pixel electrodes for driving liquid crystal are arranged to face a common electrode, By connecting switch elements to the electrodes, the active matrix type, which retains the signal voltage while selecting the rewriting pixels line-sequentially, enables high-definition, high-contrast ratio moving image display, and displays on a personal computer. It has been put to practical use in television, etc.

【0003】液晶表示装置は、液晶駆動用の透明電極を
有した電極基板を細隙をもって貼り合わせ、内部に液晶
を密封することにより構成されている。図3に、液晶表
示装置セルの構造を示す。ガラス基板(10)(20)
上には、各々ITOの透明電極(11)(21)が形成
されており、両電極(11,21)の対向部分は、両基
板(10,20)間に内封された液晶層(30)を区画
して画素容量を構成している。各画素容量は所望の電圧
が印加されるように構成されている。液晶は誘電率及び
屈折率に異方性を有しており、各画素容量に形成された
電界(31)に従ってその配向状態が変化して透過光を
変調する。透過率は電界強度に依存して微調整されるた
め、画素容量ごとに印加電圧を制御することにより、階
調表示がなされ、所望の表示画面が作成される。
A liquid crystal display device is constructed by adhering an electrode substrate having a transparent electrode for driving the liquid crystal with a narrow gap and sealing the liquid crystal inside. FIG. 3 shows the structure of a liquid crystal display cell. Glass substrate (10) (20)
Transparent electrodes (11) and (21) made of ITO are formed on the upper surface of the liquid crystal layer (30), and the facing portions of the electrodes (11 and 21) are sealed between the substrates (10 and 20). ) Is partitioned to form the pixel capacitance. Each pixel capacitance is configured so that a desired voltage is applied. The liquid crystal has anisotropy in permittivity and refractive index, and its alignment state changes according to the electric field (31) formed in each pixel capacitance to modulate transmitted light. Since the transmittance is finely adjusted depending on the electric field strength, gradation control is performed by controlling the applied voltage for each pixel capacitance, and a desired display screen is created.

【0004】図4に電圧−透過率特性をノーマリ・ホワ
イト(NW)モードの場合(a)と、ノーマリ・ブラッ
ク(NB)モードの場合(b)について示した。各々、
電圧無印加時(V=0)には透過率は最大(T=M)あ
るいは最小(T=m)になっており、印加電圧(V)が
上昇し、液晶を駆動する閾値電圧(Vth)を越えると透
過率(T)が変化し始める。駆動電圧域(VR)は透過
率(T)の変化する領域に対応して設定され、階調表示
が行われる。
FIG. 4 shows the voltage-transmittance characteristics in the normally white (NW) mode (a) and the normally black (NB) mode (b). Each,
When no voltage is applied (V = 0), the transmittance is maximum (T = M) or minimum (T = m), the applied voltage (V) rises, and the threshold voltage (Vth) that drives the liquid crystal. When it exceeds, the transmittance (T) starts to change. The drive voltage range (VR) is set corresponding to the region where the transmittance (T) changes, and gradation display is performed.

【0005】[0005]

【発明が解決しようとする課題】通常、TN(Twisted
Nematic)方式においては、液晶は両電極基板の表面に
形成された高分子膜からなる配向膜との相互作用を受け
て初期状態での配向が制御され、僅かの傾斜角(プレチ
ルト角)を有して一定方向に揃えられている。画素容量
へ電圧を印加することにより、液晶は電界効果を受けて
配向が変化するが、画素容量電極の縁部では斜め方向電
界のために、他の領域とは異なる反応を示す。即ち、あ
らかじめプレチルトにより配向の変化先が定められてい
るにも関わらず、画素容量電極の縁部では斜め方向電界
の作用が優勢であるため、プレチルトと反対の側が立ち
上がり、いわゆるリヴァースチルトドメインとなって、
正常の配向に戻るまでに時間を要し、見かけ上、液晶の
応答速度が低下する。このことは、肉眼による観察にお
いても顕著であり、特に、NWモードにおける白、ある
いは、NBモードにおける黒から他の表示色へ変化する
際には、リヴァースチルトドメインにおいて1〜数秒間
の反応の遅延が見られ、残像となっていた。
Normally, TN (Twisted)
In the nematic method, the liquid crystal has a slight tilt angle (pretilt angle) by controlling the alignment in the initial state by interacting with the alignment film made of a polymer film formed on the surfaces of both electrode substrates. And they are aligned in a certain direction. When a voltage is applied to the pixel capacitance, the liquid crystal undergoes an electric field effect to change its orientation, but at the edge of the pixel capacitance electrode, a reaction different from that of other regions occurs due to an oblique electric field. That is, although the change destination of the orientation is determined in advance by the pretilt, the action of the oblique electric field is predominant at the edge of the pixel capacitor electrode, so that the side opposite to the pretilt rises to form a so-called reverse tilt domain. hand,
It takes time to return to the normal alignment, and the response speed of the liquid crystal apparently decreases. This is remarkable even when observed with the naked eye, and particularly when the white in the NW mode or the black in the NB mode changes to another display color, the reaction delay of 1 to several seconds in the reverse tilt domain. Was seen, and it was an afterimage.

