JPH08246045A - Method for measuring ferritic nucleation velocity and rate of growth - Google Patents

Method for measuring ferritic nucleation velocity and rate of growth

Info

Publication number
JPH08246045A
JPH08246045A JP4328095A JP4328095A JPH08246045A JP H08246045 A JPH08246045 A JP H08246045A JP 4328095 A JP4328095 A JP 4328095A JP 4328095 A JP4328095 A JP 4328095A JP H08246045 A JPH08246045 A JP H08246045A
Authority
JP
Japan
Prior art keywords
ferrite
transformation
austenite
rate
growth rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4328095A
Other languages
Japanese (ja)
Inventor
Shigenobu Nanba
茂信 難波
Hiroyuki Morimoto
啓之 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP4328095A priority Critical patent/JPH08246045A/en
Publication of JPH08246045A publication Critical patent/JPH08246045A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE: To easily and precisely obtain nucleation velocity and parabolic growth rate constant by computing under specific conditions by using respective measured values of ferritic volume fraction and grain size at the time of ferritic transformation from austenitic single phase region. CONSTITUTION: Ferritic transformation is performed by means of isothermal holding at a temp. not higher than the Ae3 point from austenitic single phase region. Ferritic volume fraction Xf and grain size Df are measured, and nucleation velocity Is and parabolic growth rate constant α are determined from equations 1, 2, 3. In these equations, S is the interfacial area of austenite per unit volume before the initiation of ferritic transformation, Cg is the carbon concentration of the austenite in the interface, Ca is the carbon concentration of the ferrite in the interface, C0 is the carbon concentration before the initiation of transformation of austenite, (t) is isothermal transformation holding time, ns is the number of ferritic nuclei per austenitic unit interfacial area forming in the isothermal transformation holding time (t), and πis the ratio of the circumference of a circle to its diameter. By controlling the ferritic structure, control of material and improvement of yield are enabled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、オーステナイト単相状
態からフェライト変態をさせる際のフェライトの核生成
速度と成長速度の測定方法に関し、特にフェライト組織
の予測精度の向上に資するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring the nucleation rate and growth rate of ferrite when a ferrite transformation is performed from an austenite single phase state, and particularly contributes to improving the prediction accuracy of the ferrite structure.

【0002】従って本発明は、特に、フェライト組織の
影響を大きく受ける降伏応力や靭性値などの材質を制御
するときのフェライト組織制御、あるいはそれら材質を
予測する技術の精度向上に寄与するものである。
Therefore, the present invention particularly contributes to the control of the ferrite structure when controlling the materials such as the yield stress and the toughness value which are greatly influenced by the ferrite structure, or to the improvement of the accuracy of the technique for predicting those materials. .

【0003】[0003]

【従来の技術】鋼材のフェライト組織は、降伏応力や靭
性値などに影響を与える重要な因子である。オーステナ
イト単相からのフェライト変態は、オーステナイト単相
中に、ある生成速度でフェライト核が生成し、生成した
個々の核が時間と共に成長する現象である。従ってフェ
ライト組織制御あるいはフェライト組織の変態率や粒径
等の予測を行うには、まず精度よくフェライトの核生成
速度と成長速度を測定する必要がある。
2. Description of the Related Art The ferrite structure of steel is an important factor affecting yield stress and toughness. The ferrite transformation from the austenite single phase is a phenomenon in which ferrite nuclei are generated at a certain generation rate in the austenite single phase, and the individual nuclei thus generated grow with time. Therefore, in order to control the ferrite structure or predict the transformation rate and grain size of the ferrite structure, it is first necessary to accurately measure the nucleation rate and growth rate of ferrite.

【0004】ところで、実用鋼のフェライト変態におけ
る核生成速度と成長速度を測定することは困難であり、
精度上も問題がある場合が多い。例えば、「Zeightschr
iftfur Metallkunde 」77(1986)p36 には、恒温変態実
験を行って核生成速度と成長速度を実際に測定している
実験例が示されている。この方法は、ある恒温保持温度
から水冷し、各試験片ごとに旧オーステナイト粒界上の
フェライト粒の数を数え上げて、旧オーステナイト粒界
面積当たりのフェライト粒の恒温保持時間による増加量
から核生成速度を求め、更にオーステナイト粒界と垂直
な方向に成長しているフェライトの厚みを測定すること
を基礎とし、恒温保持時間によるフェライトの厚みの増
加量からフェライトの成長速度を求めるものである。こ
の方法の性格上、数秒(平均5秒以下程度)間隔で、恒
温保持温度から水冷する必要があるので、数多くの試料
を必要とし、またフェライト粒を数え上げる必要がある
ので、極めて煩雑である。
By the way, it is difficult to measure the nucleation rate and the growth rate in ferrite transformation of practical steel,
There are often problems with accuracy. For example, "Zeightschr
"Iftfur Metallkunde" 77 (1986) p36 shows an experimental example in which a constant temperature transformation experiment is performed to actually measure the nucleation rate and the growth rate. This method is water cooling from a certain isothermal holding temperature, counting the number of ferrite grains on the old austenite grain boundaries for each test piece, and nucleating from the amount of increase by the isothermal holding time of the ferrite grains per old austenite grain boundary area. Based on the measurement of the speed and the measurement of the thickness of the ferrite that grows in the direction perpendicular to the austenite grain boundaries, the growth rate of the ferrite is calculated from the amount of increase in the thickness of the ferrite due to the constant temperature holding time. Due to the nature of this method, water cooling from the constant temperature holding temperature is required at intervals of several seconds (average of about 5 seconds or less), so a large number of samples are required and it is necessary to enumerate ferrite grains, which is extremely complicated.

