JPH08246044A - Heat treatment method for spheroidal graphite cast iron and differential device obtained by executing heat treatment to spheroidal graphite cast iron-made member by this method - Google Patents

Heat treatment method for spheroidal graphite cast iron and differential device obtained by executing heat treatment to spheroidal graphite cast iron-made member by this method

Info

Publication number
JPH08246044A
JPH08246044A JP4949395A JP4949395A JPH08246044A JP H08246044 A JPH08246044 A JP H08246044A JP 4949395 A JP4949395 A JP 4949395A JP 4949395 A JP4949395 A JP 4949395A JP H08246044 A JPH08246044 A JP H08246044A
Authority
JP
Japan
Prior art keywords
cast iron
spheroidal graphite
graphite cast
heat treatment
decarburization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4949395A
Other languages
Japanese (ja)
Inventor
Yasuhiko Ishikawa
泰彦 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GKN Driveline Japan Ltd
Original Assignee
Tochigi Fuji Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tochigi Fuji Sangyo KK filed Critical Tochigi Fuji Sangyo KK
Priority to JP4949395A priority Critical patent/JPH08246044A/en
Publication of JPH08246044A publication Critical patent/JPH08246044A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H48/00Differential gearings
    • F16H48/38Constructional details
    • F16H2048/382Methods for manufacturing differential gearings

Abstract

PURPOSE: To improve the wear resistance of sliding part and the machinability of the other part of a differential case. CONSTITUTION: Side gears 17, 19 at an output part side are constituted so as to be mutually connected through pinion gears 39, 41 freely rotatably housed in housing spaces 35, 37 of a spheroidal graphite cast iron-made differential case 3 which is rotationally driven by an engine. After austenizing the differential case 3 coated with a decarburize-preventive on its sliding parts 35, 37, 59, 61 with each of the gears by holding in a decarburizing atmosphere at 850-950 deg.C for 0.5-2hr, the case is rapidly cooled, and further, tempering is executed thereto at 300-450 deg.C for 0.5-1.5hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、球状黒鉛鋳鉄の熱処
理方法及びこの方法で球状黒鉛鋳鉄の部材を熱処理した
デファレンシャル装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat treatment method for spheroidal graphite cast iron and a differential apparatus for heat treating a spheroidal graphite cast iron member by this method.

【0002】[0002]

【従来の技術】特開平4−325624号公報に「球状
黒鉛鋳鉄のオーステンパ処理法」が記載されている。こ
の熱処理方法は、機械部品などのような強度部材の切削
性を高めるためのものである。
2. Description of the Related Art Japanese Unexamined Patent Publication (Kokai) No. 4-325624 discloses "austempering method for spheroidal graphite cast iron". This heat treatment method is for improving the machinability of a strength member such as a machine part.

【0003】上記公報には次のような工程が記載されて
いる。
The above-mentioned publication describes the following steps.

【0004】先ず、球状黒鉛鋳鉄の部材を900℃〜9
50℃の脱炭雰囲気中に3時間〜5時間保持し、表面に
脱炭層を形成する。
First, a member made of spheroidal graphite cast iron is heated to 900 ° C to 9 ° C.
The decarburized layer is formed on the surface by keeping the decarburized atmosphere at 50 ° C. for 3 hours to 5 hours.

【0005】次に、表面を脱炭したこの部材を、例えば
900℃〜950℃で0.5時間〜1.5時間保持して
オーステナイト化する。
Next, this member whose surface has been decarburized is retained at, for example, 900 ° C. to 950 ° C. for 0.5 hours to 1.5 hours to be austenitized.

【0006】更に、300℃〜400℃まで冷却し0.
5時間〜1.5時間保持してオーステナイトを恒温変態
(オーステンパー処理)させた後、空冷する。
Further, it is cooled to 300 to 400 ° C.
After holding for 5 hours to 1.5 hours, the austenite is subjected to isothermal transformation (austempering treatment) and then air-cooled.

【0007】このような熱処理により、脱炭されてフェ
ライト地になった表層部はオーステンパー処理によって
パーライト組織になると共に、脱炭されない深層部はオ
ーステンパー処理によってベイナイト組織になる。こう
して、表層部はパーライトの性質により高い切削性が得
られると共に、深層部はベイナイトの性質により高い硬
度と靱性とが得られ、部品全体の強度を向上させる。
By such heat treatment, the surface layer portion decarburized into the ferrite material becomes a pearlite structure by austempering, and the deep layer portion not decarburized becomes a bainite structure by austempering. Thus, the surface layer portion has high machinability due to the property of pearlite, and the deep layer portion has high hardness and toughness due to the property of bainite, which improves the strength of the entire component.

【0008】一方、鋼材や鋳物部材の焼き入れによく用
いられる高周波焼き入れは、部分的な焼き入れができる
利点がある。しかし、電磁誘導による高周波誘導電流で
部材に過電流を発生させて焼き入れを行うから、焼き入
れ部分の形状が複雑で閉回路が形成されないと均等な過
電流が発生せず、所望の焼き入れが不可能であると共
に、電流の表皮効果などによって、深層部には焼きが入
らないから部材全体の機械的性質を改善することができ
ない。
On the other hand, induction hardening, which is often used for quenching steel materials and cast members, has an advantage that it can be partially quenched. However, since quenching is performed by generating an overcurrent in the member with a high frequency induction current due to electromagnetic induction, if the quenching part has a complicated shape and a closed circuit is not formed, uniform overcurrent will not occur and the desired quenching will occur. In addition, it is impossible to improve the mechanical properties of the entire member because the deep layer is not quenched due to the skin effect of electric current.

【0009】又、特開平5−280596号公報に図6
のようなデファレンシャル装置201が記載されてい
る。
Further, FIG. 6 is disclosed in JP-A-5-280596.
Such a differential device 201 is described.

【0010】これは、デフケース203と、ヘリカルピ
ニオンギヤ205及びこれと噛み合った他のヘリカルピ
ニオンギヤと、これらのヘリカルピニオンギヤを介して
連結された出力側のヘリカルサイドギヤ207、209
とを備えている。ヘリカルピニオンギヤ205はデフケ
ース203の収納孔211に摺動回転自在に収納され、
他のヘリカルピニオンギヤは他の収納孔に摺動回転自在
に収納されている。これらの収納孔は各ヘリカルピニオ
ンギヤとヘリカルサイドギヤ207、209との噛み合
いのためにそれぞれ一部が切断された円筒状を呈してい
る。
This is a differential case 203, a helical pinion gear 205 and other helical pinion gears meshing with the differential case 203, and output side helical side gears 207, 209 connected through these helical pinion gears.
It has and. The helical pinion gear 205 is slidably and rotatably housed in the housing hole 211 of the differential case 203,
The other helical pinion gear is slidably and rotatably housed in another housing hole. These storage holes have a cylindrical shape in which a part is cut for meshing with each helical pinion gear and the helical side gears 207 and 209.

【0011】エンジンの駆動力はデフケース203を回
転させ、各ヘリカルピニオンギヤからサイドギヤ20
7、209を介して車輪側に伝達される。このとき、各
ギヤの噛み合い反力と噛み合いスラスト力とにより、各
ギヤ間や各ギヤとデフケース203との間で摩擦抵抗が
生じ、これらの摩擦抵抗によってトルク感応型の差動制
限力を得ている。
The driving force of the engine causes the differential case 203 to rotate so that each helical pinion gear moves from the side gear 20.
It is transmitted to the wheel side via 7, 209. At this time, due to the meshing reaction force and meshing thrust force of each gear, a frictional resistance is generated between the gears and between each gear and the differential case 203, and the torque sensitive differential limiting force is obtained by these frictional resistances. There is.

【0012】このように、デフケース203は、噛み合
い反力によって各ヘリカルピニオンギヤが押し付けられ
る収納孔や、噛み合いスラスト力によって各ギヤが押し
付けられる摺動部などには高い耐磨耗性が要求される。
しかし、切削箇所は硬度を下げて切削性を高めたい。
As described above, the differential case 203 is required to have a high abrasion resistance in the storage hole in which the helical pinion gears are pressed by the meshing reaction force and the sliding portion in which the gears are pressed by the meshing thrust force.
However, we want to lower the hardness at the cutting location and improve the cutting performance.