【0006】図5に、従来の液晶表示装置について時間
(t)に対する透過率(T)の変化を調べた結果を示
す。実験はNWモードで行い、最大透過時(透過率を9
0%とする)の電圧値(V90)から透過率を0%とする
電圧値(V0)へ変化させ、更に、再び電圧V90にした
時の透過率(T)の時間変化と、同じく、中間階調状態
(透過率を80%とする)の電圧値(V80)から透過率
を0%とする電圧値(V0)へ変化させ、更に、再び電
圧V80にした時の透過率(T)の時間変化とを測定し、
各々のグラフ(III,IV)を作成した。
FIG. 5 shows the results of examining changes in the transmittance (T) with respect to time (t) in the conventional liquid crystal display device. The experiment was performed in NW mode, and the maximum transmission (transmittance of 9
0%) voltage value (V90) is changed to a voltage value (V0) where the transmittance is 0%, and when the voltage is again V90, the transmittance (T) changes with time, and the intermediate value is the same. The voltage value (V80) in the gradation state (transmittance of 80%) is changed to the voltage value (V0) of which the transmittance is 0%, and the transmittance (T) when the voltage is set to V80 again. With time change,
Each graph (III, IV) was created.

【0007】まず、グラフ(IV)を見ると、t=130
[msec]において、電圧をV=V80からV=V0へ
変化させており、これに伴って透過率もT=80[%]
からT=0[%]まで非常に急峻に変化しており、高い
応答特性を示している。一方、グラフ(III)ではt=
130[msec]において、電圧をV=V90からV=
V0へと変化させており、透過率はT=90[%]から
T=10[%]までは急峻な変化を示しているが、その
後T=0へ向かって非常に緩やかに下降している。これ
より、白、即ち最大透過状態(T=90)から他の表示
色への変化の際には、リヴァースチルトドメインでの反
応の遅延のために、所定の透過率に達するのに時間がか
かるのがわかる。
First, looking at graph (IV), t = 130
At [msec], the voltage is changed from V = V80 to V = V0, and the transmittance is also T = 80 [%].
To T = 0 [%], the response is very steep and shows a high response characteristic. On the other hand, in graph (III), t =
At 130 [msec], the voltage is changed from V = V90 to V =
The transmittance is changed to V0, and the transmittance shows a steep change from T = 90 [%] to T = 10 [%], but then drops very slowly toward T = 0. . As a result, in the case of white, that is, when the maximum transmission state (T = 90) is changed to another display color, it takes time to reach a predetermined transmittance due to the delay of the reaction in the reverse tilt domain. I understand.

【0008】このような反応の遅延は、動画表示におい
て、コントラスト比の低下、あるいは、残像などを招
き、表示品位を低下させていた。また、このような反応
の遅延を防ぐために、駆動電圧電圧域(VR)を縮小し
てリヴァースチルトドメインが生ずる電圧域を削除する
と、白(あるいは黒)の十分な輝度が得られず、コント
ラスト比の低下につながる。
Such a delay in the reaction causes a reduction in the contrast ratio or a residual image in the display of a moving image, thus deteriorating the display quality. If the drive voltage voltage range (VR) is reduced to eliminate the voltage range in which the reverse tilt domain is generated in order to prevent such a delay in the reaction, sufficient white (or black) brightness cannot be obtained, and the contrast ratio is reduced. Leading to a decrease in