【0005】更に、「鉄鋼の変態挙動」(1989)p
1、「鉄と鋼」(1987)p1026には、等速冷
却実験によりフェライト変態進行の時間微分値(フェラ
イトの変態速度)を導出し、計算されるフェライト体積
率が近似値になる様に核生成速度と成長速度を試行錯誤
的に決定する方法が紹介されているが、実測された変態
率が計算値と合うように間接的に決められているため、
測定方法は簡便だが、決められた核生成速度と成長速度
では変態率は予測できても、粒径の予測ができないの
で、正確な核生成速度と成長速度は得られ難い。
Further, "Transformation Behavior of Steel" (1989) p.
1, "Iron and Steel" 8 (1987) p1026, the time derivative of ferrite transformation progress (ferrite transformation rate) is derived by constant-velocity cooling experiment, and the calculated ferrite volume ratio becomes an approximate value. A method of determining the nucleation rate and growth rate by trial and error is introduced, but since the measured transformation rate is indirectly determined so as to match the calculated value,
The measurement method is simple, but the transformation rate can be predicted with the determined nucleation rate and growth rate, but the grain size cannot be predicted, so it is difficult to obtain accurate nucleation rate and growth rate.

【0006】加えて、「材料とプロセス」(199
3)p682およびp760には、恒温保持時間を変え
て、恒温変態途中から水冷した試料の旧オーステナイト
粒界に垂直な方向にフェライト厚みを測定し、その中で
最大のフェライトを恒温保持開始直後に核生成したもの
とみなし、その時間変化からフェライトの放物線速度定
数を決めて、その後に、恒温変態した材料の平均粒径の
測定値からフェライトの核生成速度を変態速度式から求
める方法が示されている。この方法では、旧オーステナ
イト粒界から垂直に測定したフェライトの厚みの内、最
大のものを恒温保持開始直後に核生成したものと見なし
ているが、定量形態学の観点からは、一見最大に見える
フェライトも切断の断面によっては小さなフェライトで
ある可能性が大きいこと、また、真に最大のフェライト
を測定していたとしても、同様の理由で、切断面によっ
ては最大のフェライトをより大きく測定する可能性が大
きいことから、放物線速度定数を常に過大に評価してい
ることになる。この過大に評価された放物線速度定数と
本発明法と同様の(3)式を使って核生成速度を求めて
いるため、(3)式中の核生成速度も実際の値より常に
大きく評価されることになる。
In addition, "Materials and Processes" 6 (199
3) For p682 and p760, by changing the isothermal holding time, the ferrite thickness was measured in the direction perpendicular to the old austenite grain boundaries of the water-cooled sample during the isothermal transformation, and the largest ferrite among them was measured immediately after the isothermal holding was started. It is considered that nucleation occurred, and the parabolic rate constant of ferrite was determined from the change over time.After that, a method for obtaining the nucleation rate of ferrite from the transformation rate equation from the measured average particle size of the isothermally transformed material is shown. ing. In this method, of the thickness of the ferrite measured perpendicularly from the former austenite grain boundaries, the maximum is considered to have nucleated immediately after the start of the isothermal holding, but from the viewpoint of quantitative morphology, it seems to be the maximum. Ferrite is also likely to be a small ferrite depending on the cross section of the cut, and even if the true maximum ferrite is measured, it is possible to measure the maximum ferrite larger depending on the cut surface for the same reason. Therefore, the parabolic velocity constant is always overestimated due to its large property. Since the nucleation rate is calculated using this excessively evaluated parabolic rate constant and the same equation (3) as in the method of the present invention, the nucleation rate in equation (3) is always evaluated higher than the actual value. Will be.

【0007】これらの従来法では、核生成速度および成
長速度、あるいは放物線成長速度定数を求めるには非常
に煩雑な方法で丹念に計測を行うか、あるいは簡便では
あるが測定精度に限界があるかのどちらかの選択を行わ
ねばならなかった。
[0007] In these conventional methods, it is necessary to carefully measure by a very complicated method for obtaining the nucleation rate and the growth rate or the parabolic growth rate constant, or is it simple but there is a limit to the measurement accuracy? Had to make either choice.

