JPH08245425A - Diagnostic for low hypoxia or mitochondria function disorder - Google Patents
Diagnostic for low hypoxia or mitochondria function disorderInfo
- Publication number
- JPH08245425A JPH08245425A JP7349735A JP34973595A JPH08245425A JP H08245425 A JPH08245425 A JP H08245425A JP 7349735 A JP7349735 A JP 7349735A JP 34973595 A JP34973595 A JP 34973595A JP H08245425 A JPH08245425 A JP H08245425A
- Authority
- JP
- Japan
- Prior art keywords
- radioactive
- copper complex
- hypoxia
- complex
- mitochondrial dysfunction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、放射性ジチオセミ
カルバゾン誘導体の銅錯体または放射性ジアミンジオー
ルシッフベース誘導体の銅錯体を含有する低酸素症また
はミトコンドリア機能障害診断剤であって、特に脳、心
筋、腫瘍組織等における低酸素部位およびミトコンドリ
ア機能障害部位の検出に有用な医薬品に関する。TECHNICAL FIELD The present invention relates to a diagnostic agent for hypoxia or mitochondrial dysfunction, which comprises a copper complex of a radioactive dithiosemicarbazone derivative or a copper complex of a radioactive diaminediol Schiff base derivative, and particularly to the brain and myocardium. , A pharmaceutical useful for detecting hypoxic sites and mitochondrial dysfunction sites in tumor tissues and the like.
【0002】[0002]
【従来の技術】脳、心筋における虚血性疾患あるいはあ
る種の腫瘍において、低酸素部位またはミトコンドリア
機能障害部位の存在が指摘されている。このような部位
は、高いエネルギー要求性と血流低下による低酸素状態
またはミトコンドリア機能障害から生じる電子過剰状態
が生じていると考えられる。このような低酸素部位また
はミトコンドリア機能障害部位の検出は、脳、心筋にお
ける虚血性疾患においては代謝機能を保持しながら酸素
欠乏状態またはミトコンドリア機能障害状態にある組織
に対する治療を開始するにおいて、ある種の腫瘍におい
ては低酸素腫瘍の放射線感受性改善を目的とする放射線
増感剤利用の決定に重要である。この分野において、従
来ニトロイミダゾール基を骨格とする多くの低酸素症検
出放射性医薬品の開発が試みられてきた。しかしながら
従来のニトロイミダゾールを母体とする放射性医薬品
は、基本的に放射線増感剤として開発された化合物を標
識体として調製するという観点に基づくものである。放
射線増感剤の最大の問題点は神経毒性を有することであ
り、これを軽減するために脂溶性を低くし細胞移行性を
低下させる方向で該放射性医薬品の開発が行われてき
た。放射性医薬品として考えた場合には投与量が非常に
少ないために、早期に細胞内に到達して低酸素部位に蓄
積すると共に正常部位からは速やかに消失する性質を重
視することができる。従来のごとく、膜透過性の低い放
射性医薬品の設計をそのまま低酸素症検出放射性医薬品
に導入する限り、該低酸素症検出放射性医薬品は標的細
胞内に移行しにくくかつ正常細胞からの消失も遅くな
り、標的細胞−正常細胞間の選択性の向上も望めない。2. Description of the Related Art The existence of hypoxic sites or mitochondrial dysfunction sites has been pointed out in ischemic diseases in the brain and myocardium or in certain tumors. It is considered that such sites are caused by hypoxia due to high energy requirement and decreased blood flow, or an electron excess state resulting from mitochondrial dysfunction. The detection of such a hypoxic site or mitochondrial dysfunction site can be carried out by a certain method in starting treatment for a tissue in anoxia or mitochondrial dysfunction while retaining metabolic function in ischemic diseases in the brain and myocardium. It is important to determine the use of radiosensitizers to improve the radiosensitivity of hypoxic tumors. In this field, development of many hypoxia-detecting radiopharmaceuticals having a nitroimidazole group as a skeleton has hitherto been attempted. However, conventional nitroimidazole-based radiopharmaceuticals are basically based on the viewpoint of preparing a compound developed as a radiosensitizer as a label. The greatest problem of the radiosensitizer is that it has neurotoxicity, and in order to reduce this, the radiopharmaceutical has been developed in the direction of lowering lipophilicity and cell transferability. Since the dose is very small when considered as a radiopharmaceutical, it is possible to place importance on the property of reaching the cells early, accumulating in the hypoxic site, and rapidly disappearing from the normal site. As in the past, as long as the design of a radiopharmaceutical having low membrane permeability is directly introduced into a hypoxia-detecting radiopharmaceutical, the hypoxia-detecting radiopharmaceutical is difficult to migrate into target cells and also disappears from normal cells slowly. Also, improvement in selectivity between target cells and normal cells cannot be expected.
【0003】また、細胞移行性および正常細胞からの移
行性の良好なものとしてF−18標識体が数多く検討さ
れたが、これの製造には院内サイクロトロンが必要であ
り汎用性に問題がある。このように従来検討されてきた
低酸素症検出放射性医薬品は、選択性や汎用性の点で問
題があり実用化されるに至っていない。また、ミトコン
ドリア機能障害検出放射性医薬品は知られていなかっ
た。しかし、近年Zn−62/Cu−62ジェネレータ
ーが開発され、ポジトロン核種であるCu−62がグリ
シン錯体の形で容易に得ることができるようになり、院
内サイクロトロンを必要とせずにポジトロン核種標識体
を得ることができるようになった。A large number of F-18-labeled compounds have been investigated as those having good cell transferability and transferability from normal cells, but their production requires an in-hospital cyclotron, which poses a problem in versatility. Thus, the hypoxia-detecting radiopharmaceuticals that have been conventionally studied have problems in terms of selectivity and versatility, and have not been put into practical use. Further, no radiopharmaceutical for detecting mitochondrial dysfunction was known. However, in recent years, a Zn-62 / Cu-62 generator has been developed, and Cu-62, which is a positron nuclide, can be easily obtained in the form of a glycine complex, and a positron nuclide labeled substance can be prepared without the need for a hospital cyclotron. You can get it.
