JPH08248005A - Photothermal displacement measuring apparatus - Google Patents

Photothermal displacement measuring apparatus

Info

Publication number
JPH08248005A
JPH08248005A JP7048113A JP4811395A JPH08248005A JP H08248005 A JPH08248005 A JP H08248005A JP 7048113 A JP7048113 A JP 7048113A JP 4811395 A JP4811395 A JP 4811395A JP H08248005 A JPH08248005 A JP H08248005A
Authority
JP
Japan
Prior art keywords
sample
photothermal displacement
light
photothermal
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7048113A
Other languages
Japanese (ja)
Inventor
Tsutomu Morimoto
勉 森本
Shingo Suminoe
伸吾 住江
Hiroyuki Takamatsu
弘行 高松
Naoyuki Yoshida
尚幸 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7048113A priority Critical patent/JPH08248005A/en
Publication of JPH08248005A publication Critical patent/JPH08248005A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To measure the photothermal displacement regardless of the surface conditions of a sample. CONSTITUTION: When the photothermal displacement of a sample 5 is measured using a measuring light 6 obtained by irradiating the sample 5 with an exciting light 3, the measuring part of the sample 5 is irradiated with ultraviolet rays 12 having predetermined energy, independently from the exciting light 3 and the measuring light 6, by means of an ultraviolet lamp 10 and an optical fiber 11. With such arrangement, the photothermal displacement can be measured regardless of the surface conditions of the sample.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,光熱変位測定装置に係
り,例えば試料の結晶欠陥評価等に用いられる光熱変位
の測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photothermal displacement measuring device, and more particularly to a photothermal displacement measuring device used for evaluating crystal defects of a sample.

【0002】[0002]

【従来の技術】試料に周期的に強度変調した光を照射す
ると,試料はこの光の吸収により発熱し,試料表面に熱
膨張振動を生じる。この熱膨張振動を計測することによ
り試料の熱物性量を評価する手法は,光熱変位法ないし
は光音響法として知られている。この熱膨張量は試料の
熱伝導率,熱膨張率などの熱物性定数と密接に関連して
いて,またそれらは試料の結晶欠陥密度などの物理的な
状態を反映している。よって,光熱変位法は試料の結晶
欠陥の評価に数多く適用されている。また,試料へのイ
オン注入量の増加と共に試料の結晶欠陥が増加するとい
う点に着目して,光熱変位法をイオン注入量の測定に用
いることも考えられている(Evaluation o
f Subsurface Ion Implant
Damage by Photothermal Di
splacement Measurement,H.
Takamatsu,etc.,Mat.Res.So
c.Symp.Proc.Vol 279(1993)
PP261−266)。
2. Description of the Related Art When a sample is irradiated with light whose intensity is modulated periodically, the sample absorbs this light to generate heat, which causes thermal expansion vibration on the surface of the sample. A method for evaluating the thermophysical property quantity of a sample by measuring the thermal expansion vibration is known as a photothermal displacement method or a photoacoustic method. This thermal expansion amount is closely related to thermophysical constants such as the thermal conductivity and thermal expansion coefficient of the sample, and they reflect the physical state of the sample such as crystal defect density. Therefore, the photothermal displacement method is widely applied to the evaluation of crystal defects in samples. Further, it has been considered to use the photothermal displacement method for measuring the ion implantation amount, focusing on the fact that the crystal defects of the sample increase as the ion implantation amount into the sample increases (Evaluation o.
f Subsurface Ion Implant
Damage by Photothermal Di
placement measurement, H.S.
Takamatsu, etc. , Mat. Res. So
c. Symp. Proc. Vol 279 (1993)
PP 261-266).