【0013】[0013]

【発明が解決しようとする課題】高周波焼き入れでは、
上記のように部分的な焼き入れが可能であるから、焼き
入れ部の耐磨耗性を改善すると共に、焼き入れを行わな
い部分は切削性がよいが、例えばデフケース203の収
納孔のように形状が複雑な箇所は焼き入れが不可能であ
ると共に、深層部には焼きが入らないからデフケース2
03全体の機械的性質を改善することができない。
[Problems to be Solved by the Invention] In induction hardening,
Since partial hardening is possible as described above, the wear resistance of the hardened part is improved, and the part that is not hardened has good machinability. For example, like the storage hole of the differential case 203, Hardening is not possible at locations with complicated shapes, and hardening is not possible at deep layers.
It is not possible to improve the mechanical properties of the whole 03.

【0014】又、特開平4−325624号公報の熱処
理方法では、部分的な焼き入れが不可能であるから、デ
フケース203のように摺動部の耐磨耗性と他の部分の
切削性の両方を改善する必要がある部材には適用できな
い(適用すれば摺動部の耐磨耗性が低下する)。
Further, in the heat treatment method disclosed in Japanese Patent Laid-Open No. 4-325624, since partial quenching is not possible, wear resistance of the sliding portion and machinability of other portions like the differential case 203 are not maintained. It cannot be applied to a member that needs to improve both (if it is applied, the abrasion resistance of the sliding part is reduced).

【0015】これに加えて、脱炭処理の時間が3時間〜
5時間と長いから、その間に低炭素の脱炭層が厚くな
り、それだけデフケース203のような熱処理部材全体
の強度が低下すると共に、900℃〜950℃の高温に
鋳物を長時間保持することによる部材の変形が生じる。
その上、脱炭処理の時間が長いだけ生産性が悪く、熱エ
ネルギーの損失が大きい。
In addition to this, the time for decarburization treatment is 3 hours to
Since it is as long as 5 hours, the low carbon decarburization layer becomes thicker during that time, and the strength of the entire heat-treated member such as the differential case 203 decreases accordingly, and the member is obtained by holding the casting at a high temperature of 900 ° C to 950 ° C for a long time. Deformation occurs.
Moreover, as the decarburization time is long, the productivity is poor, and the heat energy loss is large.

【0016】そこで、この発明は、必要箇所の耐磨耗性
を高めると共に、他の部分の切削性を改善することがで
きる球状黒鉛鋳鉄の熱処理方法及びこの方法で部材を熱
処理したデファレンシャル装置の提供を目的とする。
Therefore, the present invention provides a heat treatment method for spheroidal graphite cast iron capable of improving the wear resistance of a required portion and improving the machinability of other portions, and a differential device in which a member is heat treated by this method. With the goal.

【0017】[0017]

【課題を解決するための手段】請求項1の球状黒鉛鋳鉄
の熱処理方法は、耐磨耗性を高めたい部分に脱炭防止剤
を塗布した球状黒鉛鋳鉄の部材を、850℃〜950℃
の脱炭雰囲気中に0.5時間〜2時間保持してオーステ
ナイト化及び脱炭処理した後急冷し、更に焼き戻しをす
ることを特徴とする。
According to a first aspect of the present invention, there is provided a heat treatment method for spheroidal graphite cast iron, wherein a spheroidal graphite cast iron member having a decarburization inhibitor applied to a portion where wear resistance is desired to be improved is 850 ° C to 950 ° C.
It is characterized in that it is held in the decarburizing atmosphere for 0.5 to 2 hours to be austenitized and decarburized, followed by rapid cooling and further tempering.

【0018】請求項2の球状黒鉛鋳鉄の熱処理方法は、
焼き戻しを、300℃〜450℃で0.5時間〜1.5
時間の条件で行う請求項1の球状黒鉛鋳鉄の熱処理方法
である。
The heat treatment method for spheroidal graphite cast iron according to claim 2 is:
Tempering at 300 ° C to 450 ° C for 0.5 hours to 1.5
The heat treatment method for spheroidal graphite cast iron according to claim 1, which is carried out under the condition of time.

【0019】請求項3の球状黒鉛鋳鉄の熱処理方法は、
耐磨耗性を高めたい部分に脱炭防止剤を塗布した球状黒
鉛鋳鉄の部材を、850℃〜950℃の脱炭雰囲気中に
0.5時間〜2時間保持してオーステナイト化及び脱炭
処理した後、恒温変態温度に保持して空冷するオーステ
ンパー処理を施すことを特徴とする球状黒鉛鋳鉄の熱処
理方法である。
The heat treatment method for spheroidal graphite cast iron according to claim 3 is
An austenitizing and decarburizing treatment is performed by holding a spheroidal graphite cast iron member coated with a decarburization inhibitor on a portion where wear resistance is desired to be enhanced, in a decarburizing atmosphere at 850 ° C to 950 ° C for 0.5 to 2 hours. After that, the heat treatment method for spheroidal graphite cast iron is characterized by performing an austempering treatment of maintaining the isothermal transformation temperature and air cooling.

【0020】請求項4の球状黒鉛鋳鉄の熱処理方法は、
オーステンパー処理を、240℃〜270℃、0.5時
間〜1.5時間恒温保持する条件で塩浴焼入れ等により
行う請求項3の球状黒鉛鋳鉄の熱処理方法である。
The heat treatment method for spheroidal graphite cast iron according to claim 4 is as follows:
The heat treatment method for spheroidal graphite cast iron according to claim 3, wherein the austempering treatment is carried out by salt bath quenching or the like under the conditions where the temperature is kept at 240 ° C to 270 ° C for 0.5 hour to 1.5 hours.

【0021】請求項5の球状黒鉛鋳鉄の熱処理方法は、
脱炭雰囲気が酸素であり、この酸素中に窒素を混入させ
て酸素濃度を管理する請求項1、2、3又は4の球状黒
鉛鋳鉄の熱処理方法である。
The heat treatment method for spheroidal graphite cast iron according to claim 5 is as follows:
The heat treatment method for spheroidal graphite cast iron according to claim 1, 2, 3 or 4, wherein the decarburizing atmosphere is oxygen, and nitrogen is mixed into the oxygen to control the oxygen concentration.

【0022】請求項6のデファレンシャル装置は、エン
ジンの駆動力により回転駆動される球状黒鉛鋳鉄製のデ
フケースと、デフケースの内部に回転自在に支承された
一対の出力側サイドギヤと、デフケースの内部に回転自
在に支承され、一対の出力側サイドギヤの差動回転を許
容するように噛み合い連結したピニオンギヤとを備え、
各ギヤとの摺動部に脱炭防止剤を塗布したデフケースを
請求項1、2、3、4又は5の方法で熱処理したことを
特徴とする。
According to a sixth aspect of the present invention, a differential device includes a differential case made of spheroidal graphite cast iron which is rotationally driven by a driving force of an engine, a pair of output side gears rotatably supported inside the differential case, and a rotary case inside the differential case. A pinion gear that is freely supported and is meshed and connected to allow differential rotation of a pair of output side gears,
A differential case having a decarburization inhibitor applied to a sliding portion with each gear is heat-treated by the method of claim 1, 2, 3, 4 or 5.

【0023】請求項7のデファレンシャル装置は、ピニ
オンギヤが、一対の出力側サイドギヤの径方向外側にデ
フケースに形成した収納孔に摺動回転自在に収納配置さ
れ、一対のサイドギヤと各別に噛み合う第1ギヤ部及び
互いに噛み合う第2ギヤ部を有する少なくとも一対のピ
ニオンギヤであることを特徴とする。
According to another aspect of the differential device of the present invention, the pinion gear is slidably rotatably housed in a housing hole formed in the differential case radially outside the pair of output side gears, and the first gear meshes with the pair of side gears. And at least a pair of pinion gears having a second gear portion meshing with each other.

【0024】[0024]

【作用】一般に、浸炭鋼などでは焼きを入れたくない部
分に防炭剤を塗布し、炭素量の高い雰囲気中で熱処理す
る方法は従来から行われてきたが、高炭素の鋳物の場合
は素地の炭素量が高いからこの方法は適用できない。そ
こで、本発明の熱処理方法はこれとは全く反対の考えに
よるものであり、下記のように、球状黒鉛鋳鉄で焼きを
入れたい部分に脱炭防止剤を塗布し、脱炭雰囲気中でオ
ーステナイト化しながら脱炭処理をするものである。
[Function] Generally, in the case of carburized steel, etc., a method of applying a carburizing agent to a portion which is not desired to be hardened and heat-treating it in an atmosphere having a high carbon content has been conventionally practiced. This method is not applicable due to the high carbon content of. Therefore, the heat treatment method of the present invention is based on a completely opposite idea.As shown below, a decarburization inhibitor is applied to a portion to be hardened with spheroidal graphite cast iron, and austenite is formed in a decarburizing atmosphere. While performing decarburization treatment.