【0004】[0004]
【発明が解決しようとする課題】従来のかかる状況に鑑
み、本発明は低酸素症またはミトコンドリア機能障害検
出体として良好な標的組織への移行性、該標的組織での
還元反応親和性、非標的組織での高い安定性とそこから
の速やかな消失性を有する低酸素症またはミトコンドリ
ア機能障害診断剤の提供を目的とする。SUMMARY OF THE INVENTION In view of the above situation, the present invention provides a good target tissue transferability as a hypoxia or mitochondrial dysfunction detector, affinity for reduction reaction in the target tissue, and non-target. It is an object of the present invention to provide a diagnostic agent for hypoxia or mitochondrial dysfunction, which has high stability in tissues and rapid elimination therefrom.
【0005】[0005]
【課題を解決するための手段】本発明者等は、低酸素部
位またはミトコンドリア機能障害部位を検出するには基
本的に非常に低い酸化還元電位を有する有機化合物が、
電子過剰状態の細胞内でのみ電子を受容し滞留すること
が必要であるという観点から鋭意研究を行った結果、ジ
チオセミカルバゾン誘導体の銅錯体またはジアミンジオ
ールシッフベース誘導体の銅錯体が脳、心筋等に高い移
行性を有する一方、非常に低い酸化還元電位を有するの
で正常ミトコンドリアにおいては還元を受けずに速やか
に細胞外に移行すること、ラットの灌流心筋モデルにお
いて無酸素灌流液と酸素存在灌流液とで心筋への滞留性
に著しい差異が生じることを見いだし本発明に至った。
即ち、本発明は下記一般式化7で示される放射性ジチオ
セミカルバゾン銅錯体(以下Cu−62−DTSと略
す)または一般式化8もしくは一般式化9で示される放
射性ジアミンジオールシッフベース銅錯体(以下Cu−
62−DDSと略す)を含有する低酸素症またはミトコ
ンドリア機能障害診断剤に関する。Means for Solving the Problems The present inventors have found that an organic compound having a very low redox potential is basically necessary for detecting a hypoxic site or a mitochondrial dysfunction site.
As a result of earnest research from the viewpoint that it is necessary to accept and retain electrons only in cells in an electron-rich state, as a result, copper complexes of dithiosemicarbazone derivatives or diaminediol Schiff-based derivatives were found to be found in the brain and myocardium. , Etc., but it has a very low redox potential, so that it rapidly migrates to the outside without being reduced in normal mitochondria. Anoxic perfusate and oxygen-containing perfusion in rat perfused myocardial model. It was found that there is a significant difference in the retention property in the myocardium with the liquid, and the present invention has been completed.
That is, the present invention is a radioactive dithiosemicarbazone copper complex represented by the following general formula 7 (hereinafter abbreviated as Cu-62-DTS) or a radioactive diamine diol schiff base copper complex represented by the general formula 8 or 9 (Hereinafter Cu-
62-DDS) for the diagnosis of hypoxia or mitochondrial dysfunction.
【化7】 (但し、R1、R2、R3、R4はそれぞれ独立して、
水素原子、アルキル基またはアルコキシ基を表す。Cu
は放射性同位体Cu−62を表す。)[Chemical 7] (However, R1, R2, R3 and R4 are each independently
It represents a hydrogen atom, an alkyl group or an alkoxy group. Cu
Represents the radioactive isotope Cu-62. )
【化8】 (但し、R5、R6、R7はそれぞれ独立して、水素原
子、アルキル基またはアルコキシ基を表す。Cuは放射
性同位体Cu−62を表す。)Embedded image (However, R5, R6, and R7 each independently represent a hydrogen atom, an alkyl group, or an alkoxy group. Cu represents the radioactive isotope Cu-62.)
【化9】 (但し、R8は水素原子、アルキル基を表す。Cuは放
射性同位体Cu−62を表す。)[Chemical 9] (However, R8 represents a hydrogen atom or an alkyl group. Cu represents the radioactive isotope Cu-62.)
【0006】[0006]
【発明の実施の形態】化7の置換基R1、R2、R3、
R4の定義中のアルキル基およびアルコキシ基の炭素数
はそれぞれ通常1〜5であり、好ましくは1〜3であ
る。具体的には、グリオキザール−ビス(N4−メチル
チオセミカルバゾン)銅錯体(以下、Cu−62−GT
SMと略す)、グリオキザール−ビス(N4−ジメチル
チオセミカルバゾン)銅錯体(以下、Cu−62−GT
SM2と略す)、エチルグリオキザール−ビス(N4−
メチルチオセミカルバゾン)銅錯体(以下、Cu−62
−ETSMと略す)、エチルグリオキザール−ビス(N
4−エチルチオセミカルバゾン)銅錯体(以下、Cu−
62−ETSEと略す)、ピルブアルデヒド−ビス(N
4−メチルチオセミカルバゾン)銅錯体(以下、Cu−
62−PTSMと略す)、ピルブアルデヒド−ビス(N
4−ジメチルチオセミカルバゾン)銅錯体(以下、Cu
−62−PTSM2と略す)、ピルブアルデヒド−ビス
(N4−エチルチオセミカルバゾン)銅錯体(以下、C
u−62−PTSEと略す)、ジアセチル−ビス(N4
−メチルチオセミカルバゾン)銅錯体(以下、Cu−6
2−ATSMと略す)、ジアセチル−ビス(N4−ジメ
チルチオセミカルバゾン)銅錯体(以下、Cu−62−
ATSM2と略す)、ジアセチル−ビス(N4−エチル
チオセミカルバゾン)銅錯体(以下、Cu−62−AT
SEと略す)等が示される。中でもジアセチル−ビス
(N4−メチルチオセミカルバゾン)銅錯体またはピル
ブアルデヒド−ビス(N4−ジメチルチオセミカルバゾ
ン)銅錯体は好ましい態様である。BEST MODE FOR CARRYING OUT THE INVENTION The substituents R1, R2, R3
The alkyl group and the alkoxy group in the definition of R4 each have usually 1 to 5 carbon atoms, preferably 1 to 3 carbon atoms. Specifically, glyoxal-bis (N4-methylthiosemicarbazone) copper complex (hereinafter, Cu-62-GT
Abbreviated as SM), glyoxal-bis (N4-dimethylthiosemicarbazone) copper complex (hereinafter, Cu-62-GT)
SM2), ethyl glyoxal-bis (N4-
Methylthiosemicarbazone) copper complex (hereinafter Cu-62
-Abbreviated as ETSM), ethylglyoxal-bis (N
4-Ethylthiosemicarbazone) copper complex (hereinafter Cu-
62-ETSE), pyruvaldehyde-bis (N
4-methylthiosemicarbazone) copper complex (hereinafter Cu-
62-PTSM), pyruvaldehyde-bis (N
4-dimethylthiosemicarbazone) copper complex (hereinafter, Cu
-62-PTSM2), pyruvaldehyde-bis (N4-ethylthiosemicarbazone) copper complex (hereinafter, C
u-62-PTSE), diacetyl-bis (N4
-Methylthiosemicarbazone) copper complex (hereinafter Cu-6
2-ATSM), diacetyl-bis (N4-dimethylthiosemicarbazone) copper complex (hereinafter Cu-62-
ATSM2), diacetyl-bis (N4-ethylthiosemicarbazone) copper complex (hereinafter Cu-62-AT
(Abbreviated as SE) and the like are shown. Of these, a diacetyl-bis (N4-methylthiosemicarbazone) copper complex or a pyruvaldehyde-bis (N4-dimethylthiosemicarbazone) copper complex is a preferred embodiment.