【0008】[0008]

【発明が解決しようとする課題】このように従来の方法
では、簡単に測定できても精度が良くないか、精度良く
測定できても非常に煩雑で測定に時間を要するか、のい
ずれかであり、しかも精度良くフェライト組織の予測モ
デルを構築するには、多くの条件でフェライト変態の核
生成速度と成長速度を測定し、確認せねばならなかっ
た。そこで核生成速度と成長速度を簡単且つ高精度に測
定できる方法の開発が不可欠と考えられている。
As described above, according to the conventional method, either simple measurement is not accurate, or accurate measurement is very complicated and time-consuming. In order to construct a predictive model of ferrite structure with high accuracy, it was necessary to measure and confirm the nucleation rate and growth rate of ferrite transformation under many conditions. Therefore, it is considered essential to develop a method that can measure the nucleation rate and the growth rate easily and with high accuracy.

【0009】本発明の目的は、フェライト組織制御の基
礎となる高精度予測方法の確立に欠かせないフェライト
の核生成速度、および放物線成長速度定数で表される成
長速度を、精度良く簡便に測定することのできる方法を
提供することである。
The object of the present invention is to accurately and simply measure the nucleation rate of ferrite, which is indispensable for establishing a highly accurate prediction method that is the basis of ferrite structure control, and the growth rate represented by a parabolic growth rate constant. Is to provide a method that can be done.

【0010】[0010]

【課題を解決するための手段】本発明者らは熱間加工及
びその後の冷却過程をシミュレートできる実験装置を用
いた恒温変態実験によって、フェライト変態進行の研究
を重ねた結果、オーステナイト単相域から、Ae3 点以
下の温度に恒温保持してフェライト変態をさせたときの
フェライトの体積分率Xf と粒径Df の測定値を用い
て、下記(1)、(2)および(3)式より、核生成速
度IS および放物線成長速度定数αを求めるという本発
明方法を見出した。
Means for Solving the Problems The inventors of the present invention have conducted a study on the progress of ferrite transformation by an isothermal transformation experiment using an experimental apparatus capable of simulating the hot working and the subsequent cooling process. From the above, using the measured values of the volume fraction X f of ferrite and the grain size D f when the ferrite transformation is performed while keeping the temperature constant at Ae 3 point or less, the following (1), (2) and (3) ), The method of the present invention has been found in which the nucleation rate I S and the parabolic growth rate constant α are determined.

【0011】[0011]

【数2】 [Equation 2]

【0012】Xf :フェライト変態した体積分率 S :フェライト変態開始前の単位体積当たりのオース
テナイトの粒界面積 Cg :フェライトとオーステナイトの界面オーステナイ
ト側の炭素濃度 Ca :フェライトとオーステナイトの界面のフェライト
側の炭素濃度 Co :オーステナイトの変態開始前の炭素濃度 α :放物線成長速度定数 t :恒温変態保持時間 π :円周率 Is :オーステナイト単位粒界面積当たりのフェライト
核生成速度 Df :平均フェライト粒径 nS :恒温変態保持時間tに生成するオーステナイト単
位粒界面積当たりのフェライトの核の数
X f : volume fraction of ferrite transformation S: grain boundary area of austenite per unit volume before initiation of ferrite transformation C g : interface between ferrite and austenite carbon concentration on austenite side C a : interface between ferrite and austenite ferrite side of the carbon concentration C o: carbon concentration before the start transformation austenite alpha: parabolic growth rate constant t: isothermal transformation retention time [pi: pi I s: per grain boundary area austenite units ferrite nucleation rate D f: Average ferrite grain size n S : Number of ferrite nuclei per austenite unit grain boundary area generated during isothermal transformation holding time t

【0013】[0013]

【作用】フェライトの核生成速度と成長速度の測定に関
する本発明方法及びその作用について詳細に述べる。ま
ず、ここで使用される式について説明する。(1)式
は、フェライト恒温変態の進行を記述する公知の式で、
例えば「ISIJ.int.」32(1992)261
に示されている。この(1)式中のC g およびCa は変
態温度におけるフェライト/オーステナイト界面のオー
ステナイト側およびフェライト側の各平衡炭素濃度であ
り、Co はオーステナイトの初期炭素濃度である。この
ときのCg およびCa は「材料とプロセス」(199
0)、p871に開示されている熱力学計算プログラム
を使って求めることができる。また、市販の熱力学計算
ソフトウエアを使っても同様に計算可能である。また、
Sはフェライト変態開始前の単位体積当たりのオーステ
ナイトの粒界面積であり、オーステナイトに残留歪が無
いかもしくは非常に小さいとき(およその目安として残
留歪が0.01以下のとき)は、オーステナイト粒径を
測定することで求められる。残留歪が大きくなった場合
でも、「鉄と鋼」70(1984)p557に開示して
ある方法で計算できる。
[Function] For measuring the nucleation rate and growth rate of ferrite
The method of the present invention and the operation thereof will be described in detail. Well
First, the formula used here will be described. Formula (1)
Is a known equation that describes the progress of the ferrite isothermal transformation,
For example, "ISIJ.int."32(1992) 261
Is shown in. C in equation (1) g And Ca Is strange
Of ferrite / austenite interface at normal temperature
At each equilibrium carbon concentration on the side of stenite and the side of ferrite
Co Is the initial carbon concentration of austenite. this
When Cg And Ca "Materials and processes"Three(199
0), thermodynamic calculation program disclosed in p871
Can be found using. Also, commercially available thermodynamic calculations
It can be calculated similarly using software. Also,
S is the austenite per unit volume before the start of ferrite transformation
It is the grain boundary area of the austenite and there is no residual strain in austenite.
Squid or very small (remain as a rough guide
(When the strain is 0.01 or less), the austenite grain size is
It can be obtained by measuring. When residual strain becomes large
But, I disclosed it in "Iron and Steel" 70 (1984) p557.
It can be calculated in a certain way.