【0009】[0009]

【課題を解決するための手段】本発明はこの課題を解決
するために成されたもので、電極基板間に液晶が封入さ
れ、表示画素ごとに液晶駆動用の画素容量が構成され、
前記画素容量に電圧を印加して対応する液晶の透過特性
を変化する液晶表示装置において、前記液晶の複屈折率
Δnと液晶層の厚さdとの積Δn・d値を
The present invention has been made to solve this problem, in which a liquid crystal is sealed between electrode substrates, and a pixel capacitor for driving a liquid crystal is formed for each display pixel.
In a liquid crystal display device in which a voltage is applied to the pixel capacitance to change the transmission characteristics of the corresponding liquid crystal, the product Δn · d value of the birefringence Δn of the liquid crystal and the thickness d of the liquid crystal layer is expressed as

【0010】[0010]

【数2】 [Equation 2]

【0011】(上式において、u=πdΔn/θλであ
り、θは液晶のねじれ角、λは光の波長である。)で表
される式におけるファーストミニマム条件から得られる
値よりも大きく設定するとともに、これに従って前記画
素容量へ印加する電圧域の下限を、透過率を最大あるい
は最小にする値に設定した構成である。
(In the above equation, u = πdΔn / θλ, θ is the twist angle of the liquid crystal, and λ is the wavelength of light.) The value is set to be larger than the value obtained from the first minimum condition in the equation. At the same time, the lower limit of the voltage range applied to the pixel capacitance is set to a value that maximizes or minimizes the transmittance.

【0012】[0012]

【作用】本発明の構成で、液晶のΔn・d値をファース
トミニマム値よりも大きく設定し、かつ、印加電圧域の
下限を、透過率を最大(NWモードの場合)あるいは最
小(NBモードの場合)にする値に設定することによ
り、駆動電圧域を単に縮小してコントラスト比を落とす
ことなく、液晶の反応の遅延が防がれる。即ち、最大透
過状態(NWモードにおける白)、あるいは、最小透過
状態(NBモードにおける黒)を、電圧印加状態で実現
することで、液晶が常時駆動された状態にされるので、
ある駆動状態から他の表示色を示す駆動状態への移行が
迅速になり、反応の遅延が無くされる。
With the configuration of the present invention, the Δn · d value of the liquid crystal is set to be larger than the first minimum value, and the lower limit of the applied voltage range is set to the maximum transmittance (in the NW mode) or minimum transmittance (in the NB mode). If the value is set to (case), the delay of the liquid crystal reaction can be prevented without simply reducing the drive voltage range and lowering the contrast ratio. That is, since the maximum transmission state (white in the NW mode) or the minimum transmission state (black in the NB mode) is realized in the voltage applied state, the liquid crystal is constantly driven.
The transition from a certain driving state to a driving state showing another display color becomes quicker, and the delay of the reaction is eliminated.

【0013】[0013]

【実施例】続いて、本発明の実施例を詳細に説明する。
まず、電圧無印加時の透過率Tは、NBモードにおいて
導かれたGoochand Tarryの式により、複
屈折率Δnとセルギャップdとの積Δn・d値に依存し
て、前記数式(1)の如く表されている。
EXAMPLES Next, examples of the present invention will be described in detail.
First, the transmittance T when no voltage is applied depends on the product Δn · d value of the birefringence Δn and the cell gap d according to the equation of the Goochand Tarry derived in the NB mode, It is represented as follows.