【0007】化8の置換基R5、R6、R7の定義中の
アルキル基およびアルコキシ基の炭素数はそれぞれ通常
1〜5であり、好ましくは1〜3である。具体的には、
ジサリチルアルデヒド−1,3−プロパンジアミン銅錯
体(以下、Cu−62−DSPと略す)、ジサリチルア
ルデヒド−2,2−ジメチル−1,3−プロパンジアミ
ン銅錯体(以下、Cu−62−DSDPと略す)、ジ−
4−メトキシサリチルアルデヒド−1,3−プロパンジ
アミン銅錯体(以下、Cu−62−DMSPと略す)、
ジ−4−メトキシサリチルアルデヒド−2,2−ジメチ
ル−1,3−プロパンジアミン銅錯体(以下、Cu−6
2−DMSDPと略す)、中でもジサリチルアルデヒド
−2,2−ジメチル−1,3−プロパンジアミン銅錯体
は好ましい態様である。化9の置換基R8の定義中のア
ルキル基の炭素数は通常1〜5であり、好ましくは1〜
3である。具体的には、ジアセチルアセトンエチレンジ
アミン銅錯体(以下、Cu−62−DAEDと略す)、
ジアセチルアセトン−1,2−プロパンジアミン銅錯体
(以下、Cu−62−DAPDと略す)等が示される。
中でもジアセチルアセトンエチレンジアミン銅錯体は好
ましい態様である。The carbon number of the alkyl group and the alkoxy group in the definition of the substituents R5, R6 and R7 in the chemical formula 8 is usually 1 to 5, and preferably 1 to 3. In particular,
Disalicy aldehyde-1,3-propanediamine copper complex (hereinafter abbreviated as Cu-62-DSP), disalicylaldehyde-2,2-dimethyl-1,3-propanediamine copper complex (hereinafter, Cu-62-DSDP) Abbreviated)
4-methoxysalicylaldehyde-1,3-propanediamine copper complex (hereinafter abbreviated as Cu-62-DMSP),
Di-4-methoxysalicylaldehyde-2,2-dimethyl-1,3-propanediamine copper complex (hereinafter Cu-6
(Abbreviated as 2-DMSDP), and among them, disalicylic aldehyde-2,2-dimethyl-1,3-propanediamine copper complex is a preferred embodiment. The carbon number of the alkyl group in the definition of the substituent R8 in Chemical formula 9 is usually 1 to 5, preferably 1 to
It is 3. Specifically, diacetylacetone ethylenediamine copper complex (hereinafter abbreviated as Cu-62-DAED),
A diacetylacetone-1,2-propanediamine copper complex (hereinafter abbreviated as Cu-62-DAPD) and the like are shown.
Of these, diacetylacetone ethylenediamine copper complex is a preferred embodiment.
【0008】ジチオセミカルバゾン誘導体の銅錯体は次
のごとくにして合成される。例えば、Petering et al.
(Cancer Res., 24, 367-372, 1964)に記載の方法、即
ち、α−ケトアルデヒドの1モル水溶液または50%エ
タノール溶液を30〜40分かけてチオセミカルバジ
ド、N4−メチルチオセミカルバジド、N4−ジメチル
チオセミカルバジド等の2.2モル含有5%氷酢酸溶液
に50〜60℃で滴下する。滴下中は反応液を撹拌す
る。滴下終了後室温で数時間放置した後、冷却して結晶
を分離する。結晶はメタノールに溶解して再結晶を行い
精製する。得られたジチオセミカルバゾン誘導体を Gre
en et al. (Nucl. Med. Biol., 14, 59-61,1987) に記
載の方法によってジメチルスルホオキシド(DMSO)
溶液として、硝酸銅の溶液と接触させて銅錯体が得られ
る。また、Zn−62/Cu−62ジェネレーター(Fu
jibayashi et al.: J. Nucl. Med., 30, 1838-1842, 19
89) によって得られたCu−62−グリシン錯体とジチ
オセミカルバゾン誘導体をFujibayashi et al.の方法に
準じて(Fujibayashi et al.: Nucl. Med. Biol., 19,3
9-44, 1992)リガンド交換反応を行うことによってCu
−62−DTS誘導体が得られる。The copper complex of the dithiosemicarbazone derivative is synthesized as follows. For example, Petering et al.
(Cancer Res., 24 , 367-372, 1964), that is, a 1 molar aqueous solution of α-ketoaldehyde or a 50% ethanol solution is used over 30 to 40 minutes for thiosemicarbazide, N4-methylthiosemicarbazide, N4-. It is added dropwise to a 5% glacial acetic acid solution containing 2.2 mol of dimethylthiosemicarbazide or the like at 50 to 60 ° C. The reaction solution is stirred during the dropping. After the dropping is completed, the mixture is left at room temperature for several hours and then cooled to separate crystals. The crystals are dissolved in methanol and recrystallized for purification. The obtained dithiosemicarbazone derivative is Gre
Dimethyl sulfoxide (DMSO) by the method described in en et al. (Nucl. Med. Biol., 14 , 59-61, 1987).