【0025】請求項1〜4の球状黒鉛鋳鉄の熱処理方法
は、球状黒鉛鋳鉄の部材の脱炭を防止したい部分(耐磨
耗性を高めたい部分)に脱炭防止剤を塗布し、850℃
〜950℃の脱炭雰囲気中に0.5時間〜2時間保持し
てオーステナイト化しながら脱炭処理をする(一次処理
工程)。
In the heat treatment method for spheroidal graphite cast iron according to claims 1 to 4, a decarburization inhibitor is applied to a portion of the spheroidal graphite cast iron member where decarburization is desired to be prevented (a portion where abrasion resistance is desired to be enhanced), and the temperature is 850 ° C.
Decarburization treatment is carried out by holding in a decarburization atmosphere at 950 ° C for 0.5 hours to 2 hours while austenitizing (primary treatment step).

【0026】この一次処理工程により、脱炭防止剤を塗
布した部分は脱炭が防止され、含有炭素量が高く保たれ
て焼き入れ可能になり、他の部分は脱炭されて表層に低
炭素の脱炭層が形成される。
By this primary treatment step, decarburization is prevented in the portion coated with the decarburization inhibitor, the carbon content is kept high and quenching is possible, and the other portion is decarburized and the surface layer has low carbon content. A decarburized layer is formed.

【0027】その後、請求項1では脱炭処理した部材を
急冷した後、焼き戻しをする。請求項2ではこの焼き戻
しを、300℃〜450℃で0.5時間〜1.5時間の
条件で行う。又、請求項3では脱炭処理した部材を恒温
変態温度に保持して空冷するオーステンパー処理を施
す。請求項4ではこのオーステンパー処理を、240℃
〜270℃の塩浴に0.5時間〜1.5時間恒温保持す
る条件で行う(二次処理工程)。
After that, in the first aspect, the decarburized member is rapidly cooled and then tempered. In the second aspect, the tempering is performed at 300 ° C. to 450 ° C. for 0.5 hours to 1.5 hours. Further, in claim 3, the decarburized member is subjected to an austempering treatment in which the member is kept at a constant temperature transformation temperature and air-cooled. In claim 4, the austempering treatment is performed at 240 ° C.
It is carried out under a condition of keeping a constant temperature in a salt bath at ˜270 ° C. for 0.5 to 1.5 hours (secondary treatment step).

【0028】請求項1、2では、二次処理工程によっ
て、脱炭が防止された炭素量の高い部分は、図4のよう
に、表面から深部までの全層101が硬度と靱性の高い
マルテンサイトの焼き戻し組織になり、脱炭された部分
は、図5のように、表層103に機械加工性のよいフェ
ライトとパーライトの混合組織が形成され、深層部10
5はマルテンサイトの焼き戻し組織になる。
In the first and second aspects, in the high carbon content portion where decarburization is prevented by the secondary treatment step, as shown in FIG. 4, the whole layer 101 from the surface to the deep portion has high hardness and toughness. As shown in FIG. 5, in the decarburized portion that becomes the tempered structure of the site, a mixed structure of ferrite and pearlite with good machinability is formed in the surface layer 103, and the deep layer portion 10
5 has a tempered structure of martensite.

【0029】又、請求項3、4では、二次処理工程によ
って、脱炭が防止された炭素量の高い部分は、図4のよ
うに、全層101が硬度と靱性の高いベイナイト組織に
なり、脱炭された部分は、図5のように、表層部103
に機械加工性のよいフェライトとパーライトの混合組織
が形成され、深層部105はベイナイト組織になる。
In the third and fourth aspects, in the high carbon content portion where decarburization is prevented by the secondary treatment step, the entire layer 101 has a bainite structure having high hardness and toughness as shown in FIG. , The decarburized part, as shown in FIG.
A mixed microstructure of ferrite and pearlite having good machinability is formed in the deep layer 105, and the deep layer 105 has a bainite microstructure.

【0030】こうして、摺動部などは硬度と靱性を上げ
て大きな耐磨耗性を与えると共に、他の部分は機械加工
性を高めて、加工時間を短縮し、刃物などの寿命を伸ば
すことができる。
In this manner, the sliding portion and the like can be increased in hardness and toughness to provide a large amount of wear resistance, and the other portions can be improved in machinability, shortening the processing time and extending the life of the cutting tool or the like. it can.

【0031】又、脱炭した表層部以外は焼きが入るから
部材全体の機械的強度も大幅に向上する。
Further, since the parts other than the decarburized surface part are baked, the mechanical strength of the whole member is greatly improved.

【0032】このように、脱炭防止剤を塗布するだけで
必要な部分の焼き入れができるから、形状が複雑で高周
波焼き入れが適用できない部材や場所にも容易に適用す
ることができる。
As described above, since it is possible to quench the necessary portion only by applying the decarburization preventing agent, it is possible to easily apply it to a member or a place where the induction hardening cannot be applied due to its complicated shape.

【0033】更に、脱炭時間を従来例より大幅に短い
0.5時間〜2時間に短縮し、脱炭温度を850℃〜9
50℃に低くしたから、過剰な脱炭による部材の強度低
下及び長時間の加熱による鋳物の変形が防止されると共
に、生産性が大きく向上し、熱エネルギーの損失も低減
される。
Further, the decarburization time is shortened to 0.5 hours to 2 hours, which is much shorter than the conventional example, and the decarburization temperature is 850 ° C. to 9 hours.
Since the temperature is lowered to 50 ° C., the strength of the member is not lowered due to excessive decarburization, the casting is prevented from being deformed by heating for a long time, the productivity is greatly improved, and the heat energy loss is reduced.

【0034】請求項5の球状黒鉛鋳鉄の熱処理方法は、
請求項1、2、3又は4の球状黒鉛鋳鉄の熱処理方法に
おいて、脱炭雰囲気を酸素にし、酸素中に窒素を混入さ
せて酸素濃度を管理するものであり、熱処理される部材
中の炭素は酸素と反応して脱炭される。又、窒素の混入
量を変えることにより脱炭雰囲気と炭素との反応速度を
制御して、脱炭層の厚さを所望の値に調整できる。
The heat treatment method for spheroidal graphite cast iron according to claim 5 is as follows:
The heat treatment method for spheroidal graphite cast iron according to claim 1, 2, 3 or 4, wherein the decarburizing atmosphere is oxygen and nitrogen is mixed into oxygen to control the oxygen concentration, and the carbon in the member to be heat treated is Decarburized by reacting with oxygen. Further, the reaction rate between the decarburizing atmosphere and carbon can be controlled by changing the amount of nitrogen mixed, and the thickness of the decarburizing layer can be adjusted to a desired value.

【0035】請求項6のデファレンシャル装置は、請求
項1,2,3,4又は5の発明による作用に加え、球状
黒鉛鋳鉄製のデフケースのサイドギヤ及びピニオンギヤ
との摺動部は脱炭防止剤が塗布され、熱処理により硬化
されているので十分な耐磨耗性が得られる。
In the differential device of the sixth aspect, in addition to the function of the first, second, third, fourth or fifth aspect of the invention, a decarburization preventive agent is applied to the sliding portion of the differential case made of spheroidal graphite cast iron with the side gear and the pinion gear. Sufficient abrasion resistance is obtained because it is applied and cured by heat treatment.

【0036】請求項7のデファレンシャル装置は、請求
項6の発明による作用に加え、ピニオンギヤは球状黒鉛
鋳鉄製のデフケースに形成された収納孔に摺動回転自在
に収納配置されているので、デフケースのこの摺動部も
その他の摺動部と共に脱炭防止剤が塗布され、熱処理に
より硬化されているので十分な耐磨耗性が得られる。
In the differential device of the seventh aspect, in addition to the operation of the sixth aspect of the invention, the pinion gear is slidably rotatably accommodated in the accommodating hole formed in the diff case made of spheroidal graphite cast iron. Since the decarburization-preventing agent is applied to this sliding portion as well as the other sliding portions and is cured by heat treatment, sufficient abrasion resistance can be obtained.