【0014】通常は、上式のファーストミニマム条件か
らΔn・d値は0.3〜0.5μmに設定されるが、本
発明では、Δn・d=0.50μm以上に設定するとと
もに、このΔn・d値との相関関係から透過率が最小と
なる電圧値を設定し、これを駆動電圧域の下限とする。
NWモードでは、この時、透過率は最大となる。図1
に、NWモードにおいてセルギャップdを4.3μmと
した時の電圧−透過率特性のグラフを示す。グラフ
(A)はΔnが0.135の場合、グラフ(B)はΔn
が0.150の場合、グラフ(C)はΔnが0.200
の場合である。この時、それぞれのΔn・d値は、0.
58μm、0.65μm、0.86μmとなる。図より
分かる通り、いずれの場合も、印加電圧(V)が2
[v]の近傍で透過率(T)(任意単位)が変化し始め
ており、この値が液晶を駆動する閾値電圧(Vth)とな
っている。透過率(T)を最大とする電圧は、グラフ
(A)ではV=2.2[v]、グラフ(B)ではV=
2.3[v]、グラフ(C)ではV=2.6[v]であ
る。即ち、Δn・d値をファーストミニマム値よりも大
きく設定することによって、閾値電圧(Vth)の右側で
透過率曲線のピークとなるこぶ状部分が現れ、透過率
(T)を最大とする電圧は、いずれも閾値電圧(Vth)
よりも大きな値となっている。本実施例では、これら透
過率(T)を最大にする電圧値を駆動電圧域(VR)の
下限として、初期電圧(Vor)に設定する。また同図よ
り駆動電圧域(VR)の上限は7[v]としている。
Normally, the Δn · d value is set to 0.3 to 0.5 μm according to the first minimum condition of the above equation, but in the present invention, Δn · d = 0.50 μm or more is set, and this Δn is set. The voltage value that minimizes the transmittance is set based on the correlation with the d value, and this is set as the lower limit of the drive voltage range.
In the NW mode, the transmittance becomes maximum at this time. FIG.
A graph of voltage-transmittance characteristics when the cell gap d is set to 4.3 μm in the NW mode is shown in FIG. In the graph (A), when Δn is 0.135, the graph (B) is Δn
Is 0.150, Δn is 0.200 in the graph (C).
Is the case. At this time, each Δn · d value is 0.
It becomes 58 μm, 0.65 μm, and 0.86 μm. As can be seen from the figure, the applied voltage (V) is 2 in any case.
The transmittance (T) (arbitrary unit) begins to change in the vicinity of [v], and this value is the threshold voltage (Vth) for driving the liquid crystal. The voltage that maximizes the transmittance (T) is V = 2.2 [v] in the graph (A) and V = in the graph (B).
2.3 [v], and V = 2.6 [v] in the graph (C). That is, when the Δn · d value is set to be larger than the first minimum value, a bump-shaped portion at the peak of the transmittance curve appears on the right side of the threshold voltage (Vth), and the voltage that maximizes the transmittance (T) is , Both are threshold voltage (Vth)
It is a larger value. In this embodiment, the voltage value that maximizes the transmittance (T) is set as the initial voltage (Vor) as the lower limit of the drive voltage range (VR). Further, from the figure, the upper limit of the drive voltage range (VR) is set to 7 [v].

【0015】このように設定することにより、液晶は常
時駆動された状態となり、初期状態が電圧印加により実
現されるので、電圧無印加状態から他の状態へ移行する
際に生じていたようなリヴァースチルトドメインでの反
応の遅延が無くなる。反応遅延を無くすためには、初期
電圧(Vor)は閾値電圧(Vth)よりも高ければ高いほ
うが効果的である。即ち、Δn・d値を大きくして、最
大透過状態を得る初期電圧(Vor)を高くすることによ
り、他の透過率を示す状態への移行が迅速になる。しか
し、NWモードの場合、一般にコントラスト比は、Δn
・d値が0.4μmから大きくなると低下し始めるた
め、反応遅延とコントラスト比の両方を考慮に入れて、
Δn・d値の設定を適切に行わなければならない。
With this setting, the liquid crystal is always driven, and the initial state is realized by voltage application. Therefore, the reverse state that occurs when the voltage is not applied is changed to another state. The reaction delay in the tilt domain is eliminated. In order to eliminate the reaction delay, it is effective that the initial voltage (Vor) is higher than the threshold voltage (Vth). That is, by increasing the Δn · d value and increasing the initial voltage (Vor) for obtaining the maximum transmission state, the transition to the state exhibiting another transmittance becomes rapid. However, in the NW mode, the contrast ratio is generally Δn
・ Because it begins to decrease when the d value increases from 0.4 μm, taking both the reaction delay and the contrast ratio into consideration,
The Δn · d value must be set appropriately.