As a solution, a copper complex is obtained by contacting with a solution of copper nitrate. In addition, Zn-62 / Cu-62 generator (Fu
jibayashi et al .: J. Nucl. Med., 30, 1838-1842, 19
89) and the Cu-62-glycine complex and dithiosemicarbazone derivative obtained by the method of Fujibayashi et al. (Fujibayashi et al .: Nucl. Med. Biol., 19 , 3).
9-44, 1992) By conducting a ligand exchange reaction, Cu
A -62-DTS derivative is obtained.
【0009】Cu−62−グリシンとピルブアルデヒド
−ビス(N4−メチルチオセミカルバゾン銅錯体(以
下、PTSMと略す)とのリガンド交換反応は具体的に
次のごとく行う。Zn−62/Cu−62ジェネレータ
ーに200mMグリシンを含有する注射用水溶液を溶離
液として用いて溶離を行うとCu−62−グリシン錯体
がグリシン溶液として得られる。得られたCu−62−
グリシン錯体のグリシン溶液をPTSMのエタノールま
たはDMSO溶液と室温で混合することにより、簡単に
リガンド交換反応が行われ定量的にCu−62−PTS
Mを得ることができる。得られたCu−62−PTSM
の放射化学的純度は95%以上である。ジアミンジオー
ルシッフベース誘導体の銅錯体は、Chen D. et al.(Ino
rg. Chem., 26, 1026-1030, 1987 ;Inorg. Chem. 28,
2647-2652, 1989) に記載の方法に準じて合成し、前述
のごとくCu−62−グリシンとリガンド交換反応を行
い、Cu−62−DDS誘導体が得られる。同様にして
得られた非放射性Cu錯体であるCu−ATSMの例に
おいて、マウスの脳ミトコンドリアによるCuの還元状
況を検討したところ、正常な脳のミトコンドリアによる
Cuの還元はほとんど生じないが、ミトコンドリアを電
子伝達系阻害剤であるロテノンで処理をして低酸素また
はミトコンドリア機能障害と同様の電子過剰状態に導び
いたミトコンドリアでは、Cuの還元が進行し、電子過
剰状態におけるCu−ATSMの特異的還元の存在が示
された。このような還元反応亢進は、他のCu−DTS
誘導体およびCu−DDS誘導体においても同様に見出
された。このことはCu−DTS誘導体およびCu−D
DS誘導体が組織の低酸素状態またはミトコンドリア機
能障害のマーカーとして有用であることを示しているも
のである。このような酸素に対する挙動は、放射性同位
体であるCu−62の標識体でも同様のことが言える。The ligand exchange reaction between Cu-62-glycine and pyruvaldehyde-bis (N4-methylthiosemicarbazone copper complex (hereinafter abbreviated as PTSM)) is specifically performed as follows: Zn-62 / Cu- The Cu-62-glycine complex was obtained as a glycine solution by elution using an aqueous solution for injection containing 200 mM glycine as the eluent with a 62 generator.
By mixing the glycine solution of the glycine complex with the ethanol or DMSO solution of PTSM at room temperature, the ligand exchange reaction is easily performed and the Cu-62-PTS is quantitatively analyzed.
M can be obtained. The obtained Cu-62-PTSM
Has a radiochemical purity of 95% or more. Copper complexes of diaminediol Schiff-based derivatives are described by Chen D. et al. (Ino
Chem., 26 , 1026-1030, 1987; Inorg. Chem. 28,
2647-2652, 1989) and conduct a ligand exchange reaction with Cu-62-glycine as described above to obtain a Cu-62-DDS derivative. In the case of Cu-ATSM, which is a non-radioactive Cu complex obtained in the same manner, the reduction state of Cu by mouse brain mitochondria was examined. In mitochondria treated with an electron transfer system inhibitor, rotenone, leading to hypoxia or an electron-excessive state similar to mitochondrial dysfunction, Cu reduction proceeds, and specific reduction of Cu-ATSM in the electron-excessive state occurs. Was shown. Such enhancement of reduction reaction is caused by other Cu-DTS.
It was similarly found in the derivative and the Cu-DDS derivative. This means that Cu-DTS derivatives and Cu-D
It is shown that the DS derivative is useful as a marker of tissue hypoxia or mitochondrial dysfunction. This behavior with respect to oxygen can be said to be the same with the labeled form of Cu-62 which is a radioisotope.
【0010】さらに、ラットの灌流心筋モデルを用いた
検討では、灌流液中の酸素存在下ではCu−62−AT
SMは心筋から速やかに消失し、投与15分後には最大
値の20%程度にまで低下した。この灌流心臓標本の灌
流液を無酸素に切り替え、約10分後に再度Cu−62
−ATSMを投与すると高い滞留性を示した。さらに灌
流液を元にもどした後Cu−62−ATSMを投与する
と、最初に投与したときと同様の滞留曲線を示した。す
なわち、組織への滞留は酸素濃度によって変化するので
組織中のCu−62−ATSMの濃度を測定することに
より、組織中の酸素濃度の状態を知ることができる。Further, in a study using a rat perfusion myocardial model, Cu-62-AT was observed in the presence of oxygen in the perfusate.
SM rapidly disappeared from the myocardium, and decreased to about 20% of the maximum value 15 minutes after administration. The perfusate of this perfused heart specimen was switched to anoxic, and after about 10 minutes, Cu-62
-When ATSM was administered, it showed high retention. Further, when Cu-62-ATSM was administered after returning the perfusate, a retention curve similar to that of the first administration was shown. That is, since the retention in the tissue changes depending on the oxygen concentration, the state of the oxygen concentration in the tissue can be known by measuring the concentration of Cu-62-ATSM in the tissue.