【0014】Is はオーステナイト単位粒界面積当たり
の核生成速度である。αは放物線成長速度定数であり、
次式により成長速度(v)に換算できる。 v=(1/2)αt1/2 (4) 従って、放物線成長速度定数αを測定することは、成長
速度を測定することにほかならない。ここでtは恒温変
態させた保持時間である。
I s is the nucleation rate per unit grain boundary area of austenite. α is the parabolic growth rate constant,
It can be converted into the growth rate (v) by the following formula. v = (1/2) αt 1/2 (4) Therefore, measuring the parabolic growth rate constant α is nothing but measuring the growth rate. Here, t is the holding time after the isothermal transformation.

【0015】xは最大フェライトの大きさで規格化され
た積分変数であり、次式(5)で求めることができる。 x=α(t−τ)1/2 /αt1/2 (5) [式中(t−τ)は、今着目している核が発生してから
の経過時間]
X is an integral variable standardized by the size of the maximum ferrite and can be obtained by the following equation (5). x = α (t-τ) 1/2 / αt 1/2 (5) [where (t-τ) is the elapsed time since the nucleus of interest is generated]

【0016】(2)式は平均フェライト粒径Df ,恒温
変態保持時間tに生成するオーステイナイトの単位粒界
面積当たりのフェライト粒の数nS ,変態率Xf および
単位体積当たりの粒界面積Sの関係式であり、「J.I
nst.Metals.」19(1918),p145
に示されている。
[0016] (2) the average ferrite grain diameter D f, the number n S of ferrite grains per unit grain boundary area of the O-stay night to generate the isothermal transformation holding time t, the transformation rate X f and particle per unit volume It is a relational expression of the boundary area S, and
nst. Metals. 19 (1918), p145
Is shown in.

【0017】また、(3)式は恒温変態保持時間tに生
成するオーステナイトの単位粒界面積当たりのフェライ
ト粒の数nS を表す式であり、πは円周率、その他の記
号は上記と同じ意味である。
The equation (3) is an equation representing the number of ferrite grains n S per unit grain boundary area of austenite generated during the isothermal transformation holding time t, π is the circular constant, and other symbols are as described above. Have the same meaning.

【0018】この(3)式は変態が核生成と成長を繰り
返しながら進行する場合にのみ適用可能で、核生成が非
常に速く、短時間(おおむね1秒未満)でオーステナイ
トの粒界を埋め尽くす場合の適用は不適切である。
This equation (3) is applicable only when the transformation proceeds while repeating nucleation and growth, the nucleation is very fast, and the austenite grain boundaries are filled in a short time (generally less than 1 second). The case is inappropriately applied.

【0019】フェライトの変態率Xf と平均粒径Df
測定することができれば、核生成速度Is と放物線成長
速度定数αを除き他の変数は測定可能か計算可能かのい
ずれかになる。
If the transformation rate X f of ferrite and the average grain size D f can be measured, other variables except the nucleation rate I s and the parabolic growth rate constant α can either be measured or calculated. .