【0016】図2に、図1のグラフ(C)に基づいて駆
動電圧域を設定した液晶表示装置に関して、時間(t)
に対する透過率(T)の変化を調べた。電圧をV=Vor
から透過率を0%にする電圧値(V0)へ変化させ、更
に、再び電圧Vorにした時の透過率(T)の時間変化
と、比較のために透過率を80%とする電圧値(V80)
から透過率を0%とする電圧値(V0)へ変化させ、更
に、再び電圧V80にした時の透過率(T)の時間変化と
を測定し、各々のグラフ(I,II)を作成した。グラフ
(I)では、t=130[msec]において、V=V
orからV=V0への変化に伴って透過率もT=90
[%]からT=0[%]へと急峻に変化している。ま
た、グラフ(II)でも、t=130[msec]におい
て、V=V80からV=V0への変化に伴ってT=80
[%]からT=0[%]まで急峻に変化している。これ
より、白(V=Vor)から他の表示色への移行が、白以
外の表示色から他の表示色への移行と同様に迅速に行わ
れているのが分かる。以上のことは、NBモードにおい
ても同様であることは言うまでもない。
FIG. 2 shows the time (t) for the liquid crystal display device in which the drive voltage range is set based on the graph (C) of FIG.
The change in transmittance (T) was investigated. The voltage is V = Vor
To a voltage value (V0) that changes the transmittance to 0%, and then changes the transmittance (T) with time when the voltage Vor is set again, and a voltage value (80%) for comparison for comparison. V80)
Was changed to a voltage value (V0) at which the transmittance was 0%, and the time change of the transmittance (T) when the voltage was again set to V80 was measured to prepare respective graphs (I, II). . In the graph (I), V = V at t = 130 [msec]
The transmittance is also T = 90 with the change from or to V = V0.
There is a sharp change from [%] to T = 0 [%]. Also in the graph (II), at t = 130 [msec], T = 80 with the change from V = V80 to V = V0.
There is a sharp change from [%] to T = 0 [%]. From this, it can be seen that the transition from white (V = Vor) to another display color is performed as quickly as the transition from a display color other than white to another display color. Needless to say, the above is the same in the NB mode.

【0017】以上で、TNモードについて、主に、リバ
ースチルトドメインでの液晶の動作の遅延を防ぐことを
目的として述べてきたが、本発明は、これに限定される
ものではなく、本出願人が既に特願平5−84696、
特願平5−153671、特願平5−157120、特
願平5−169087、特願平5−169088、特願
平5−216441、特願平5−295731、特願平
6−21152、特願平6−92283、特願平6−1
04044、特願平6−207589、特願平6−23
7482で出願済みのものについても適用することがで
きる。即ち、画素容量電極とは別に液晶の配向の指向性
を制御する配向制御電極、液晶の配向方向の異なる領域
の境界を固定するために画素容量電極内に電極不在領域
として形成した配向制御窓、または、液晶層との接触界
面を部分的に隆起または陥没させて液晶の配向の指向性
を付与する配向制御断層などを設け、液晶の配向が複数
方向に分割するように制御することにより、視野角を拡
大した構造においても、本願に基づいて、Δn・d値及
び印加電圧域を設定することにより、液晶が電界に反応
して動作する速度を早くすることができる。
Although the TN mode has been described above mainly for the purpose of preventing the delay of the operation of the liquid crystal in the reverse tilt domain, the present invention is not limited to this, and the present applicant Has already filed Japanese Patent Application No. 5-84696,
Japanese Patent Application No. 5-153671, Japanese Patent Application No. 5-157120, Japanese Patent Application No. 5-169087, Japanese Patent Application No. 5-169088, Japanese Patent Application No. 5-216441, Japanese Patent Application No. 5-295731, Japanese Patent Application No. 6-21152, Japanese Patent Application No. Japanese Patent Application No. 6-92283, Japanese Patent Application No. 6-1
04044, Japanese Patent Application No. 6-207589, Japanese Patent Application No. 6-23
It can also be applied to those already filed in 7482. That is, in addition to the pixel capacitance electrode, an alignment control electrode for controlling the directivity of the alignment of the liquid crystal, an alignment control window formed as an electrode absent region in the pixel capacitance electrode to fix the boundary between regions having different alignment directions of the liquid crystal, Alternatively, by providing an alignment control layer or the like that partially bulges or dents the contact interface with the liquid crystal layer to give directivity of the alignment of the liquid crystal, and controls the alignment of the liquid crystal to be divided into multiple directions, Even in the structure with enlarged corners, the speed at which the liquid crystal operates in response to an electric field can be increased by setting the Δn · d value and the applied voltage range based on the present application.