【0011】各Cu−62−DTS誘導体およびCu−
62−DDS誘導体の体内分布は、それぞれ側鎖の相違
に応じて特徴的な集積挙動を示す。例えばCu−62−
PTSMは、脳への高い移行性とともに比較的高い滞留
性を示すが異常時にはさらに高い滞留性を示す可能性が
期待された。また、Cu−62−ATSM、Cu−62
−PTSM2、Cu−62−ATSM2などは、一旦脳
に移行した後速やかに消失し、正常動物脳においては滞
留性を示さないことが明らかとなった。同様の傾向はC
u−62−ETSM、Cu−62−ETSE、Cu−6
2−PTSE、Cu−62−ATSE、Cu−62−D
SDP、Cu−62−DAED等についても示された。
このようにCu−62−DTS誘導体およびCu−62
−DDS誘導体は、脳への移行性および前述の電子過剰
状態でのみ還元を受ける性質と併せて、低酸素検出に適
した性質を有するものである。さらにポジトロン核種で
あるCu−62−標識体が容易に得られることにより、
微量の移行量の検出が容易になった。Each Cu-62-DTS derivative and Cu-
The biodistribution of the 62-DDS derivative shows a characteristic accumulation behavior depending on the difference in side chains. For example Cu-62-
PTSM has a relatively high retention in the brain as well as a relatively high retention, but it was expected that PTSM may have a higher retention in abnormal cases. In addition, Cu-62-ATSM, Cu-62
It was revealed that -PTSM2, Cu-62-ATSM2 and the like, once transferred to the brain, disappeared promptly and showed no retention in the normal animal brain. Similar tendency is C
u-62-ETSM, Cu-62-ETSE, Cu-6
2-PTSE, Cu-62-ATSE, Cu-62-D
SDP, Cu-62-DAED, etc. were also shown.
Thus, Cu-62-DTS derivative and Cu-62
The -DDS derivative has properties suitable for detection of hypoxia, in addition to the property of transfer to the brain and the property of being reduced only in the electron excess state described above. Furthermore, by easily obtaining the Cu-62-labeled substance which is a positron nuclide,
It became easier to detect a very small amount of transfer.
【0012】本発明によるCu−62−DTS誘導体ま
たはCu−62−DDS誘導体は、通常診断剤として次
のごとく調製される。例えば、DTS0.1mgを含む
DMSO溶液0.2mlにZn−62/Cu−62ジェ
ネレーターより0.2Mのグリシンを含有する注射用水
溶液によりCu−62を溶離して得られたCu−62を
放射能として5〜20mCi含むCu−62−グリシン
錯体のグリシン水溶液4mlを無菌的に加え数回撹拌す
ることによって得られる。これは1回の投与量に相当す
る。本発明の診断剤は、脳、心臓、腫瘍その他の組織に
おける低酸素障害またはミトコンドリア機能障害の診断
に有用であり、具体的疾患としては脳梗塞、虚血性心疾
患、てんかん、痴呆、心筋梗塞、腫瘍等が挙げられる。
以下に本発明について、実施例によりさらに具体的に説
明する。The Cu-62-DTS derivative or Cu-62-DDS derivative according to the present invention is usually prepared as a diagnostic agent as follows. For example, Cu-62 obtained by eluting Cu-62 with an aqueous solution for injection containing 0.2 M glycine from a Zn-62 / Cu-62 generator in 0.2 ml of DMSO solution containing 0.1 mg of DTS was obtained. It is obtained by aseptically adding 4 ml of a glycine aqueous solution of a Cu-62-glycine complex containing 5 to 20 mCi as a mixture and stirring several times. This corresponds to a single dose. The diagnostic agent of the present invention is useful for diagnosing hypoxia or mitochondrial dysfunction in brain, heart, tumor and other tissues, and specific diseases include cerebral infarction, ischemic heart disease, epilepsy, dementia, myocardial infarction, Examples include tumors.
Hereinafter, the present invention will be described more specifically with reference to Examples.
【0013】[0013]
(実施例1) Cu−DTS誘導体およびCu−DDS誘導体の還元に
及ぼすミトコンドリア電子伝達阻害の影響 雄性ddYマウス脳をPotter−Elevehje
m型ホモジナイザーにて1.5g/mlの濃度でホモジ
ネートした。1000gで5分遠沈し、さらにその上清
をとり10000gで10分遠沈することにより、粗ミ
トコンドリア画分を調製した。得られたミトコンドリア
画分を低酸素と同様の状態に導くため、電子伝達系阻害
剤であるロテノンを該ミトコンドリア画分に加えた。ロ
テノン薬剤処理によりミトコンドリアの電子伝達系複合
体およびその上流部位において低酸素状態と同様の電子
過剰状態を得ることができる。Cu−DTS誘導体およ
びCu−DDS誘導体の還元の度合いは電子スピン共鳴
装置(ESR)で定量した。各誘導体0.2mMのDM
SO溶液0.2mlを正常あるいはロテノン処理ミトコ
ンドリア懸濁液1.8mlに加え、37℃、15分イン
キュベートした。0.3mlをESRチューブに取り、
液体窒素冷却下ESR信号を測定した。ESR測定には
JOEL社製XバンドスペルトロメータJES−FE3
XGを用いた。測定条件は、マイクロウェーブ出力5m
W、モジュレーションアンプリチュード6.3ガウス、
モジュレーション周波数100kHz、マイクロウェー
ブ周波数9.25GHz、磁界3300±500ガウス
であった。定量は信号強度を比較して行った。結果を表
1に示す。また、Cu−ATSMおよびCu−PTSM
2についての結果を図1に示す。Cu−ATSMの例に
おいて、正常なミトコンドリアによるCuの還元はほと
んど生じないが、ロテノン処理した場合にはCuの還元
が進行し、電子過剰状態におけるCu−ATSMの特異
的還元の存在が示された。このような還元反応亢進は、
他のCu−DTS誘導体、Cu−DDS誘導体において
も同様に見出された。(Example 1) Effect of mitochondrial electron transfer inhibition on reduction of Cu-DTS derivative and Cu-DDS derivative Male ddY mouse brain was subjected to Potter-Elevehje.