【0003】図8は,このような従来の光熱変位測定装
置A0の一例における概略構成を示す模式図である。図
中,励起レーザ1は発振器2によって,強度変調された
励起光3を発生する。励起光3はビームスプリッタ4に
より試料5に照射され,その表面に光熱変位(Phot
o−Acoustic−Displacement:P
AD)が誘起される。光熱変位は,測定光6の位相を変
化させるので,干渉計7によってその振幅が検出され
る。干渉計7によって電気信号に変換された光熱変位は
信号処理回路8によって増幅ならびにノイズ除去され,
コンピュータ9に伝送される。干渉計7としては,周知
のホモダイン干渉計やヘテロダイン干渉計が用いられ
る。ここで,光熱変位の現象は物理的に次のように理解
されている。試料5のバンドキャップより大きなエネル
ギをもつ励起光3の照射によって電子と正孔とからなる
プラズマが発生する。発生したプラズマは試料5中を拡
散しながら再結合し,熱エネルギに変換される。発生し
た熱もまた拡散していく。このときの熱拡散領域の大き
さが試料5の熱膨張量に反映され,光熱変位の現象とし
て観測される。そして,試料5に結晶欠陥があると,熱
伝導率が低下するので,熱拡散領域が狭くなってその温
度が上昇し,その結果光熱変位は大きくなる。従って,
この装置A0によって光熱変位を計測すれば,試料5の
結晶性を評価できる。
FIG. 8 is a schematic diagram showing a schematic configuration of an example of such a conventional photothermal displacement measuring device A0. In the figure, a pump laser 1 generates an intensity-modulated pump light 3 by an oscillator 2. The excitation light 3 is irradiated onto the sample 5 by the beam splitter 4, and its surface is subjected to photothermal displacement (Phot
o-Acoustic-Displacement: P
AD) is induced. Since the photothermal displacement changes the phase of the measuring light 6, its amplitude is detected by the interferometer 7. The photothermal displacement converted into an electric signal by the interferometer 7 is amplified and noise-removed by the signal processing circuit 8,
It is transmitted to the computer 9. A well-known homodyne interferometer or heterodyne interferometer is used as the interferometer 7. Here, the phenomenon of photothermal displacement is physically understood as follows. A plasma composed of electrons and holes is generated by irradiation with the excitation light 3 having an energy larger than that of the band cap of the sample 5. The generated plasma is recombined while diffusing in the sample 5 and converted into heat energy. The heat generated also diffuses. The size of the thermal diffusion region at this time is reflected in the thermal expansion amount of the sample 5, and is observed as a phenomenon of photothermal displacement. When the sample 5 has a crystal defect, the thermal conductivity is lowered, and the thermal diffusion region is narrowed and the temperature thereof is increased, resulting in a large photothermal displacement. Therefore,
If the photothermal displacement is measured by this device A0, the crystallinity of the sample 5 can be evaluated.

【0004】[0004]