【0020】次に、核生成速度Is と放物線成長速度定
数αを測定する為に必要な実験について述べる。まず、
組成が分かっている鋼をAe3 温度以上に加熱し、完全
にオーステナイト単相とする。加熱後の残留歪の影響を
見たい場合は、圧延機や鍛造機等の熱間加工装置、およ
び/もしくは、それらをシミュレートできる装置を用い
て、試験片に歪を付加する必要がある。次に、30℃/
s以上の冷却速度でフェライト変態させる温度に冷却
し、一定時間保持して恒温変態を行なわせた後、急冷す
る。この最初の冷却過程でフェライトの核が生成してし
まうと、以後の正確な測定に支障が生じるので、できる
限り高い冷却速度、望ましくは30℃/s以上で冷却す
る必要がある。次の恒温保持では、オーステナイトの粒
界が完全にフェライトで覆われる前に、恒温保持を中断
し、この状態を維持する為急冷しなければならない。こ
の保持時間は鋼の成分とオーステナイト粒径および残留
歪によって変化するため一概には規定できないが、実施
例に示した0.1wt%C−0.25wt%Si−1.
5wt%Mnの場合、残留歪がなく700℃で恒温変態
させたときは、オーステナイト粒径が300μm程度以
上の粗大粒の時にはおよそ1000秒以内、オーステナ
イト粒径が50μm程度と小さくなるにつれてこの時間
は300秒程度と短くなる。また残留歪が大きくなると
この時間は短時間側へ、また恒温変態温度が低くなると
短時間側にシフトし、逆に恒温変態温度を上昇させると
この時間は長時間側にシフトする。尚鋼組成に関して
は、CあるいはMnの合金元素量を低下させた場合は短
時間側にシフトし、逆に増加させた場合は長時間側にシ
フトする。
Next, an experiment necessary for measuring the nucleation rate I s and the parabolic growth rate constant α will be described. First,
A steel of known composition is heated to a temperature of Ae 3 or higher to completely transform it into an austenite single phase. In order to see the effect of the residual strain after heating, it is necessary to add strain to the test piece using a hot working device such as a rolling mill or a forging machine and / or a device that can simulate them. Next, 30 ° C /
It is cooled to a temperature at which ferrite transformation takes place at a cooling rate of s or more, held for a certain period of time to perform isothermal transformation, and then rapidly cooled. If ferrite nuclei are generated in this first cooling process, it will hinder accurate measurement thereafter. Therefore, it is necessary to cool at a cooling rate as high as possible, preferably 30 ° C./s or more. In the next isothermal holding, the isothermal holding must be interrupted before the austenite grain boundaries are completely covered with ferrite, and rapid cooling must be carried out to maintain this state. This holding time cannot be unconditionally specified because it changes depending on the composition of the steel, the austenite grain size, and the residual strain, but 0.1 wt% C-0.25 wt% Si-1.
In the case of 5 wt% Mn, when there is no residual strain and the isothermal transformation is performed at 700 ° C., it takes about 1000 seconds or less for coarse grains having an austenite grain size of about 300 μm or more, and this time decreases as the austenite grain size decreases to about 50 μm. It will be as short as 300 seconds. When the residual strain becomes large, this time shifts to the short time side, and when the isothermal transformation temperature becomes low, the time shifts to the short time side. Conversely, when the isothermal transformation temperature rises, this time shifts to the long time side. Regarding the steel composition, when the alloying element amount of C or Mn is decreased, it shifts to the short side, and when it is increased, it shifts to the long side.

【0021】次に、恒温変態保持温度から急冷された材
料を、通常の金属組織観察手法に従って、研磨及びエッ
チングし、フェライトの変態率Xf と平均粒径Df を求
める。実施例では点算法でフェライト変態率Xf を求
め、求積法で平均フェライト粒径Df を求めたが、画像
解析装置等を使っても求めることができる。
Next, the material rapidly cooled from the isothermal transformation holding temperature is polished and etched according to the usual metallographic observation method to obtain the transformation rate X f and average grain size D f of ferrite. In the examples, the ferrite transformation rate X f was obtained by the point calculation method and the average ferrite grain size D f was obtained by the quadrature method, but it can also be obtained by using an image analyzer or the like.

【0022】この段階で、(1)、(2)および(3)
式中の未知数はIs およびαのみとなった。一方、
(3)式nS は(2)式より nS =2Xf /(3SDf 3) (6) と変形できるので、(3)式の左辺nS も求められるこ
とになり、他の変数の値も定まっているので、ここに
(1)式中の値に関しては、全て実測あるいは計算から
求められることとなるのである。
At this stage, (1), (2) and (3)
The only unknowns in the equation were I s and α. on the other hand,
Since equation (3) n S can be transformed from equation (2) into n S = 2X f / (3SD f 3 ) (6), the left side n S of equation (3) will also be obtained, and other variables Since the values are also fixed, all the values in the equation (1) can be obtained by actual measurement or calculation.

【0023】ただし、未知数が2つで、方程式が2つあ
る場合でも必ずしも解が存在する訳ではなく、また解が
存在してもその解法が分からなければ、方程式を解くこ
とができない。しかし本発明者においては、次の様にし
て解が存在すること、また以下に述べる様な手法で方程
式の解を見出し得ることを夫々説明する。
However, even if there are two unknowns and two equations, a solution does not always exist, and even if there is a solution, the equation cannot be solved unless the solution method is known. However, the present inventor will explain that there is a solution as follows and that the solution of the equation can be found by the method described below.