【0018】[0018]

【発明の効果】本発明で、液晶のΔn・d値をGooc
h and Tarryの式におけるファーストミニマム
条件から得られる値よりも大きく設定し、駆動電圧域の
下限を液晶を駆動する閾値よりも高くすることにより、
黒あるいは白の表示においても電圧無印加状態となるこ
とが無くなり、液晶が常時駆動された状態になる。この
ため、液晶が電圧無印加状態になることがなくなり、他
の電圧印加状態への移行の際に、液晶の立ち上がり方向
の違いによる応答速度の差が無くなり、残像、あるい
は、コントラスト比の低下が防がれ、表示品位が向上す
る。また、電圧の印加時に最大あるいは最小の透過状態
を実現しているので、単に駆動電圧域を縮小することに
よるコントラスト比の低下も無い。
According to the present invention, the Δn · d value of the liquid crystal can be calculated by
By setting the value higher than the value obtained from the first minimum condition in the expression of h and Tarry and setting the lower limit of the driving voltage range higher than the threshold value for driving the liquid crystal,
In black or white display, no voltage is applied, and the liquid crystal is always driven. Therefore, the liquid crystal is not applied with no voltage, and when the voltage is changed to another voltage applied state, the difference in the response speed due to the difference in the rising direction of the liquid crystal is eliminated, and the afterimage or the decrease in the contrast ratio is prevented. The display quality is improved. Further, since the maximum or minimum transmission state is realized when a voltage is applied, the contrast ratio is not reduced by simply reducing the driving voltage range.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の作用効果を表す液晶表示装置の電圧−
透過率の特性図である。
FIG. 1 is a voltage of a liquid crystal display device showing the effect of the present invention.
It is a characteristic view of transmittance.

【図2】本発明の作用効果を表す液晶表示装置の時間−
透過率の特性図である。
FIG. 2 is a time chart of a liquid crystal display device showing the function and effect of the present invention.
It is a characteristic view of transmittance.

【図3】液晶表示装置の断面図である。FIG. 3 is a cross-sectional view of a liquid crystal display device.

【図4】従来の液晶表示装置の電圧−透過率の特性図で
ある。
FIG. 4 is a voltage-transmittance characteristic diagram of a conventional liquid crystal display device.

【図5】従来の液晶表示装置の時間−透過率の特性図で
ある。
FIG. 5 is a characteristic diagram of time-transmittance of a conventional liquid crystal display device.

【符号の説明】[Explanation of symbols]

T 透過率 VR 駆動電圧域 Vor 初期電圧 Vth 液晶を駆動する閾値電圧 V0 透過率を0%とする電圧 V80 透過率を80%とする電圧 V90 透過率を90%とする電圧 10,20 基板 11,21 透明電極 30 液晶層 31 電界 T Transmittance VR Drive voltage range Vor Initial voltage Vth Threshold voltage for driving liquid crystal V0 Voltage with 0% transmittance V80 Voltage with 80% transmittance V90 Voltage with 90% transmittance 10,20 Substrate 11, 21 transparent electrode 30 liquid crystal layer 31 electric field

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電極基板間に液晶が封入され、表示画素
ごとに液晶駆動用の画素容量が構成され、前記画素容量
に電圧を印加して対応する液晶の透過特性を変化する液
晶表示装置において、 前記液晶の複屈折率Δnと液晶層の厚さdとの積Δn・
d値を 【数1】 (上式において、u=πdΔn/θλであり、θは液晶
のねじれ角、λは光の波長である。)で表される式にお
けるファーストミニマム条件から得られる値よりも大き
く設定するとともに、これに従って前記画素容量へ印加
する電圧域の下限を、透過率を最大あるいは最小にする
値に設定したことを特徴とする液晶表示装置。
1. A liquid crystal display device in which liquid crystal is sealed between electrode substrates, a liquid crystal driving pixel capacitance is formed for each display pixel, and a transmission characteristic of the corresponding liquid crystal is changed by applying a voltage to the pixel capacitance. , The product Δn of the birefringence Δn of the liquid crystal and the thickness d of the liquid crystal layer
Let the d value be (In the above equation, u = πdΔn / θλ, θ is the twist angle of the liquid crystal, and λ is the wavelength of the light.) In addition to the value obtained from the first minimum condition in the equation, According to the above, the lower limit of the voltage range applied to the pixel capacitance is set to a value that maximizes or minimizes the transmittance.
JP4864495A 1995-03-08 1995-03-08 Liquid crystal display device Pending JPH08248384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4864495A JPH08248384A (en) 1995-03-08 1995-03-08 Liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4864495A JPH08248384A (en) 1995-03-08 1995-03-08 Liquid crystal display device