【0037】[0037]

【実施例】図1、2、3、4、5により本発明の第1実
施例を説明する。この実施例は請求項6,7のデファレ
ンシャル装置であり、請求項1、2、5の方法によって
熱処理されている。図1はこの実施例のデファレンシャ
ル装置1を示している。なお、左右の方向は図1での左
右の方向であり、符号を与えていない部材等は図示され
ていない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of the present invention will be described with reference to FIGS. This embodiment is the differential apparatus according to claims 6 and 7, and is heat-treated by the method according to claims 1, 2, and 5. FIG. 1 shows a differential device 1 of this embodiment. The left and right directions are the left and right directions in FIG. 1, and members and the like without reference numerals are not shown.

【0038】図1のように、デファレンシャル装置1の
デフケース3はケーシング本体5にカバー7をボルト9
で固定し、抜け止めプレート11をボルトで固定して構
成されている。デファレンシャル装置1はデフキャリヤ
の内部に配置されており、デフケース3の左右のボス部
13、15はベアリングを介してデフキャリヤに支承さ
れている。デフキャリヤにはオイル溜りが設けられてお
り、デファレンシャル装置1は、静止状態では下部がこ
のオイル溜りに浸されており、回転するとオイル溜りか
らオイルを撥ね上げる。
As shown in FIG. 1, in the differential case 3 of the differential device 1, the cover 7 is attached to the casing body 5 by the bolts 9.
And the retaining plate 11 is fixed with bolts. The differential device 1 is disposed inside the differential carrier, and the left and right boss portions 13 and 15 of the differential case 3 are supported by the differential carrier via bearings. The differential carrier is provided with an oil sump, and the lower part of the differential device 1 is immersed in this oil sump in a stationary state, and when rotated, the oil splashes up from the oil sump.

【0039】デフケース3の内部には、それぞれヘリカ
ルギヤで構成された左右のサイドギヤ17、19(出力
側サイドギヤ)が配置されている。
Inside the differential case 3, left and right side gears 17 and 19 (output side gears) each formed of a helical gear are arranged.

【0040】各サイドギヤ17,19はそれぞれの中空
のボス部21、23でデフケース3の軸支部25、27
に支承されている。左右の車輪側出力軸はそれぞれデフ
ケース3のボス部13、15を貫通し、サイドギヤ1
7、19のボス部21、23にスプライン連結されてい
る。サイドギヤ17、19とデフケース3との間にはそ
れぞれワッシャ29、31が配置され、サイドギヤ1
7、19の間にはワッシャ33が配置されている。
The respective side gears 17 and 19 have hollow boss portions 21 and 23, respectively, which are pivotal support portions 25 and 27 of the differential case 3.
Is supported by. The left and right wheel side output shafts pass through the boss portions 13 and 15 of the differential case 3, respectively, and
7 and 19 are splined to the boss portions 21 and 23. Washers 29 and 31 are arranged between the side gears 17 and 19 and the differential case 3, respectively.
A washer 33 is arranged between 7 and 19.

【0041】デフケース3には長短の収納孔35、37
が周方向に複数組形成されている。これらの収納孔3
5、37にはそれぞれヘリカルギヤで構成された長短の
ピニオンギヤ39、41が摺動回転自在に収納されてい
る。
The differential case 3 has long and short storage holes 35, 37.
Are formed in plural sets in the circumferential direction. These storage holes 3
Long and short pinion gears 39 and 41, which are helical gears, are housed in reference numerals 5 and 37 so as to be slidably rotatable.

【0042】長いピニオンギヤ39は、第1と第2のギ
ヤ部43、45とこれらを連結する小径の軸部47とか
らなり、第1ギヤ部43は左のサイドギヤ17と噛み合
っている。又、短いピニオンギヤ41は、第1と第2の
ギヤ部49、51からなり、第1ギヤ部49は右のサイ
ドギヤ19と噛み合い、第2ギヤ部51はピニオンギヤ
39の第2ギヤ部45と噛み合っている。
The long pinion gear 39 is composed of first and second gear portions 43, 45 and a small diameter shaft portion 47 connecting them, and the first gear portion 43 meshes with the left side gear 17. The short pinion gear 41 is composed of first and second gear portions 49 and 51, the first gear portion 49 meshes with the right side gear 19, and the second gear portion 51 meshes with the second gear portion 45 of the pinion gear 39. ing.

【0043】デフケース3を回転させるエンジンの駆動
力は、ピニオンギヤ39、41からサイドギヤ17、1
9を介して左右の出力軸側に分配される。又、例えば悪
路走行中に、出力軸間に駆動抵抗差が生じると各ピニオ
ンギヤ39、41の自転によってエンジンの駆動力は左
右各側に差動分配される。
The driving force of the engine for rotating the differential case 3 is from the pinion gears 39, 41 to the side gears 17, 1.
It is distributed to the left and right output shaft sides via 9. Further, for example, when a driving resistance difference occurs between the output shafts while traveling on a rough road, the driving force of the engine is differentially distributed to the left and right sides by the rotation of the pinion gears 39 and 41.

【0044】トルクの伝達中、各ピニオンギヤ39、4
1の歯先はサイドギヤ17、19との噛み合い反力によ
り収納孔35、37の壁面に押し付けられて摩擦抵抗が
発生する。又、ヘリカルギヤの噛み合いスラスト力によ
って、ピニオンギヤ39の左端はスラストワッシャ29
を介してカバー7に押し付けられ、右端は抜け止めプレ
ート11に押し付けられる。又、ピニオンギヤ41の左
端はケーシング本体5に押し付けられ、右端は抜け止め
プレート11に押し付けられる。更に、サイドギヤ17
はスラストワッシャ29を介してカバー7に押し付けら
れ、サイドギヤ19はスラストワッシャ31を介してケ
ーシング本体5に押し付けられる。又、各サイドギヤ1
7、19はスラストワッシャ33を介して互いに押圧し
あう。こうして、各摺動部で摩擦抵抗が発生し、これら
の摩擦抵抗によってトルク感応型の差動制限力が得られ
る。
During transmission of torque, each pinion gear 39, 4
The tooth tip of No. 1 is pressed against the wall surfaces of the storage holes 35, 37 by the reaction force of meshing with the side gears 17, 19, and frictional resistance is generated. In addition, the meshing thrust force of the helical gear causes the left end of the pinion gear 39 to move to the thrust washer 29.
It is pressed against the cover 7 via and the right end is pressed against the retaining plate 11. Further, the left end of the pinion gear 41 is pressed against the casing body 5, and the right end thereof is pressed against the retaining plate 11. Furthermore, the side gear 17
Is pressed against the cover 7 via the thrust washer 29, and the side gear 19 is pressed against the casing body 5 via the thrust washer 31. Also, each side gear 1
7 and 19 press each other through the thrust washer 33. In this way, frictional resistance is generated in each sliding portion, and a torque-sensitive differential limiting force is obtained by these frictional resistances.

【0045】デフケース3には開口53、55が設けら
れており、ボス部13、15の内周には螺旋状のオイル
溝57、57が形成されている。デファレンシャル装置
1の回転時はオイル溜りから撥ね上げられたオイルが、
又静止時にはオイル溜りのオイルが、開口53、55と
オイル溝57、57とからデフケース3に流出入し、収
納孔35、37や各ギヤの噛み合い部などに供給され、
これらを潤滑する。
The differential case 3 is provided with openings 53 and 55, and spiral oil grooves 57 and 57 are formed on the inner circumferences of the boss portions 13 and 15. When the differential device 1 rotates, the oil splashed from the oil sump is
When stationary, the oil in the oil sump flows into and out of the differential case 3 through the openings 53, 55 and the oil grooves 57, 57 and is supplied to the storage holes 35, 37 and the meshing parts of the gears.
Lubricate these.

【0046】こうして、デファレンシャル装置1が構成
されている。
Thus, the differential device 1 is constructed.

【0047】デファレンシャル装置1を搭載した車両
は、デファレンシャル装置1のトルク感応型差動制限力
によって、発進時や加速時のように大きなトルクを掛け
た時の車体の挙動が安定し、優れた操縦性と安定性とが
得られる。
In the vehicle equipped with the differential device 1, the torque sensitive differential limiting force of the differential device 1 stabilizes the behavior of the vehicle body when a large torque is applied such as at the time of starting or accelerating, and is excellent in maneuvering. And stability are obtained.