It was homogenized with an m-type homogenizer at a concentration of 1.5 g / ml. The crude mitochondrial fraction was prepared by centrifuging at 1000 g for 5 minutes, further collecting the supernatant and centrifuging at 10,000 g for 10 minutes. To bring the obtained mitochondrial fraction into a state similar to that of hypoxia, an electron transfer system inhibitor rotenone was added to the mitochondrial fraction. By the rotenone drug treatment, an electron-rich state similar to the hypoxic state can be obtained in the mitochondrial electron transport system complex and its upstream site. The degree of reduction of the Cu-DTS derivative and the Cu-DDS derivative was quantified by an electron spin resonance device (ESR). Each derivative 0.2 mM DM
0.2 ml of SO solution was added to 1.8 ml of normal or rotenone-treated mitochondrial suspension and incubated at 37 ° C. for 15 minutes. Transfer 0.3 ml to ESR tube,
The ESR signal was measured under liquid nitrogen cooling. For ESR measurement, JOEL X-band spelltrometer JES-FE3
XG was used. Microwave output 5m
W, Modulation amplitude 6.3 Gauss,
The modulation frequency was 100 kHz, the microwave frequency was 9.25 GHz, and the magnetic field was 3300 ± 500 gauss. The quantification was performed by comparing the signal intensities. The results are shown in Table 1. In addition, Cu-ATSM and Cu-PTSM
The results for 2 are shown in FIG. In the case of Cu-ATSM, the reduction of Cu by normal mitochondria hardly occurs, but the reduction of Cu proceeded when treated with rotenone, indicating the existence of a specific reduction of Cu-ATSM in the electron excess state. . Such enhancement of reduction reaction
It was similarly found in other Cu-DTS derivatives and Cu-DDS derivatives.
【0014】(実施例2) 灌流心筋モデルによるCu−62−DTS誘導体および
Cu−62−DDS誘導体の心筋への滞留に対する酸素
の影響 前述のごとくにして得たCu−62−DTS誘導体の錯
体としてCu−62−ATSM、Cu−62−PTSM
2およびCu−62−PTSM、Cu−62−DDS誘
導体の錯体としてCu−62−DAEDを用いて以下の
ごとく実験を行った。ラット灌流心筋モデルは、ランゲ
ルドルフ等の方法にしたがい作成した。Wistar系
雄性ラットにヘパリン500i.u.を腹腔内投与した
後、心臓を摘出した。心臓を冷灌流液にて洗浄し、大動
脈にステンレスカニューレを挿入し、ただちに灌流を開
始した。灌流液はクレブスリンガー重炭酸溶液を37℃
としたものを用い、灌流速度は6ml/minとした。
灌流液は、あらかじめ95%酸素+5%二酸化炭素、あ
るいは95%窒素+5%二酸化炭素で飽和したものを適
時用いた。Cu−62−DTS誘導体溶液は、灌流液で
適時希釈し六方バルブインジェクターを用いて灌流心臓
モデルにボーラス投与した。心臓部位に鉛で遮蔽したB
GO検出器を設置し、心筋に滞留した放射能を連続的に
測定し半減期補正後、最大値を100として滞留曲線を
得た。酸素存在下(コントロール)、無酸素下(無酸
素)、再酸素存在下(再酸素供給)における実験結果を
Cu−62−ATSM、Cu−62−PTSM2につい
て図2、図3に示す。投与後10分における集積量の比
較を表2、図4に示す。酸素存在下(コントロール)で
はCu−62−ATSMは心筋から速やかに消失し、投
与15分後には最大値の20%程度にまで低下した。こ
の灌流心臓標本の灌流液を無酸素状態に切り替え、約1
0分後に再度Cu−62−ATSMを投与すると高い滞
留性を示した。さらに灌流液を元にもどした(再酸素供
給)後Cu−62−ATSMを投与すると、最初に投与
したときと同様の滞留曲線を示した。図3に示したCu
−62−PTSM2は消失速度はCu−62−ATSM
に比し遅いが約15分後には同様な傾向を示した。投与
後15分における酸素存在下(コントロール)、無酸素
下(無酸素)、再酸素存在下(再酸素供給)における集
積量を比較したのが表2および図4である。いずれの例
も酸素存在下での速やかな組織からの消失と、低酸素状
態での高い集積、滞留性が明らかあった。これらの結
果、Cu−62−DTS誘導体およびCu−62−DD
S誘導体は組織内酸素の存在の有無により滞留性に明ら
かな差異が認められ、低酸素部位に選択的に集積するこ
とが示された。Example 2 Effect of oxygen on retention of Cu-62-DTS derivative and Cu-62-DDS derivative in myocardium by perfusion myocardial model As a complex of Cu-62-DTS derivative obtained as described above. Cu-62-ATSM, Cu-62-PTSM
2 and Cu-62-PTSM, Cu-62-DED was used as a complex of the Cu-62-DDS derivative, and the experiment was conducted as follows. The rat perfused myocardial model was created according to the method of Langerdorf et al. Wistar male rats were treated with heparin 500i. u. Was intraperitoneally administered, and the heart was excised. The heart was washed with cold perfusion solution, a stainless cannula was inserted into the aorta, and perfusion was immediately started. The perfusate is Krebslinger bicarbonate solution at 37 ° C.
The perfusion rate was 6 ml / min.
The perfusate used was appropriately saturated with 95% oxygen + 5% carbon dioxide or 95% nitrogen + 5% carbon dioxide in advance. The Cu-62-DTS derivative solution was appropriately diluted with a perfusion solution and bolus-administered to a perfused heart model using a hexagonal valve injector. B shielded from the heart by lead
A GO detector was installed, and the radioactivity retained in the myocardium was continuously measured to correct the half-life, and the maximum value was set to 100 to obtain a retention curve. The experimental results in the presence of oxygen (control), in the absence of oxygen (anoxic), and in the presence of reoxygen (reoxygen supply) are shown in FIGS. 2 and 3 for Cu-62-ATSM and Cu-62-PTSM2. A comparison of accumulated amounts 10 minutes after administration is shown in Table 2 and FIG. In the presence of oxygen (control), Cu-62-ATSM rapidly disappeared from the myocardium and decreased to about 20% of the maximum value 15 minutes after administration. Switch the perfusate of this perfused heart sample to anoxic state,
When Cu-62-ATSM was administered again after 0 minutes, high retention was exhibited. Furthermore, when Cu-62-ATSM was administered after the perfusate was restored (reoxygenation), the same retention curve as that of the first administration was shown. Cu shown in FIG.