Publications (1)

Publication Number Publication Date
JPH08248384A true JPH08248384A (en) 1996-09-27

Family

ID=12809081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4864495A Pending JPH08248384A (en) 1995-03-08 1995-03-08 Liquid crystal display device

Country Status (1)

Country Link
JP (1) JPH08248384A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507546B1 (en) * 2001-09-26 2005-08-09 샤프 가부시키가이샤 Liquid crystal display device
JP2006145566A (en) * 2004-11-16 2006-06-08 Nec Lcd Technologies Ltd Liquid crystal display
US7084846B2 (en) 2000-03-29 2006-08-01 Sharp Kabushiki Kaisha Liquid crystal display device
KR100936960B1 (en) * 2003-06-02 2010-01-14 엘지디스플레이 주식회사 Transflective liquid crystal display device
JP2012242798A (en) * 2011-05-24 2012-12-10 Seiko Epson Corp Correction voltage setup method, video processing method, correction voltage setup device, video processing circuit, liquid crystal display device, and electronic apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7084846B2 (en) 2000-03-29 2006-08-01 Sharp Kabushiki Kaisha Liquid crystal display device
KR100507546B1 (en) * 2001-09-26 2005-08-09 샤프 가부시키가이샤 Liquid crystal display device
KR100936960B1 (en) * 2003-06-02 2010-01-14 엘지디스플레이 주식회사 Transflective liquid crystal display device
JP2006145566A (en) * 2004-11-16 2006-06-08 Nec Lcd Technologies Ltd Liquid crystal display
JP2012242798A (en) * 2011-05-24 2012-12-10 Seiko Epson Corp Correction voltage setup method, video processing method, correction voltage setup device, video processing circuit, liquid crystal display device, and electronic apparatus

Similar Documents

Publication Publication Date Title
US6700558B1 (en) Liquid crystal display device and displaying method thereof
US7532183B2 (en) Liquid crystal display device and its drive method
JP3311184B2 (en) Liquid crystal display
US20030160750A1 (en) Liquid crystal display device and driving method of the same
JP3870954B2 (en) Liquid crystal panel driving method, liquid crystal device and electronic apparatus
JP2000338464A (en) Display element, liquid crystal display element, liquid crystal display device, and driving method of liquid crystal display device
US6577289B1 (en) Liquid crystal device and display apparatus including the device
KR19990007505A (en) Liquid crystal display
KR20020097018A (en) Method of driving liquid crystal display
JPH08248384A (en) Liquid crystal display device
US20100231567A1 (en) Liquid crystal display
JP2001311934A (en) Liquid crystal element
US5604616A (en) Dual function electro-optical display device exhibiting a bistable image or a fugitive image depending the applied voltage
US6909412B2 (en) Method for driving liquid crystal of thin film transistor liquid crystal display
EP1246158B1 (en) Display unit for displaying moving pictures
US5555110A (en) Method of driving a ferroelectric liquid crystal display
JP2001318658A (en) Liquid crystal display device
JP4566579B2 (en) Driving method of liquid crystal display device
US6600545B1 (en) Twist-nematic liquid-crystal display with electrodes surrounded by background
KR100493351B1 (en) Liquid crystal device
KR20010012186A (en) Display device
KR100695302B1 (en) Driving method for the lcd
JPH11153814A (en) Liquid crystal display element
EP0962804A1 (en) Anti-ferroelectric liquid crystal display
JPH06118384A (en) Ferroelectric liquid crystal panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 19981116

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20000127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20001128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20001227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20010209

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20011016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20011115

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20020130

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20020222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20031208