【0048】上記のように、差動制限力を発生させるデ
フケース3と各ギヤとの摺動部には高い耐磨耗性が要求
される。これに加えて、デフケース3の切削部には良好
な切削性が要求される。そこで、デフケース3にはこれ
らの相反する要求を満足させるために次のような熱処理
が施される。
As described above, a high abrasion resistance is required for the sliding portion between the differential case 3 for generating the differential limiting force and each gear. In addition to this, the cutting portion of the differential case 3 is required to have good cutting performance. Therefore, the differential case 3 is subjected to the following heat treatment in order to satisfy these contradictory requirements.

【0049】図2、3によりケーシング本体5を例にし
て、この熱処理工程とその前後に行われる切削加工工程
について説明する。なお、図2は図1のデファレンシャ
ル装置のケーシング本体5と同様な形状のケーシング本
体を示し、符号は図1と同符号を与えてある。
The heat treatment step and the cutting steps performed before and after the heat treatment step will be described with reference to FIGS. 2 shows a casing body having the same shape as the casing body 5 of the differential device shown in FIG. 1, and the reference numerals are the same as those in FIG.

【0050】デフケース3は球状黒鉛鋳鉄で作られてい
る。
The differential case 3 is made of spheroidal graphite cast iron.

【0051】先ず、ケーシング本体5の収納孔35、3
7と、ケーシング本体5とサイドギヤ19(スラストワ
ッシャ31)との摺動部59と、ケーシング本体5とピ
ニオンギヤ41との摺動部61には、次の熱処理に先立
って、切削加工を施しておく。
First, the housing holes 35, 3 of the casing body 5
7, the sliding portion 59 between the casing body 5 and the side gear 19 (thrust washer 31) and the sliding portion 61 between the casing body 5 and the pinion gear 41 are cut before the next heat treatment. .

【0052】次に、図2、3に示したように、収納孔3
5、37と摺動部59、61に脱炭防止剤(主にCu
系)を塗布する。
Next, as shown in FIGS.
Decarburization preventive agent (mainly Cu
System).

【0053】脱炭防止剤を塗布したケーシング本体5
を、900℃の脱炭雰囲気中で1時間〜2時間保持し、
組織をオーステナイト化すると共に、脱炭処理する。こ
の保持時間はケーシング本体5の肉厚が厚ければこの範
囲内で長くし、薄ければ短くする。脱炭雰囲気は主成分
を酸素にし、窒素を混入して酸素濃度を調整したもので
ある。
Casing body 5 coated with a decarburizing inhibitor
For 1 to 2 hours in a decarburizing atmosphere at 900 ° C.,
The structure is austenitized and decarburized. If the wall thickness of the casing body 5 is thick, this holding time is long within this range, and if thin, it is shortened. The decarburizing atmosphere is one in which oxygen is the main component and nitrogen is mixed to adjust the oxygen concentration.

【0054】この熱処理の間、脱炭防止剤を塗布した収
納孔35、37と摺動部59、61は、脱炭が防止され
表層を含めて全層が高炭素量の鋳物素地のままになる。
又、脱炭を防止しない部分では、表層の炭素が脱炭雰囲
気中の酸素と反応して脱炭され表面に脱炭層が形成さ
れ、その内側は高炭素量の鋳物素地がそのまま残され
る。ここで、脱炭雰囲気中の窒素混入量を変えると脱炭
雰囲気の炭素との反応速度や脱炭層の厚さをなどを制御
することができる。脱炭層の厚さは後工程の切削加工で
の取り代を考慮して0.1mm〜0.2mmにする。
During this heat treatment, the decarburization-preventing storage holes 35 and 37 and the sliding parts 59 and 61 are prevented from decarburization, and all layers including the surface layer remain as the casting base material having a high carbon content. Become.
Further, in the portion that does not prevent decarburization, the carbon in the surface layer reacts with oxygen in the decarburizing atmosphere to decarburize, and a decarburized layer is formed on the surface, and the casting base material with a high carbon content is left inside. Here, by changing the amount of nitrogen mixed in the decarburizing atmosphere, the reaction rate with carbon in the decarburizing atmosphere and the thickness of the decarburizing layer can be controlled. The thickness of the decarburized layer is set to 0.1 mm to 0.2 mm in consideration of the machining allowance in the cutting process in the subsequent process.

【0055】その後、ケーシング本体5を脱炭雰囲気中
で850℃まで炉冷して15分間保持し、ケーシング本
体5の肉厚部の内部まで充分にオーステナイト化させる
(一次処理工程)。
Then, the casing body 5 is furnace-cooled to 850 ° C. in a decarburizing atmosphere and kept for 15 minutes to sufficiently austenize the inside of the thick portion of the casing body 5 (primary treatment step).

【0056】次に、一次処理後のケーシング本体5を1
20℃まで油で急冷し、更に空冷して焼入れをする。
Next, the casing body 5 after the primary treatment is
Quench with oil to 20 ° C., then air cool and quench.

【0057】この焼き入れによって、収納孔35、37
部と摺動部59、61部の全層と、脱炭部の深層はマル
テンサイト組織になり、脱炭層はフェライトとパーライ
トの混合組織になる。
By this quenching, the storage holes 35, 37
Part and all the layers of the sliding parts 59 and 61 and the deep layer of the decarburized part have a martensitic structure, and the decarburized layer has a mixed structure of ferrite and pearlite.

【0058】次いで、焼き入れ後のケーシング本体5
を、400℃に1時間保持した後、大気中で冷却して焼
き戻しを行う(二次処理工程)。
Next, the casing body 5 after quenching
Is held at 400 ° C. for 1 hour, then cooled in the atmosphere and tempered (secondary treatment step).

【0059】この焼き戻しにより、図4のように、収納
孔35、37と摺動部59、61の部分は、全層101
がマルテンサイトの焼戻し組織になり、脱炭された部分
は、図5のように、表層部(脱炭層)103がフェライ
トとパーライトの混合組織になり、深層部105はマル
テンサイトの焼戻し組織になる。
As a result of this tempering, as shown in FIG. 4, the storage holes 35, 37 and the sliding portions 59, 61 are covered with all layers 101.
Shows the tempered structure of martensite, and in the decarburized portion, as shown in FIG. 5, the surface layer portion (decarburized layer) 103 has a mixed structure of ferrite and pearlite, and the deep layer portion 105 has a tempered structure of martensite. .

【0060】マルテンサイトの焼戻し組織は硬度と靱性
が高く、収納孔35、37と摺動部59、61は優れた
耐磨耗性が与えられる。又、フェライトとパーライトの
混合組織は切削加工性がよい。この切削加工部は脱炭層
の厚さ0.1mm〜0.2mm以下の厚さで切削加工さ
れる。
The tempered structure of martensite has high hardness and toughness, and the storage holes 35, 37 and the sliding portions 59, 61 are provided with excellent wear resistance. Further, the mixed structure of ferrite and pearlite has good machinability. This cutting portion is cut with a thickness of the decarburized layer of 0.1 mm to 0.2 mm or less.

【0061】こうして、デフケース3は大きな耐磨耗性
が必要な収納孔35、37と摺動部59、61には高い
硬度と靱性とが与えられて耐久性が大幅に向上する。
又、他の部分は表層部の切削加工性が改善され、切削時
間が短縮し、刃物などの寿命が伸びる。
Thus, the diff case 3 is provided with high hardness and toughness in the housing holes 35 and 37 and the sliding portions 59 and 61, which require great wear resistance, and the durability is greatly improved.
Further, in other portions, the machinability of the surface layer portion is improved, the cutting time is shortened, and the life of the cutting tool is extended.

【0062】更に、脱炭層103以外は焼きが入るから
デフケース3全体の機械的強度も大幅に向上する。
Further, since the parts other than the decarburized layer 103 are baked, the mechanical strength of the differential case 3 as a whole is significantly improved.

【0063】又、図3のように、収納孔35、37はピ
ニオンギヤ39、41とサイドギヤ17、19との噛み
合いのために一部が切断された円筒状の複雑な形状を呈
しており、高周波焼き入れは困難であるが、上記のよう
に、請求項1、2、5の熱処理方法によれば必要な部分
に脱炭防止剤を塗布するだけで、容易に焼き入れが行え
る。
Further, as shown in FIG. 3, the storage holes 35 and 37 have a complicated cylindrical shape, a part of which is cut away for meshing of the pinion gears 39 and 41 and the side gears 17 and 19. Although quenching is difficult, as described above, according to the heat treatment methods of claims 1, 2 and 5, quenching can be easily performed by only applying a decarburization inhibitor to a necessary portion.