【発明が解決しようとする課題】上記したような従来の
光熱変位測定装置A0では,次のような問題点があっ
た。 (1)プラズマの拡散領域は試料5の表面状態に大きく
影響される。そのため,試料5の結晶性が同じであって
も,表面の状態が化学的に不安定なときは,表面が再結
合中心となってプラズマ拡散長は短くなる。従って,表
面の状態が化学的に不安定なときは,安定なときに比べ
て熱拡散領域は狭まり,光熱変位は大きくなってしま
う。この現象を図2(a),(b)に示した。このこと
は,例えば試料5の表面に自然酸化膜が成長していくと
いったような表面の変化により,試料5の結晶性に関わ
らず測定される光熱変位量は経時変化をしてしまうこと
を意味する。 (2)また,試料5の結晶性が良くなり,再結合中心と
なる結晶欠陥が少なくなると,プラズマは表面で再結合
する度合いが増えてしまう。そのため,その時の光熱変
位は結晶欠陥よりも表面の状態を強く反映するようにな
る。従って,上記従来装置A0では,試料の表面状態に
より光熱変位の測定値がバラつき,ダメージの少ない試
料の結晶性を正確に評価することができなくなる。本発
明は,このような従来の技術における課題を解決するた
めに,光熱変位測定装置を改良し,試料表面の状態の影
響を受けることなく光熱変位を測定し得る光熱変位測定
装置を提供することを目的とするものである。
The conventional photothermal displacement measuring device A0 as described above has the following problems. (1) The plasma diffusion region is greatly affected by the surface state of the sample 5. Therefore, even if the sample 5 has the same crystallinity, when the surface state is chemically unstable, the surface becomes a recombination center and the plasma diffusion length becomes short. Therefore, when the surface state is chemically unstable, the thermal diffusion region becomes narrower and the photothermal displacement becomes larger than when it is stable. This phenomenon is shown in FIGS. 2 (a) and 2 (b). This means that due to surface changes such as the growth of a natural oxide film on the surface of the sample 5, the measured photothermal displacement amount changes with time regardless of the crystallinity of the sample 5. To do. (2) Further, when the crystallinity of the sample 5 is improved and the number of crystal defects that are recombination centers is reduced, the degree of recombination of plasma on the surface increases. Therefore, the photothermal displacement at that time strongly reflects the surface condition rather than crystal defects. Therefore, in the above conventional apparatus A0, the measured value of the photothermal displacement varies depending on the surface condition of the sample, and it becomes impossible to accurately evaluate the crystallinity of the sample with less damage. In order to solve the above problems in the conventional technique, the present invention provides an improved photothermal displacement measuring device capable of measuring photothermal displacement without being affected by the condition of the sample surface. The purpose is.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に本発明は,試料に光を照射し,それによる上記試料の
光熱変位を測定する光熱変位測定装置において,上記光
とは別個に所定のエネルギを有する電磁波を上記試料の
光熱変位の測定部分に照射する電磁波照射機構を具備し
てなることを特徴とする光熱変位測定装置として構成さ
れている。さらには,上記電磁波が紫外線である光熱変
位測定装置である。
In order to achieve the above object, the present invention provides a photothermal displacement measuring apparatus for irradiating a sample with light and measuring the photothermal displacement of the sample by the light. The photothermal displacement measuring apparatus is provided with an electromagnetic wave irradiation mechanism for irradiating the measurement portion of the photothermal displacement of the sample with the electromagnetic wave having the energy of 1. Furthermore, it is a photothermal displacement measuring device in which the electromagnetic waves are ultraviolet rays.

【0006】[0006]

【作用】本発明によれば,試料に光が照射され,それに
よる上記試料の光熱変位が測定されるに際し,電磁波照
射機構によって,上記光とは別個に所定のエネルギを有
する電磁波が上記試料の光熱変位の測定部分に照射され
る。これにより,試料表面でのプラズマの再結合速度が
小さくなるため,試料表面の状態によるプラズマ拡散長
の変化がなくなる。その結果,試料表面の状態にかかわ
らず光熱変位を精度良く測定できるようになる。
According to the present invention, when the sample is irradiated with light and the photothermal displacement of the sample due to the irradiation is measured, the electromagnetic wave irradiation mechanism separates an electromagnetic wave having a predetermined energy from the light by the electromagnetic wave irradiation mechanism. The photothermal displacement measurement area is irradiated. As a result, the recombination velocity of the plasma on the sample surface is reduced, so that the plasma diffusion length does not change depending on the state of the sample surface. As a result, the photothermal displacement can be accurately measured regardless of the state of the sample surface.

【0007】[0007]