【0024】たとえば、0.1wt%C−0.25wt
%Si−1.5wt%Mn鋼について、オーステナイト
粒径が51μm、恒温変態温度700℃、変態時間50
秒で実験した場合の(1)式を満たす核生成速度Is
放物線成長速度定数αの関係と、(3)式を満たすIs
とαの関係を図1にプロットした。前者の曲線が単調減
少関数で、後者は単調増加関数であり、両者は1点のみ
で交わっている。従って、この解は、唯一の解であるこ
とが分かる。この様にして、Is とαの唯一の解が存在
することを確かめることができた。
For example, 0.1 wt% C-0.25 wt
% Si-1.5 wt% Mn steel, austenite grain size is 51 μm, isothermal transformation temperature 700 ° C., transformation time 50
The relation between the nucleation rate I s and the parabolic growth rate constant α satisfying the formula (1) and the I s satisfying the formula (3) in the case of the experiment in seconds.
The relationship between and is plotted in FIG. The former curve is a monotonically decreasing function and the latter curve is a monotonically increasing function, and the two intersect at only one point. Therefore, this solution turns out to be the only solution. In this way, we could confirm that there is a unique solution for I s and α.

【0025】次に解を求める数値計算のアルゴリズムを
図2の模式図に従って説明する。まず、(3)式のαに
適当な初期値α(0)を代入し、(3)式を満たすIs
(0)を求める。次に(1)式にIs (0)を代入し、
(1)式を満たすα(1)を求める。更に、このα
(1)を(3)式に代入し、(3)式を満たすIs
(1)を求める。これを繰り返していくことによって、
n回目のα(n)とIs (n)は初期値によらず、5〜
20回程度の繰り返し計算でほぼ一定値に収束する。こ
の際に積分は数値計算で求め、Is は挟み撃ち法によっ
て求めた。挟み撃ち法は最急下法、ニュートン法などに
置き換えることもできる。
Next, a numerical calculation algorithm for obtaining a solution will be described with reference to the schematic diagram of FIG. First, by substituting an appropriate initial value α (0) for α in equation (3), I s satisfying equation (3)
Calculate (0). Next, I s (0) is substituted into the equation (1),
Α (1) that satisfies the expression (1) is obtained. Furthermore, this α
Substituting (1) into equation (3), I s satisfying equation (3)
Find (1). By repeating this,
α (n) and I s (n) for the nth time are 5 to 5 regardless of the initial values.
Iterative calculation about 20 times converges to an almost constant value. At this time, the integral was obtained by numerical calculation, and I s was obtained by the pinching and shooting method. The pinching method can be replaced with the steepest method, the Newton method, or the like.

【0026】結局本発明方法は、フェライトの核生成速
度と成長速度に関して、従来、実験が非常に煩雑だが正
確に測定するか、或は簡単に実験できるが誤差が大きい
方法を選ぶしかなかったのを、恒温変態の保持温度と保
持時間tを測定し、保持温度から急冷した材料のフェラ
イト変態率Xf と平均フェライト粒径Df を測定するだ
けで、核生成速度Is と放物線成長速度定数すなわち成
長速度αを正確に決定できるという、画期的な方法であ
る。本発明方法は、熱延鋼板および厚鋼板等の熱間圧延
鋼材、あるいは複合組織を有する冷延鋼板等の連続焼鈍
鋼材のいずれにも適用可能である。
With respect to the nucleation rate and growth rate of ferrite in the method of the present invention, the experiment has been very complicated but accurate measurement has been conventionally made, or a method that can be easily conducted but has a large error has been selected. and only measures the holding temperature and the holding time t of the isothermal transformation to measure the ferrite transformation ratio X f of the quenched materials average ferrite grain diameter D f from the holding temperature, nucleation rate I s and the parabolic growth rate constant That is, this is an epoch-making method in which the growth rate α can be accurately determined. INDUSTRIAL APPLICABILITY The method of the present invention is applicable to both hot-rolled steel products such as hot-rolled steel plates and thick steel plates, or continuously annealed steel products such as cold-rolled steel plates having a composite structure.

【0027】[0027]

【実施例】表1に示した4種類の鋼を溶製した。Example Four types of steel shown in Table 1 were melted.

【0028】[0028]

【表1】 [Table 1]

【0029】表2は、本発明法により、実際に核生成速
度と放物線成長速度定数を測定した条件およびその結果
を示す。
Table 2 shows the conditions under which the nucleation rate and the parabolic growth rate constant were actually measured by the method of the present invention, and the results thereof.