-62-PTSM2 has a disappearance rate of Cu-62-ATSM
Although it was slower than the above, a similar tendency was shown after about 15 minutes. Table 2 and FIG. 4 compare the accumulated amounts in the presence of oxygen (control), in the absence of oxygen (anoxia), and in the presence of reoxygenation (reoxygen supply) at 15 minutes after administration. In all cases, rapid disappearance from the tissue in the presence of oxygen, and high accumulation and retention in hypoxia were apparent. As a result, Cu-62-DTS derivative and Cu-62-DD
The S-derivative showed a clear difference in the retention property depending on the presence or absence of oxygen in the tissue, indicating that the S-derivative was selectively accumulated in the hypoxic site.
【0015】(実施例3) Cu−DTS誘導体及びCu−62−DDS誘導体の体
内分布 雄性ddYマウスにCu−62−DTS誘導体またはC
u−62−DDS誘導体を尾静脈より投与し、経時的に
屠殺解剖した。血液および各臓器を摘出し秤量した後、
それぞれに含まれる放射能をウエル型シンチレーション
カウンターにて測定し、各臓器への集積値を算出した。
表3−表12にその結果を示す。各Cu−62−DTS
誘導体およびCu−62−DDS誘導体は、それぞれ側
鎖の相違に応じて特徴的な集積挙動を示した。例えばC
u−62−PTSMは、脳へ高い移行性とともに滞留性
を示していた。これに対して、Cu−62−ATSM、
Cu−62−PTSM2、Cu−62−ATSM2など
は、一旦脳に移行した後すみやかに消失し、また正常動
物脳においてはこれらのCu−62−DTS誘導体は滞
留性を示さないことが明らかとなった。その他のCu−
62−DTS誘導体およびCu−62−DDS誘導体に
ついても同様のことがいえる。この性質は、前述の電子
過剰状態でのみ還元を受ける性質と併せて、低酸素検出
に適した性質と考えられた。(Example 3) Distribution of Cu-DTS derivative and Cu-62-DDS derivative in the body Cu-62-DTS derivative or C was added to male ddY mouse.
The u-62-DDS derivative was administered through the tail vein, and sacrificed and dissected over time. After removing blood and each organ and weighing them,
The radioactivity contained in each was measured with a well-type scintillation counter, and the accumulated value in each organ was calculated.
The results are shown in Table 3 to Table 12. Each Cu-62-DTS
The derivative and the Cu-62-DDS derivative each showed characteristic accumulation behavior depending on the difference in side chains. For example, C
u-62-PTSM showed high transferability to the brain and retention. On the other hand, Cu-62-ATSM,
It was revealed that Cu-62-PTSM2, Cu-62-ATSM2, etc., disappeared promptly after once transferred to the brain, and that these Cu-62-DTS derivatives do not exhibit retention in the normal animal brain. It was Other Cu-
The same applies to the 62-DTS derivative and the Cu-62-DDS derivative. This property was considered to be suitable for detection of hypoxia, together with the property of undergoing reduction only in the electron excess state described above.
【0016】[0016]
【表1】 Cu-DTS誘導体及びCu-DDS誘導体の還元に及ぼすミトコンドリア電子伝達阻害処 理の影響 ─────────────────────────────────── 還元銅 (%) ───────────────────────── 銅錯体 コントロール ロテノン処理後 ─────────────────────────────────── Cu-PTSM 48.8 ± 3.7 77.8 ± 2.9 Cu-PTSM2 4.9 ± 2.1 15.3 ± 4.3 ─────────────────────────────────── Cu-ATSM 3.4 ± 2.7 14.7 ± 3.4 Cu-ATSE 10.4 ± 4.7 24.5 ± 5.6 Cu-ATSM2 4.3 ± 2.9 15.1 ± 5.4 ─────────────────────────────────── Cu-ETSE 56.5 ± 7.3 76.6 ± 4.6 ─────────────────────────────────── Cu-DAED 19.1 ± 2.7 30.8 ± 1.7 ───────────────────────────────────[Table 1] Effect of mitochondrial electron transfer inhibition treatment on reduction of Cu-DTS derivative and Cu-DDS derivative ────────────────────────── ────────── Reduced copper (%) ───────────────────────── Copper complex control After rotenone treatment ──── ─────────────────────────────── Cu-PTSM 48.8 ± 3.7 77.8 ± 2.9 Cu-PTSM2 4.9 ± 2.1 15.3 ± 4.3 ─ ────────────────────────────────── Cu-ATSM 3.4 ± 2.7 14.7 ± 3.4 Cu-ATSE 10.4 ± 4.7 24.5 ± 5.6 Cu-ATSM2 4.3 ± 2.9 15.1 ± 5.4 ─────────────────────────────────── Cu-ETSE 56.5 ± 7.3 76.6 ± 4.6 ─────────────────────────────────── Cu-DAED 19.1 ± 2.7 30.8 ± 1.7 ───────────────────────────────────
【0017】[0017]