【実施例】以下添付図面を参照して,本発明を具体化し
た実施例につき説明し,本発明の理解に供する。尚,以
下の実施例は本発明を具体化した一例であって,本発明
の技術的範囲を限定する性格のものではない。ここに,
図1は本発明の一実施例に係る光熱変位測定装置A1の
概略構成を示す模式図,図2は試料表面状態と光熱変位
との関係を示す説明図,図3は光熱変位量の経時変化を
示す説明図,図4は光熱変位量とイオン注入量との関係
を示す説明図,図5は本発明の他の実施例に係る光熱変
位測定装置A2の概略構成を示す模式図,図6は光偏向
法の説明図,図7はミラージュ法の説明図である。尚,
図8に示した従来の光熱変位測定装置A0の一例におけ
る概略構成を示す模式図と共通する要素には同一符号を
使用する。本発明の一実施例に係る光熱変位測定装置A
1は,試料に光を照射し,それによる上記試料の光熱変
位を測定する点で従来例と同様である。しかし,本実施
例では,上記光とは別個に所定のエネルギを有する電磁
波を上記試料の光熱変位の測定部分に照射する電磁波照
射機構を具備してなる点で従来例と異なる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments embodying the present invention will be described below with reference to the accompanying drawings for the understanding of the present invention. It should be noted that the following embodiments are examples of embodying the present invention, and are not intended to limit the technical scope of the present invention. here,
FIG. 1 is a schematic diagram showing a schematic configuration of a photothermal displacement measuring apparatus A1 according to an embodiment of the present invention, FIG. 2 is an explanatory diagram showing a relationship between a sample surface state and photothermal displacement, and FIG. 3 is a temporal change of photothermal displacement amount. 6 is an explanatory view showing the relationship between the photothermal displacement amount and the ion implantation amount, FIG. 5 is a schematic diagram showing the schematic configuration of a photothermal displacement measuring device A2 according to another embodiment of the present invention, and FIG. Is an illustration of the light deflection method, and FIG. 7 is an illustration of the mirage method. still,
The same symbols are used for the elements common to the schematic diagram showing the schematic configuration in the example of the conventional photothermal displacement measuring apparatus A0 shown in FIG. Photothermal displacement measuring device A according to one embodiment of the present invention
1 is similar to the conventional example in that the sample is irradiated with light and the photothermal displacement of the sample due to the irradiation is measured. However, this embodiment is different from the conventional example in that an electromagnetic wave irradiation mechanism that irradiates an electromagnetic wave having a predetermined energy to the measurement portion of the photothermal displacement of the sample is provided separately from the light.

【0008】以下,本装置A1について,図1を参照し
てさらに詳しく説明する。図1に示すごとく,励起レー
ザ1は発振器2によって,強度変調された励起光3(光
に相当)を発生する。励起光3はビームスプリッタ4に
より試料5に照射され,表面に光熱変位PADが誘起さ
れる。光熱変位は測定光6の位相を変化させるので,干
渉計7によってその振幅が検出される。干渉計7によっ
て電気信号に変換された光熱変位は信号処理回路8によ
って増幅並びにノイズ除去され,コンピュータ9に伝送
される。ここまでは,従来装置A0と同様であるが,本
装置A1では,さらに紫外線ランプ10と紫外線導光フ
ァイバ11とからなる紫外線照射機構(電磁波照射機構
に相当)が付加され,これにより紫外線12(電磁波に
相当)が試料5に照射される。即ち紫外線ランプ10に
よって発生した紫外線12は紫外線導光ファイバ11に
より,光熱変位が生じている測定点に向けられる。紫外
線ランプ10は,コンピュータ9によりオン,オフが制
御できるため,測定に必要なときにだけ,試料5に紫外
線12を照射することができる。
The device A1 will be described below in more detail with reference to FIG. As shown in FIG. 1, a pump laser 1 generates pump light 3 (corresponding to light) whose intensity is modulated by an oscillator 2. The excitation light 3 is applied to the sample 5 by the beam splitter 4, and the photothermal displacement PAD is induced on the surface. Since the photothermal displacement changes the phase of the measuring light 6, its amplitude is detected by the interferometer 7. The photothermal displacement converted into an electric signal by the interferometer 7 is amplified and noise-removed by the signal processing circuit 8 and transmitted to the computer 9. Up to this point, the apparatus is the same as the conventional apparatus A0, but in the apparatus A1, an ultraviolet irradiation mechanism (corresponding to an electromagnetic wave irradiation mechanism) including an ultraviolet lamp 10 and an ultraviolet light guide fiber 11 is further added, whereby an ultraviolet ray 12 ( The sample 5 is irradiated with (corresponding to electromagnetic waves). That is, the ultraviolet light 12 generated by the ultraviolet lamp 10 is directed by the ultraviolet light guide fiber 11 to the measurement point where the photothermal displacement occurs. Since the ultraviolet lamp 10 can be turned on and off by the computer 9, the sample 5 can be irradiated with the ultraviolet rays 12 only when the measurement is necessary.