【0064】更に、脱炭時間を従来例より大幅に短い
0.5時間〜2時間に短縮し、脱炭温度を850℃〜9
50℃に低くしたから、デフケース3の過剰な脱炭によ
る強度低下と長時間の加熱による変形とが防止されると
共に、生産性が大きく向上し、熱エネルギーの損失も低
減される。
Further, the decarburization time was shortened to 0.5 hours to 2 hours, which is much shorter than the conventional example, and the decarburization temperature was 850 ° C to 9 hours.
Since the temperature is lowered to 50 ° C., strength reduction due to excessive decarburization of the differential case 3 and deformation due to long-time heating are prevented, productivity is greatly improved, and heat energy loss is reduced.

【0065】又、脱炭雰囲気の酸素中に窒素を混入させ
て酸素濃度の管理する請求項5の熱処理方法によれば、
窒素の混入量を変えることにより脱炭速度を制御して、
脱炭層の厚さを所望の値に調整することができる。
Further, according to the heat treatment method of claim 5, wherein nitrogen is mixed into oxygen in the decarburizing atmosphere to control the oxygen concentration.
By controlling the decarburization rate by changing the amount of nitrogen mixed,
The thickness of the decarburized layer can be adjusted to a desired value.

【0066】次に、第2実施例の説明をする。この実施
例は請求項3、4、5の特徴を備えており、第1実施例
と同様に請求項6,7に示すデファレンシャル装置1の
デフケース3の熱処理方法に適用される。
Next, the second embodiment will be described. This embodiment has the features of claims 3, 4 and 5, and is applied to the heat treatment method for the differential case 3 of the differential device 1 as described in claims 6 and 7 as in the first embodiment.

【0067】以下、第1実施例に倣い、ケーシング本体
5を例にして、この熱処理工程とその前後に行われる切
削加工工程の説明をする。
Following the first embodiment, the heat treatment step and the cutting steps performed before and after the heat treatment step will be described by taking the casing body 5 as an example.

【0068】先ず、ケーシング本体5の収納孔35、3
7と摺動部59、61を切削加工し、これらに脱炭防止
剤を塗布した後、ケーシング本体5を900℃の脱炭雰
囲気中で1時間〜2時間保持してオーステナイト化する
と共に脱炭処理し、更に、ケーシング本体5を脱炭雰囲
気中で850℃まで炉冷して15分間保持し、ケーシン
グ本体5の内部まで充分にオーステナイト化させる。こ
こまでの一次処理工程は第1実施例と同様である。
First, the housing holes 35, 3 of the casing body 5
After cutting 7 and sliding parts 59 and 61 and applying a decarburization preventive agent to these, casing body 5 is retained in a decarburizing atmosphere at 900 ° C. for 1 to 2 hours to be austenitized and decarburized. Further, the casing body 5 is furnace-cooled to 850 ° C. in a decarburizing atmosphere and held for 15 minutes to sufficiently austenize the inside of the casing body 5. The primary processing steps up to this point are the same as in the first embodiment.

【0069】次いで、ケーシング本体5を260℃の塩
浴中に1時間保持し、オーステンパー処理をする(二次
処理工程)。
Next, the casing body 5 is held in a salt bath at 260 ° C. for 1 hour to be austempered (secondary treatment step).

【0070】このオーステンパー処理によって、図4の
ように、収納孔35、37と摺動部59、61の部分
は、全層101がベイナイト組織になり、脱炭された部
分は、図5のように、表層部(脱炭層)103がフェラ
イトとパーライトの混合組織になり、深層部105はベ
イナイト組織になる。
As a result of this austempering treatment, as shown in FIG. 4, all layers 101 of the storage holes 35 and 37 and the sliding portions 59 and 61 have a bainite structure, and the decarburized portion of FIG. Thus, the surface layer portion (decarburized layer) 103 has a mixed structure of ferrite and pearlite, and the deep layer portion 105 has a bainite structure.

【0071】ベイナイト組織は硬度と靱性が高く、収納
孔35、37と摺動部59、61は優れた耐磨耗性が与
えられる。又、フェライトとパーライトの混合組織は切
削加工性がよい。この切削加工部は脱炭層の厚さ0.1
mm〜0.2mm以下の厚さで切削加工される。
The bainite structure has high hardness and toughness, and the storage holes 35, 37 and the sliding portions 59, 61 are provided with excellent wear resistance. Further, the mixed structure of ferrite and pearlite has good machinability. This cutting part has a decarburized layer thickness of 0.1.
It is cut to a thickness of mm to 0.2 mm or less.

【0072】デフケース3は、こうして、大きな耐磨耗
性が必要な収納孔35、37と摺動部59、61が硬度
と靱性の高いベイナイト組織になり耐久性が大幅に改善
される。又、他の部分の表層部は切削加工性のよいフェ
ライトとパーライトの混合組織になり、加工時間が短縮
され刃物などの寿命が伸びる。更に、脱炭層103以外
は焼きが入るからデフケース3全体の機械的強度も大幅
に向上する。
In the differential case 3, thus, the storage holes 35, 37 and the sliding portions 59, 61, which require great wear resistance, have a bainite structure with high hardness and toughness, and the durability is greatly improved. In addition, the surface layer portion of the other portion has a mixed structure of ferrite and pearlite with good machinability, which shortens the machining time and prolongs the life of the blade and the like. Further, since the parts other than the decarburized layer 103 are baked, the mechanical strength of the differential case 3 as a whole is significantly improved.

【0073】又、請求項3、4の熱処理方法によれば、
収納孔35、37のような形状が複雑な箇所でも焼き入
れが容易であり、請求項5の熱処理方法によれば、窒素
の混入量を変えることにより脱炭速度を制御して、脱炭
層の厚さを所望の値に調整することができる。
According to the heat treatment method of claims 3 and 4,
Quenching is easy even in a complicated shape such as the storage holes 35, 37. According to the heat treatment method of claim 5, the decarburization rate is controlled by changing the amount of nitrogen mixed, and the decarburization layer is formed. The thickness can be adjusted to the desired value.

【0074】更に、脱炭時間を従来例より大幅に短縮
し、脱炭温度も低くしたから、デフケース3の過剰な脱
炭による強度低下と長時間の加熱による変形とが防止さ
れると共に、生産性が大きく向上し、熱エネルギーの損
失も低減される。
Further, since the decarburizing time is greatly shortened and the decarburizing temperature is lowered as compared with the conventional example, the strength reduction due to the excessive decarburization of the differential case 3 and the deformation due to the heating for a long time are prevented, and the production Properties are greatly improved and the loss of heat energy is also reduced.

【0075】なお、請求項1の焼き戻し及び請求項3の
オーステンパー処理は、それぞれ請求項2の焼き戻し条
件及び請求項4のオーステンパー処理条件と異なった条
件で行ってもよい。
The tempering according to claim 1 and the austempering treatment according to claim 3 may be performed under different conditions from the tempering conditions according to claim 2 and the austempering treatment according to claim 4, respectively.

【0076】又、請求項7のデファレンシャル装置にお
いて、ピニオンギヤとサイドギヤはヘリカルギヤでなく
スパーギヤで構成してもよい。
Further, in the differential device of the seventh aspect, the pinion gear and the side gear may be constituted by a spur gear instead of a helical gear.

【0077】このデファレンシャル装置はリヤデフ(後
輪側の車軸デフ)や、フロントデフ(前輪側の車軸デ
フ)や、センターデフ(前輪と後輪とにエンジンの駆動
力を分配するデファレンシャル装置)のいずれにも用い
られる。
This differential device is either a rear diff (rear wheel side axle diff), a front diff (front wheel side axle diff), or a center diff (differential device for distributing the driving force of the engine to the front and rear wheels). Also used for.