【0030】[0030]

【表2】 [Table 2]

【0031】実験は、熱間圧延をシミュレートする装置
[(株)富士電波工機製サーメックマスターZ]を用い
て行なった。実際に、本発明法で測定した核生成速度I
s と放物線成長速度定数αを(1)〜(3)に代入した
ときの予測精度を図3に示す。図3に示される様に、恒
温保持に伴う変態の進行、また粒径の変化を忠実に再現
できている。これは、本発明方法が核生成速度と放物線
成長速度定数を正確に測定できているからに他ならな
い。
The experiment was carried out by using an apparatus for simulating hot rolling [Thermec Master Z manufactured by Fuji Denwa Koki Co., Ltd.]. Actually, the nucleation rate I measured by the method of the present invention
FIG. 3 shows the prediction accuracy when s and the parabolic growth rate constant α are substituted into (1) to (3). As shown in FIG. 3, it is possible to faithfully reproduce the progress of transformation and the change in grain size due to the constant temperature. This is because the method of the present invention can accurately measure the nucleation rate and the parabolic growth rate constant.

【0032】図4には、本発明方法により得られた核生
成速度と放物線速度定数によって再現できる変態率の計
算精度を、図5には粒径の計算精度を示す。ここで言う
従来法は「材料とプロセス」(1993)p682お
よび760に示されている方法である。この方法では、
すでに述べた様に、核生成速度と放物線成長速度定数が
常に過大に見積もられるので、変態率、粒径ともに実際
の値より大きくなってしまう。これに対し、本発明方法
は、核生成速度と放物線成長速度定数を正確に測定でき
ているので、変態率、粒径とも精度よく計算できてい
る。
FIG. 4 shows the calculation accuracy of the transformation rate that can be reproduced by the nucleation rate and the parabolic rate constant obtained by the method of the present invention, and FIG. 5 shows the calculation accuracy of the particle size. The conventional method referred to here is the method shown in “Materials and Processes” 6 (1993) p682 and 760. in this way,
As already mentioned, since the nucleation rate and the parabolic growth rate constant are always overestimated, both the transformation rate and the grain size become larger than the actual values. On the other hand, since the method of the present invention can accurately measure the nucleation rate and the parabolic growth rate constant, the transformation rate and the grain size can be calculated accurately.

【0033】[0033]

【発明の効果】以上の説明から明らかである様に、従来
煩雑ではあるが正確な測定をするか、精度は劣るが簡便
に測定できるかの二者択一を迫られたフェライトの核生
成速度と成長速度、すなわち放物線成長速度定数の測定
方法に関して、本発明方法は、簡便かつ精度よく核生成
速度と放物線成長速度定数を測定できる。
As is apparent from the above description, the nucleation rate of ferrite is forced to make a choice between the conventional method which is complicated but accurate measurement and the method which is inferior in accuracy but can be easily measured. Regarding the method of measuring the growth rate, that is, the parabolic growth rate constant, the method of the present invention can measure the nucleation rate and the parabolic growth rate constant simply and accurately.

【0034】その結果、フェライト組織の予測が精度よ
くできる様になり、熱間圧延プロセスで製造される鋼材
および/もしくは連続焼鈍プロセスで製造される鋼材の
フェライト組織制御を通じた材質制御、歩留まり向上が
可能になり、経済効果は非常に大きい。
As a result, the ferrite structure can be accurately predicted, and the material control and the yield improvement can be achieved by controlling the ferrite structure of the steel material manufactured by the hot rolling process and / or the steel material manufactured by the continuous annealing process. It is possible and the economic effect is very large.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明方法において(1)と(3)を満たす解
があることを示す図。
FIG. 1 is a diagram showing that there are solutions that satisfy (1) and (3) in the method of the present invention.

【図2】簡単に解に到達するための解法を模式的に示し
たもの。
FIG. 2 schematically shows a solution method for easily reaching a solution.

【図3】本発明法で測定した核生成速度と放物線成長速
度定数により、変態の進行および粒径の変化が忠実に再
現されていることを示す図。
FIG. 3 is a diagram showing that the progress of transformation and changes in grain size are faithfully reproduced by the nucleation rate and the parabolic growth rate constant measured by the method of the present invention.

【図4】本発明法で測定した核生成速度と放物線成長速
度定数で再現される変態率と粒径の計算精度を、従来法
によるものと比較した図。
FIG. 4 is a diagram comparing the calculation accuracy of the transformation rate and the grain size reproduced by the nucleation rate and the parabolic growth rate constant measured by the method of the present invention with those by the conventional method.