【0009】以下,本装置A1の測定原理について説明
する。シリコンに紫外線を照射させたときの電子・正孔
の挙動について,Mechanism of Ultr
aviolet Irradion Effecton
Si−SiO2 Interface in Sil
icon Wafers,K.Katayama,et
c.,Jpn.J.Appl.Phys.Vol.31
(1992)pt.2,No8Aにより述べられてい
る。ここでは,シリコンSiの価電子帯からシリコン酸
化膜SiO2 の伝導体まで(エネルギギャップは4.2
eVである)を励起することのできる紫外線(フォトン
エネルギで4.9eVの紫外線)の照射により,励起電
子が自然酸化膜表面,すなわち,シリコンと接していな
い側の面に移動し,大気中の酸素分子と結合し自然酸化
膜表面に付着し帯電する。同時に,自然酸化膜中の電子
準位(slow states)にも電子が移動する。
そのため,シリコンと自然酸化膜との間の再結合中心と
なる準位(fast states)は高いエネルギ準
位へとシフトし,その準位に電子が存在しなくなる。そ
の結果,試料の表面再結合速度は小さくなる。
The measurement principle of the device A1 will be described below. Regarding the behavior of electrons and holes when silicon is irradiated with ultraviolet rays, Mechanism of Ultr
abiolet Irradion Effecton
Si-SiO 2 Interface in Sil
icon Wafers, K .; Katayama, et
c. , Jpn. J. Appl. Phys. Vol. 31
(1992) pt. 2, No. 8A. Here, from the valence band of silicon Si to the conductor of the silicon oxide film SiO 2 (energy gap is 4.2
By the irradiation of ultraviolet rays (photon energy is 4.9 eV of ultraviolet rays) capable of exciting (eV), the excited electrons move to the surface of the native oxide film, that is, the surface not in contact with silicon, It bonds with oxygen molecules and adheres to the surface of the natural oxide film to become charged. At the same time, the electrons also move to the electron states (slow states) in the natural oxide film.
Therefore, the fast states, which are the recombination centers between the silicon and the native oxide film, shift to a higher energy level, and no electrons are present at that level. As a result, the surface recombination rate of the sample decreases.

【0010】上記文献の結果を応用すれば,紫外線の照
射により,例えばシリコンウエハである試料の表面再結
合速度が小さくなることになり,光熱変位を起こさせる
ための励起光照射によって発生するプラズマは試料表面
で再結合しにくくなる。従って,試料表面の状態でプラ
ズマ拡散長が変化しなくなるため,試料表面の状態の影
響を受けることなく光熱変位を測定できるようになる。
図3,図4は,本装置A1を使用して得られる測定結果
を示したものである。図3において,試料5は洗浄後の
シリコンウエハであり,横軸は洗浄後からの経過時間,
縦軸は光熱変位量を表している。破線は,紫外線ランプ
10をオフ状態とした場合の測定結果であり,従来例と
同一結果が得られる。実線は測定中に紫外線ランプ10
をオン状態にした場合の測定結果である。従来例では,
洗浄後のシリコンウエハ表面の状態の変化によって光熱
変位量が経時変化するのに対し,光熱変位測定時に紫外
線12を試料5に照射することによって,試料表面の状
態の変化にかかわらず光熱変位が安定して測定されてい
る様子がわかる。
If the results of the above-mentioned literature are applied, the surface recombination velocity of a sample, which is, for example, a silicon wafer, decreases due to the irradiation of ultraviolet rays, and the plasma generated by the irradiation of excitation light for causing photothermal displacement is generated. Recombination becomes difficult on the sample surface. Therefore, the plasma diffusion length does not change with the state of the sample surface, and the photothermal displacement can be measured without being affected by the state of the sample surface.
3 and 4 show the measurement results obtained by using the apparatus A1. In FIG. 3, sample 5 is a silicon wafer after cleaning, the horizontal axis is the elapsed time after cleaning,
The vertical axis represents the amount of photothermal displacement. The broken line shows the measurement result when the ultraviolet lamp 10 is turned off, and the same result as the conventional example is obtained. Solid line is UV lamp 10 during measurement
It is a measurement result when is turned on. In the conventional example,
While the amount of photothermal displacement changes with time due to the change in the state of the silicon wafer surface after cleaning, the photothermal displacement is stable regardless of the change in the state of the sample surface by irradiating the sample 5 with ultraviolet rays 12 during the measurement of the photothermal displacement. You can see how it is being measured.