【0078】[0078]

【発明の効果】請求項1〜4の球状黒鉛鋳鉄の熱処理方
法は、球状黒鉛鋳鉄製の部材で摺動部のように耐磨耗性
を高めたい部分に脱炭防止剤を塗布し、850℃〜95
0℃の脱炭雰囲気中に0.5時間〜2時間保持してオー
ステナイト化しながら脱炭処理を行い、脱炭防止剤を塗
布した部分の含有炭素量を高く保ちながら、他の部分の
表層に低炭素の層を形成し(一次処理工程)、次いで、
請求項1では脱炭処理した部材を急冷した後、焼き戻し
を行い、請求項2ではこの焼き戻しを、300℃〜45
0℃で0.5時間〜1.5時間の条件で行う。又、請求
項3では脱炭処理した部材を恒温変態温度に保持して空
冷するオーステンパー処理を施し、請求項4ではこのオ
ーステンパー処理を、240℃〜270℃の塩浴に0.
5時間〜1.5時間恒温保持する条件で行う(二次処理
工程)。
The heat treatment method for spheroidal graphite cast iron according to claims 1 to 4 comprises applying a decarburization inhibitor to a portion of a spheroidal graphite cast iron member such as a sliding portion where wear resistance is desired to be enhanced, and 850 ℃ ~ 95
Decarburization treatment is carried out while austenitizing by holding in a decarburizing atmosphere at 0 ° C for 0.5 to 2 hours, and while maintaining a high carbon content in the portion coated with the decarburizing inhibitor, the surface layer of other portions is Forming a low carbon layer (primary treatment step), then
In claim 1, tempering is performed after quenching the decarburized member, and in claim 2, the tempering is performed at 300 ° C to 45 ° C.
It is carried out at 0 ° C. for 0.5 hours to 1.5 hours. Further, in claim 3, an austempering treatment is carried out in which the decarburized member is held at a constant temperature transformation temperature and air-cooled, and in the claim 4, the austempering treatment is carried out in a salt bath of 240 ° C to 270 ° C.
It is performed under the condition that the temperature is kept constant for 5 hours to 1.5 hours (secondary treatment step).

【0079】請求項1、2では、これらの二次処理工程
によって、脱炭が防止された部分は表面から深部までの
全層を硬度と靱性の高いマルテンサイトの焼き戻し組織
にし、脱炭された部分は、表層を機械加工性のよいフェ
ライトとパーライトの混合組織にし、深層部をマルテン
サイトの焼き戻し組織にする。
In the first and second aspects, the decarburization-prevented portion is decarburized by a martensite tempered structure having high hardness and toughness in the entire layer from the surface to the deep portion by these secondary treatment steps. In the portion where the deep layer is formed, the surface layer has a mixed structure of ferrite and pearlite, which has good machinability, and the deep layer has a tempered structure of martensite.

【0080】又、請求項3、4では、これらの二次処理
工程によって、脱炭が防止された部分は、全層を硬度と
靱性の高いベイナイト組織にし、脱炭された部分は、表
層を機械加工性のよいフェライトとパーライトの混合組
織にし、深層部をベイナイト組織にする。
Further, in claims 3 and 4, the part where decarburization is prevented by these secondary treatment steps has a bainite structure with high hardness and toughness in the entire layer, and the decarburized part has the surface layer. A mixed structure of ferrite and pearlite with good machinability is used, and a bainite structure is formed in the deep layer.

【0081】脱炭層には焼が入らず機械加工性が向上す
ると共に、脱炭層以外には焼きが入るから表面の耐磨耗
性と部材全体の機械的強度とが大幅に向上する。
Since the decarburized layer is not burnt and the machinability is improved, the other parts than the decarburized layer are baked, so that the abrasion resistance of the surface and the mechanical strength of the entire member are significantly improved.

【0082】こうして、必要な部分だけ脱炭して機械加
工性を高め、加工時間を短縮し刃物などの寿命を伸ばす
と共に、脱炭層以外は硬度と靱性とを上げて大きな耐磨
耗性と機械的強度とを与えることができる。
Thus, decarburizing only necessary portions to improve machinability, shorten machining time and prolong the life of blades and the like, and increase hardness and toughness except for the decarburized layer to improve wear resistance and machine resistance. Strength can be given.

【0083】又、脱炭防止剤を塗布するだけで必要な部
分の焼き入れを行えるから、形状が複雑で高周波焼き入
れが適用できない部材や箇所にも容易に適用することが
できる。
Further, since it is possible to quench the necessary portion only by applying the decarburization preventing agent, it is possible to easily apply it to a member or a portion having a complicated shape and to which induction hardening cannot be applied.

【0084】更に、脱炭時間を従来例より大幅に短い
0.5時間〜2時間に短縮し、脱炭温度を850℃〜9
50℃に低くしたから、過剰な脱炭による部材の強度低
下及び長時間の加熱による鋳物の変形が防止されると共
に、生産性が大きく向上し、熱エネルギーの損失も低減
される。
Further, the decarburization time was shortened to 0.5 hours to 2 hours, which was much shorter than that of the conventional example, and the decarburization temperature was 850 ° C to 9 hours.
Since the temperature is lowered to 50 ° C., the strength of the member is not lowered due to excessive decarburization, the casting is prevented from being deformed by heating for a long time, the productivity is greatly improved, and the heat energy loss is reduced.

【0085】請求項5の球状黒鉛鋳鉄の熱処理方法は、
請求項1、2、3又は4の球状黒鉛鋳鉄の熱処理方法に
おいて、脱炭雰囲気を酸素にすると共に、酸素中に窒素
を混入させて酸素濃度を管理するものであり、窒素の混
入量を変えることによって脱炭雰囲気と炭素との反応速
度を制御し、脱炭層の厚さを所望の値に調整することが
できる。
The heat treatment method for spheroidal graphite cast iron according to claim 5 is as follows:
The heat treatment method for spheroidal graphite cast iron according to claim 1, 2, 3 or 4, wherein the decarburizing atmosphere is oxygen and nitrogen is mixed into oxygen to control the oxygen concentration, and the amount of nitrogen mixed is changed. Thus, the reaction rate between the decarburizing atmosphere and carbon can be controlled, and the thickness of the decarburized layer can be adjusted to a desired value.

【0086】請求項6のデファレンシャル装置によれ
ば、請求項1、2、3、4又は5の発明による効果に加
え、球状黒鉛鋳鉄製のデフケースのサイドギヤ及びピニ
オンギヤとの摺動部は脱炭防止剤が塗布され、熱処理に
より硬化されているので十分な耐磨耗性が得られる。
According to the differential device of claim 6, in addition to the effect of the invention of claim 1, 2, 3, 4 or 5, the sliding parts of the differential case made of spheroidal graphite cast iron with the side gear and the pinion gear prevent decarburization. Since the agent is applied and cured by heat treatment, sufficient abrasion resistance can be obtained.

【0087】請求項7のデファレンシャル装置によれ
ば、請求項6の発明による効果に加え、ピニオンギヤは
球状黒鉛鋳鉄製のデフケースに形成された収納孔に摺動
回転自在に収納配置されているので、デフケースのこの
摺動部もその他の摺動部と共に脱炭防止剤が塗布され、
熱処理により硬化されているので十分な耐磨耗性が得ら
れる。
According to the differential device of claim 7, in addition to the effect of the invention of claim 6, the pinion gear is slidably rotatably housed in a housing hole formed in the differential case made of spheroidal graphite cast iron. This sliding part of the differential case is coated with decarburization prevention agent along with other sliding parts,
Since it is hardened by heat treatment, sufficient abrasion resistance can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例を示す断面図である。FIG. 1 is a sectional view showing a first embodiment of the present invention.

【図2】第1実施例に用いられたケーシング本体と同様
形状のケーシング本体の断面図である。
FIG. 2 is a sectional view of a casing body having the same shape as the casing body used in the first embodiment.

【図3】図2のA矢視図である。3 is a view on arrow A in FIG. 2. FIG.

【図4】各実施例の熱処理方法によって表面の脱炭を防
止した箇所の組織を示す断面図である。
FIG. 4 is a cross-sectional view showing the structure of a portion where decarburization of the surface is prevented by the heat treatment method of each example.

【図5】各実施例の熱処理方法によって表面を脱炭した
箇所の組織を示す断面図である。
FIG. 5 is a cross-sectional view showing the structure of a portion whose surface is decarburized by the heat treatment method of each example.

【図6】 従来例の断面図である。FIG. 6 is a cross-sectional view of a conventional example.