【図5】本発明法で測定した核生成速度と放物線成長速
度定数で再現される変態率と粒径の計算精度を、従来法
によるものと比較した図。
FIG. 5 is a diagram comparing the calculation accuracy of the transformation rate and the grain size reproduced by the nucleation rate and the parabolic growth rate constant measured by the method of the present invention with those by the conventional method.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 オーステナイト単相域から、Ae3 点以
下の温度に恒温保持してフェライト変態をさせたときの
フェライトの体積分率Xf と粒径Df の測定値を用い
て、下記(1)、(2)および(3)式から、核生成速
度Is および放物線成長速度定数αを求めることを特徴
とするフェライトの核生成速度および成長速度の測定方
法。 【数1】 f :フェライト変態した体積分率 S :フェライト変態開始前の単位体積当たりのオース
テナイトの粒界面積 Cg :フェライトとオーステナイトの界面オーステナイ
ト側の炭素濃度 Ca :フェライトとオーステナイトの界面のフェライト
側の炭素濃度 Co :オーステナイトの変態開始前の炭素濃度 α :放物線成長速度定数 t :恒温変態保持時間 π :円周率 IS :オーステナイト単位粒界面積当たりのフェライト
核生成速度 Df :平均フェライト粒径 nS :恒温変態保持時間tに生成するオーステナイト単
位粒界面積当たりのフェライトの核の数
1. Using the measured values of the volume fraction X f of ferrite and the grain size D f when the ferrite transformation is carried out from the austenite single-phase region at a temperature of Ae 3 point or less by constant temperature, the following ( 1), (2) and (3) from the equation, the nucleation rate and method of measuring the growth rate of the ferrite and obtains the nucleation rate I s and the parabolic growth rate constant alpha. [Equation 1] X f : Volume fraction of ferrite transformation S: Grain boundary area of austenite per unit volume before initiation of ferrite transformation C g : Carbon concentration on austenite side of interface between ferrite and austenite C a : On ferrite side of interface between ferrite and austenite Carbon concentration C o : Carbon concentration before initiation of austenite transformation α: Parabolic growth rate constant t: Constant temperature transformation retention time π: Circular ratio I S : Ferrite nucleation rate per unit grain boundary area of austenite D f : Average ferrite grain Diameter n S : Number of ferrite nuclei per unit grain boundary area of austenite generated during isothermal transformation holding time t
JP4328095A 1995-03-02 1995-03-02 Method for measuring ferritic nucleation velocity and rate of growth Withdrawn JPH08246045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4328095A JPH08246045A (en) 1995-03-02 1995-03-02 Method for measuring ferritic nucleation velocity and rate of growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4328095A JPH08246045A (en) 1995-03-02 1995-03-02 Method for measuring ferritic nucleation velocity and rate of growth

Publications (1)

Publication Number Publication Date
JPH08246045A true JPH08246045A (en) 1996-09-24

Family

ID=12659404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4328095A Withdrawn JPH08246045A (en) 1995-03-02 1995-03-02 Method for measuring ferritic nucleation velocity and rate of growth

Country Status (1)

Country Link
JP (1) JPH08246045A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007809A (en) * 2006-06-28 2008-01-17 Toyota Central Res & Dev Lab Inc Method and device for predicting steel material structure, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008007809A (en) * 2006-06-28 2008-01-17 Toyota Central Res & Dev Lab Inc Method and device for predicting steel material structure, and program

Similar Documents

Publication Publication Date Title
Liu et al. A stress relaxation method for following carbonitride precipitation in austenite at hot working temperatures
CN104602830B (en) Material structure prediction meanss, Manufacturing Method of Products and material structure Forecasting Methodology
Bernhard et al. A model for predicting the austenite grain size at the surface of continuously-cast slabs
Ebrahimi et al. Mathematical modeling of single peak dynamic recrystallization flow stress curves in metallic alloys
Pham et al. Predicting the onset of transformation under noncontinuous cooling conditions: Part II. Application to the austenite pearlite transformation
JP4833881B2 (en) Crystal grain analysis apparatus, crystal grain analysis method, and computer program
Vervynckt et al. Characterization of the austenite recrystallization by comparing double deformation and stress relaxation tests
Lan et al. Serrated flow and dynamic strain aging in Fe-Mn-C TWIP steel
Li et al. Metadynamic and static recrystallization softening behavior of a bainite steel
Liu et al. A microstructure evolution model for hot rolling of a Mo-TRIP steel
Ferguson et al. A look at physical simulation of metallurgical processes, past, present and future
Fu et al. Modification for prediction model of austenite grain size at surface of microalloyed steel slabs based on in situ observation
Pohjonen et al. Computer simulations of austenite decomposition of microalloyed 700 MPa steel during cooling
JPH08246045A (en) Method for measuring ferritic nucleation velocity and rate of growth
Homsher et al. Comparison of two physical simulation tests to determine the no-recrystallization temperature in hot rolled steel plates
JPH044911A (en) Method for predicting the quality of steel material
Baochun et al. Analysis of the methods to calculate austenite static recrystallization volume fraction
JPH05142126A (en) Method for predicting quality of steel plate
CN110702727B (en) Method for measuring static recrystallization volume fraction of material
Puchi-Cabrera et al. Constitutive description of a low C-Mn steel deformed under hot-working conditions
CN113063813B (en) Method for establishing continuous cooling phase change model of steel material
Fadel Determination of Activation Energy For Static Re-Crystallization in Nb-Ti Low Carbon Micro Alloyed Steel
Hojny et al. Physical simulation of steel deformation in the semi-solid state
JPH06248333A (en) Method for predicting ferrite structure
Cutrim et al. Hot deformation behavior and microstructural evolution of a medium carbon vanadium microalloyed steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507