【0011】また,図4において,試料5はシリコン表
面層にイオンを注入することにより,低密度の結晶欠陥
を形成したものである。破線は,紫外線ランプ10をオ
フ状態とした場合であり,実線はオン状態とした場合で
の測定結果である。イオン注入量が少ないほど結晶欠陥
が少ないことから,本装置A1の紫外線ランプ10をオ
ンすることにより,従来測定できなかった低密度の結晶
欠陥が測定できるようになったことがわかる。ところ
で,上記実施例では,紫外線12を試料5に励起光3の
入射方向からのみ照射しているが,本発明の他の実施例
として図5に示す装置A2のように,同時に試料5の反
対側から照射を行ってもよい。その場合は,試料の裏側
の表面の状態の影響をも少なくすることができる。尚,
上記2つの実施例では,いずれも電磁波としては紫外線
12を使用しているが,実使用に際しては,紫外線より
フォトンエネルギが大きい電磁波,例えば軟X線を使用
することとしても良い。尚,上記2つの実施例では,い
ずれも紫外線12を試料5に斜め方向から照射している
が,実使用に際しては励起光3と同軸に入射することと
しても良い。尚,上記2つの実施例では,いずれも紫外
線源として紫外線ランプ10を用いているが,実使用に
際しては,レーザ光源を用いて励起光3と同軸にもしく
は非同軸に照射することとしても良い。
Further, in FIG. 4, sample 5 is one in which low density crystal defects are formed by implanting ions into the silicon surface layer. The broken line shows the measurement result when the ultraviolet lamp 10 is in the off state, and the solid line shows the measurement result when the ultraviolet lamp is in the on state. Since the smaller the amount of ion implantation, the smaller the number of crystal defects, it can be seen that by turning on the ultraviolet lamp 10 of the present apparatus A1, it becomes possible to measure low-density crystal defects that could not be measured conventionally. By the way, in the above-mentioned embodiment, the ultraviolet rays 12 are irradiated to the sample 5 only from the incident direction of the excitation light 3. However, as another embodiment of the present invention, as in the apparatus A2 shown in FIG. Irradiation may be performed from the side. In that case, the influence of the state of the back surface of the sample can be reduced. still,
In each of the above two embodiments, the ultraviolet ray 12 is used as the electromagnetic wave, but in actual use, an electromagnetic wave having a larger photon energy than the ultraviolet ray, for example, soft X-ray may be used. In each of the above two embodiments, the ultraviolet light 12 is applied to the sample 5 from an oblique direction, but in actual use, it may be incident on the excitation light 3 coaxially. In each of the above two embodiments, the ultraviolet lamp 10 is used as the ultraviolet light source, but in actual use, the laser light source may be used to irradiate the excitation light 3 coaxially or non-coaxially.