【符号の説明】[Explanation of symbols]

1 デファレンシャル装置 3 デフケース 17、19 出力側サイドギヤ 35、37 収納孔(摺動部) 39、41 ピニオンギヤ 43、49 第1ギヤ部 45、51 第2ギヤ部 59、61 摺動部 1 Differential Device 3 Differential Case 17, 19 Output Side Gear 35, 37 Storage Hole (Sliding Part) 39, 41 Pinion Gear 43, 49 First Gear Part 45, 51 Second Gear Part 59, 61 Sliding Part

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 F16H 48/20 F16H 1/45 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display area F16H 48/20 F16H 1/45

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 耐磨耗性を高めたい部分に脱炭防止剤を
塗布した球状黒鉛鋳鉄の部材を、850℃〜950℃の
脱炭雰囲気中に0.5時間〜2時間保持してオ−ステナ
イト化及び脱炭処理した後急冷し、更に焼き戻しをする
ことを特徴とする球状黒鉛鋳鉄の熱処理方法。
1. A spheroidal graphite cast iron member having a decarburization inhibitor applied to a portion where wear resistance is desired to be improved is kept in a decarburizing atmosphere at 850 ° C. to 950 ° C. for 0.5 to 2 hours. A heat treatment method for spheroidal graphite cast iron, which comprises quenching after quenching after denitrifying and stenitizing, and further tempering.
【請求項2】 焼き戻しを、300℃〜450℃で0.
5時間〜1.5時間の条件で行う請求項1の球状黒鉛鋳
鉄の熱処理方法。
2. Tempering at 300 ° C. to 450 ° C.
The heat treatment method for spheroidal graphite cast iron according to claim 1, which is carried out under the condition of 5 hours to 1.5 hours.
【請求項3】 耐磨耗性を高めたい部分に脱炭防止剤を
塗布した球状黒鉛鋳鉄の部材を、850℃〜950℃の
脱炭雰囲気中に0.5時間〜2時間保持してオーステナ
イト化及び脱炭処理した後、恒温変態温度に保持して空
冷するオーステンパー処理を施すことを特徴とする球状
黒鉛鋳鉄の熱処理方法。
3. Austenite by holding a spheroidal graphite cast iron member coated with a decarburization inhibitor at a portion where wear resistance is desired to be improved in a decarburizing atmosphere at 850 ° C. to 950 ° C. for 0.5 to 2 hours. A heat treatment method for spheroidal graphite cast iron, which comprises subjecting to a carbonization and decarburization treatment, and then subjecting to an austempering treatment of keeping at a constant temperature transformation temperature and air cooling.
【請求項4】 オーステンパー処理を、240℃〜27
0℃,0.5時間〜1.5時間恒温保持する条件で塩浴
焼入れ等により行う請求項3の球状黒鉛鋳鉄の熱処理方
法。
4. Austempering treatment is performed at 240 ° C. to 27 ° C.
The heat treatment method for spheroidal graphite cast iron according to claim 3, wherein the heat treatment is carried out by salt bath quenching or the like under the condition that the temperature is kept constant at 0 ° C for 0.5 hour to 1.5 hours.
【請求項5】 脱炭雰囲気が酸素であり、この酸素中に
窒素を混入させて酸素濃度を管理する請求項1、2、3
又は4の球状黒鉛鋳鉄の熱処理方法。
5. The decarburizing atmosphere is oxygen, and nitrogen is mixed into the oxygen to control the oxygen concentration.
Or the heat treatment method for spheroidal graphite cast iron according to item 4.
【請求項6】 エンジンの駆動力により回転駆動される
球状黒鉛鋳鉄製のデフケースと、デフケースの内部に回
転自在に支承された一対の出力側サイドギヤと、デフケ
ースの内部に回転自在に支承され、一対の出力側サイド
ギヤの差動回転を許容するように噛み合い連結したピニ
オンギヤとを備え、各ギヤとの摺動部に脱炭防止剤を塗
布したデフケースを請求項1、2、3、4又は5の方法
で熱処理したことを特徴とするデファレンシャル装置。
6. A differential case made of spheroidal graphite cast iron that is rotationally driven by a driving force of an engine, a pair of output side gears rotatably supported inside the differential case, and a pair rotatably supported inside the differential case. 7. A differential case, comprising: a pinion gear meshingly connected to allow differential rotation of an output side gear of FIG. 3, wherein a decarburization preventive agent is applied to a sliding portion with each gear. A differential device characterized by being heat treated by a method.
【請求項7】 ピニオンギヤは、一対の出力側サイドギ
ヤの径方向外側にデフケースに形成した収納孔に摺動回
転自在に収納配置され、一対のサイドギヤと各別に噛み
合う第1ギヤ部及び互いに噛み合う第2ギヤ部を有する
少なくとも一対のピニオンギヤであることを特徴とする
請求項6のデファレンシャル装置。
7. The pinion gear is slidably housed in a housing hole formed in a differential case on the radially outer side of the pair of output side gears, and the first gear portion meshes with the pair of side gears and the second gear meshes with each other. 7. The differential device according to claim 6, wherein the differential device is at least a pair of pinion gears having a gear portion.
JP4949395A 1995-03-09 1995-03-09 Heat treatment method for spheroidal graphite cast iron and differential device obtained by executing heat treatment to spheroidal graphite cast iron-made member by this method Pending JPH08246044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4949395A JPH08246044A (en) 1995-03-09 1995-03-09 Heat treatment method for spheroidal graphite cast iron and differential device obtained by executing heat treatment to spheroidal graphite cast iron-made member by this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4949395A JPH08246044A (en) 1995-03-09 1995-03-09 Heat treatment method for spheroidal graphite cast iron and differential device obtained by executing heat treatment to spheroidal graphite cast iron-made member by this method

Publications (1)

Publication Number Publication Date
JPH08246044A true JPH08246044A (en) 1996-09-24

Family

ID=12832684

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4949395A Pending JPH08246044A (en) 1995-03-09 1995-03-09 Heat treatment method for spheroidal graphite cast iron and differential device obtained by executing heat treatment to spheroidal graphite cast iron-made member by this method

Country Status (1)

Country Link
JP (1) JPH08246044A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169485A (en) * 2008-01-08 2008-07-24 Jfe Steel Kk Method for manufacturing nitrided component
CN114381586A (en) * 2022-02-17 2022-04-22 杜勇恒 Heat treatment device and method for nodular cast iron piston casting

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169485A (en) * 2008-01-08 2008-07-24 Jfe Steel Kk Method for manufacturing nitrided component
CN114381586A (en) * 2022-02-17 2022-04-22 杜勇恒 Heat treatment device and method for nodular cast iron piston casting

Similar Documents

Publication Publication Date Title
US8562767B2 (en) Method of heat treating a steel bearing component
JP5535922B2 (en) Heat treatment process for steel
CA1193948A (en) Case hardening method for steel parts
CN101490439B (en) Sheave member for belt continuously variable transmissions and method of manufacturing it
JP2005163173A (en) Gear part and method of producing thereof
JP3410947B2 (en) Rolling element of continuously variable transmission and method of manufacturing the same
JPH09241749A (en) Induction hardening method
JP2008208940A (en) Constant velocity universal joint component and its manufacturing method
JPH08246044A (en) Heat treatment method for spheroidal graphite cast iron and differential device obtained by executing heat treatment to spheroidal graphite cast iron-made member by this method
JP2001098326A (en) Bushing for crawler belt and its producing method
US20050039830A1 (en) Induction heat treatment method and coil and article treated thereby
US6685596B2 (en) Variator disc and a method of fabricating the same
JP2008063603A (en) Method for manufacturing track member, method for manufacturing valve device, and track member
KR100727196B1 (en) A constant velocity joint cage for vehicle and method for producing it
JPH0679541A (en) Method for forming torque transmitting shaft for induction hardening
JP2017207185A (en) Method of manufacturing pinion shaft
JPH1136060A (en) Quenching method for preventing heat treating strain in case hardening steel
JPH1151152A (en) Differential device
JP4134690B2 (en) Hardening heat treatment method for cast iron member and hardened heat treated cast iron member
JP2008064159A (en) Method of manufacturing track member, method of manufacturing valve gear, and track member
US20050039829A1 (en) Induction heat treatment method and article treated thereby
JPH03285020A (en) Manufacture of bushing for crawler
JP2006292139A (en) Pinion shaft, its manufacturing method, and planetary gear device
US20180320244A1 (en) Track bushing
JPH10204534A (en) Track bushing and its production