【0012】尚,上記2つの実施例では,いずれも干渉
計7を用いて光熱変位を測定しているが,実使用に際し
ては,光熱変位を測定する他の方法,例えば図6に示す
ような光偏向法や,図7に示すようなミラージュ法を用
いても何ら支障はない。ここで,光偏向法とは,試料表
面の光熱変位量の変化を測定光の反射角の変化量として
検出する方法をいい,またミラージュ法とは,試料表面
の屈折率勾配の変化による測定光の偏向を検出する方法
をいう。尚,上記2つの実施例では,特に述べていない
が,いずれも励起光3と測定光6とを別々の光源から照
射してもよいし,同一光源から照射することとしても良
い。
In each of the above two embodiments, the photothermal displacement is measured by using the interferometer 7, but in actual use, another method for measuring the photothermal displacement, for example, as shown in FIG. There is no problem even if the light deflection method or the mirage method as shown in FIG. 7 is used. Here, the optical deflection method is a method of detecting a change in the photothermal displacement amount of the sample surface as a change amount of the reflection angle of the measuring light, and the mirage method is the method of detecting the measuring light due to the change in the refractive index gradient of the sample surface. The method of detecting the deflection of Although not particularly described in the above two embodiments, the excitation light 3 and the measurement light 6 may be emitted from different light sources or may be emitted from the same light source.

【0013】[0013]

【発明の効果】本発明に係る光熱変位の測定装置は,上
記したように構成されているため,試料表面でのプラズ
マの再結合速度が小さくなり,試料表面の状態によるプ
ラズマ拡散長の変化がなくなる。その結果,試料表面の
状態の影響を受けることなく光熱変位を測定できるよう
になる。
Since the photothermal displacement measuring apparatus according to the present invention is configured as described above, the recombination rate of plasma on the sample surface becomes small, and the change of the plasma diffusion length due to the state of the sample surface changes. Disappear. As a result, the photothermal displacement can be measured without being affected by the condition of the sample surface.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例に係る光熱変位測定装置A
1の概略構成を示す模式図。
FIG. 1 is a photothermal displacement measuring device A according to an embodiment of the present invention.
1 is a schematic diagram showing a schematic configuration of 1.

【図2】 試料表面状態と光熱変位との関係を示す説明
図。
FIG. 2 is an explanatory view showing a relationship between a sample surface state and photothermal displacement.

【図3】 光熱変位量の経時変化を示す説明図。FIG. 3 is an explanatory diagram showing changes over time in the amount of photothermal displacement.

【図4】 光熱変位量とイオン注入量との関係を示す説
明図。
FIG. 4 is an explanatory diagram showing a relationship between a photothermal displacement amount and an ion implantation amount.

【図5】 本発明の他の実施例に係る光熱変位測定装置
A2の概略構成を示す模式図。
FIG. 5 is a schematic diagram showing a schematic configuration of a photothermal displacement measuring device A2 according to another embodiment of the present invention.

【図6】 光偏向法の説明図。FIG. 6 is an explanatory diagram of a light deflection method.

【図7】 ミラージュ法の説明図。FIG. 7 is an explanatory diagram of a mirage method.

【図8】 従来の光熱変位測定装置A0の一例における
概略構成を示す模式図。
FIG. 8 is a schematic diagram showing a schematic configuration of an example of a conventional photothermal displacement measuring device A0.

【符号の説明】[Explanation of symbols]

A1,A2…光熱変位測定装置 1…励起レーザ 2…発振器 3…励起光(光に相当) 4…ビームスプリッタ 5…試料 6…測定光 7…干渉計 8…信号処理回路 9…コンピュータ 10…紫外線照ランプ(電磁波照射機構の一部に相当) 11…紫外線導光ファイバ(電磁波照射機構の一部に相
当) 12…紫外線(電磁波に相当)
A1, A2 ... Photothermal displacement measuring device 1 ... Excitation laser 2 ... Oscillator 3 ... Excitation light (equivalent to light) 4 ... Beam splitter 5 ... Sample 6 ... Measurement light 7 ... Interferometer 8 ... Signal processing circuit 9 ... Computer 10 ... Ultraviolet light Illumination lamp (corresponding to part of electromagnetic wave irradiation mechanism) 11 ... Ultraviolet light guide fiber (corresponding to part of electromagnetic wave irradiation mechanism) 12 ... Ultraviolet light (corresponding to electromagnetic wave)

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 尚幸 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 ─────────────────────────────────────────────────── ─── Continued Front Page (72) Inventor Naoyuki Yoshida 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel Works, Ltd. Kobe Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 試料に光を照射し,それによる上記試料
の光熱変位を測定する光熱変位測定装置において,上記
光とは別個に所定のエネルギを有する電磁波を上記試料
の光熱変位の測定部分に照射する電磁波照射機構を具備
してなることを特徴とする光熱変位測定装置。
1. A photothermal displacement measuring device for irradiating a sample with light and measuring the photothermal displacement of the sample thereby, in which an electromagnetic wave having a predetermined energy is provided separately from the light to a portion for measuring the photothermal displacement of the sample. An apparatus for measuring photothermal displacement, comprising an electromagnetic wave irradiation mechanism for irradiation.
【請求項2】 上記電磁波が紫外線である請求項1記載
の光熱変位測定装置。
2. The photothermal displacement measuring device according to claim 1, wherein the electromagnetic waves are ultraviolet rays.
JP7048113A 1995-03-08 1995-03-08 Photothermal displacement measuring apparatus Pending JPH08248005A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7048113A JPH08248005A (en) 1995-03-08 1995-03-08 Photothermal displacement measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7048113A JPH08248005A (en) 1995-03-08 1995-03-08 Photothermal displacement measuring apparatus

Publications (1)

Publication Number Publication Date
JPH08248005A true JPH08248005A (en) 1996-09-27

Family

ID=12794269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7048113A Pending JPH08248005A (en) 1995-03-08 1995-03-08 Photothermal displacement measuring apparatus

Country Status (1)

Country Link
JP (1) JPH08248005A (en)

Similar Documents

Publication Publication Date Title
US5074669A (en) Method and apparatus for evaluating ion implant dosage levels in semiconductors
US5228776A (en) Apparatus for evaluating thermal and electrical characteristics in a sample
US4632561A (en) Evaluation of surface and subsurface characteristics of a sample
US5042952A (en) Method and apparatus for evaluating surface and subsurface and subsurface features in a semiconductor
EP0165711B1 (en) Method and apparatus for detecting thermal waves
US4634290A (en) Method and apparatus for detecting thermal waves
US6052185A (en) Method and apparatus for measuring the concentration of ions implanted in semiconductor materials
JP2002527770A (en) Method and apparatus for improved film thickness measurement
JPH11511240A (en) Optical techniques for measuring properties of changed materials.
JPH0347704B2 (en)
US6535285B1 (en) Combination thermal wave and optical spectroscopy measurement system
US7212288B2 (en) Position modulated optical reflectance measurement system for semiconductor metrology
KR100214232B1 (en) Method and apparatus for determining crystal face orientation
JPH06132373A (en) Lifetime evaluation method and device of semiconductor material
US4755049A (en) Method and apparatus for measuring the ion implant dosage in a semiconductor crystal
JPH08248005A (en) Photothermal displacement measuring apparatus
JP3730289B2 (en) Defect measuring method and apparatus for semiconductor wafer
JP3674738B2 (en) Minority carrier lifetime measurement device
US8111399B2 (en) System and method for performing photothermal measurements and relaxation compensation
JP4057464B2 (en) Etching monitoring apparatus and etching monitoring method
JP2961843B2 (en) Evaluation method of etching damage
Kondilis Imperfections and optical absorption in glow-discharge a− S i: H films: A study in the visible and near-infrared region
JPH1126531A (en) Lifetime measuring device of few carriers
JPH11101840A (en) Heating system
JPH10206338A (en) Foreign matter inspecting method and foreign matter inspecting device