【表2】 潅流心筋モデルによる Cu-62-DTS誘導体および Cu-62-DDS誘導体の心筋への滞 留に対する酸素の影響(投与10分後) ────────────────────────────────── 心筋への滞留割合 (%) ─────────────────────────── Cu-62-錯体 コントロール 無酸素 再酸素供給 ────────────────────────────────── Cu-62-ATSM 23.77 ± 2.98 81.10 ± 3.41 22.88 ± 4.75 Cu-62-PTSM2 38.35 ± 7.51 85.23 ± 19.49 29.40 ± 7.86 Cu-62-PTSM 89.72 ± 4.01 98.88 ± 2.63 81.42 ± 14.03 Cu-DAED 55.65 ± 15.50 68.87 ± 19.12 43.37 ± 5.34 ──────────────────────────────────[Table 2] Effect of oxygen on retention of Cu-62-DTS derivative and Cu-62-DDS derivative in myocardium by perfusion myocardial model (10 minutes after administration) ────────────── ───────────────────── Myocardial retention (%) ───────────────────── ────── Cu-62- complex control Anoxic reoxygen supply ────────────────────────────────── ─ Cu-62-ATSM 23.77 ± 2.98 81.10 ± 3.41 22.88 ± 4.75 Cu-62-PTSM2 38.35 ± 7.51 85.23 ± 19.49 29.40 ± 7.86 Cu-62-PTSM 89.72 ± 4.01 98.88 ± 2.63 81.42 ± 14.03 Cu-DAED 55.65 ± 15.50 68.87 ± 19.12 43.37 ± 5.34 ──────────────────────────────────
【0018】[0018]
【表3】 Cu-62-PTSMの体内分布(n=4) 〔上段:%ID/g(組織),下段:平均±標準偏差〕 ─────────────────────────── 1分 5分 30分 ─────────────────────────── 血液 4.01 2.73 1.48 (O.27) (0.27) (0.18) 脳 8.23 7.15 7.42 (1.37) (O.56) (1.01) 心臓 21.64 14.94 14.62 (7.25) (1.39) (2.69) 肺 26.21 22.26 17.54 (6.43) (2.77) (1.31) 肝臓 5.35 14.34 23.99 (2.44) (2.18) (3.40) 腎臓 12.75 13.90 12.08 (3.54) (1.63) (0.79) ─────────────────────────── 脳/血液 2.05 2.64 4.73 (0.29) (0.37) (0.40) 心臓/血液 5.36 5.53 8.42 (1.57) (0.99) (1.43) ───────────────────────────[Table 3] Distribution of Cu-62-PTSM in the body (n = 4) [Upper row:% ID / g (organization), lower row: Mean ± standard deviation] ──────────────── ──────────── 1 minute 5 minutes 30 minutes ─────────────────────────── Blood 4.01 2.73 1.48 ( O.27) (0.27) (0.18) Brain 8.23 7.15 7.42 (1.37) (O.56) (1.01) Heart 21.64 14.94 14.62 (7.25) (1.39) (2.69) Lung 26.21 22.26 17.54 (6.43) (2.77) (1.31) ) Liver 5.35 14.34 23.99 (2.44) (2.18) (3.40) Kidney 12.75 13.90 12.08 (3.54) (1.63) (0.79) ──────────────────────── ──── Brain / Blood 2.05 2.64 4.73 (0.29) (0.37) (0.40) Heart / Blood 5.36 5.53 8.42 (1.57) (0.99) (1.43) ──────────────── ───────────
【0019】[0019]
【表4】 Cu-62-ATSM の体内分布(n=4) 〔上段:%ID/g(組織),下段:平均±標準偏差〕 ─────────────────────────── 1分 5分 30分 ─────────────────────────── 血液 2.94 1.42 2.13 (O.51) (0.25) (0.29) 脳 6.01 2.37 2.81 (0.82) (O.30) (0.41) 心臓 5.63 2.10 2.97 (1.19) (0.27) (0.44) 肺 36.00 34.92 13.12 (4.17) (8.11) (3.90) 肝臓 4.45 10.61 18.07 (0.47) (1.62) (3.33) 腎臓 16.60 12.76 10.91 (1.37) (1.99) (1.19) ─────────────────────────── 脳/血液 2.06 1.68 1.33 (0.22) (0.11) (0.15) 心臓/血液 1.91 1.49 1.41 (0.18) (0.17) (0.18) ───────────────────────────[Table 4] Distribution of Cu-62-ATSM in the body (n = 4) [Upper row:% ID / g (organization), lower row: Mean ± standard deviation] ──────────────── ──────────── 1 minute 5 minutes 30 minutes ─────────────────────────── Blood 2.94 1.42 2.13 ( O.51) (0.25) (0.29) Brain 6.01 2.37 2.81 (0.82) (O.30) (0.41) Heart 5.63 2.10 2.97 (1.19) (0.27) (0.44) Lung 36.00 34.92 13.12 (4.17) (8.11) (3.90) ) Liver 4.45 10.61 18.07 (0.47) (1.62) (3.33) Kidney 16.60 12.76 10.91 (1.37) (1.99) (1.19) ─────────────────────── ──── Brain / Blood 2.06 1.68 1.33 (0.22) (0.11) (0.15) Heart / Blood 1.91 1.49 1.41 (0.18) (0.17) (0.18) ──────────────── ───────────
【0020】[0020]
【表5】 Cu-62-PTSM2の体内分布(n=4) 〔上段:%ID/g(組織),下段:平均±標準偏差〕 ─────────────────────────── 1分 5分 30分 ─────────────────────────── 血液 1.99 1.50 1.42 (O.35) (0.22) (0.37) 脳 5.16 3.35 1.58 (1.40) (O.48) (0.06) 心臓 6.30 2.04 1.64 (1.56) (0.39) (0.20) 肺 26.15 17.19 11.45 (4.52) (3.36) (1.90) 肝臓 2.59 11.34 13.77 (0.50) (2.13) (2.90) 腎臓 9.09 3.96 5.08 (1.31) (0.28) (0.68) ─────────────────────────── 脳/血液 2.57 2.25 1.19 (0.41) (0.28) (0.36) 心臓/血液 3.14 1.36 1.25 (0.35) (0.22) (0.49) ───────────────────────────[Table 5] Distribution of Cu-62-PTSM2 in the body (n = 4) [Upper row:% ID / g (organization), lower row: Mean ± standard deviation] ──────────────── ──────────── 1 minute 5 minutes 30 minutes ─────────────────────────── Blood 1.99 1.50 1.42 ( O.35) (0.22) (0.37) Brain 5.16 3.35 1.58 (1.40) (O.48) (0.06) Heart 6.30 2.04 1.64 (1.56) (0.39) (0.20) Lung 26.15 17.19 11.45 (4.52) (3.36) (1.90) ) Liver 2.59 11.34 13.77 (0.50) (2.13) (2.90) Kidney 9.09 3.96 5.08 (1.31) (0.28) (0.68) ─────────────────────── ──── Brain / Blood 2.57 2.25 1.19 (0.41) (0.28) (0.36) Heart / Blood 3.14 1.36 1.25 (0.35) (0.22) (0.49) ──────────────── ───────────
【0021】[0021]
【表6】 Cu-62-ATSM2の体内分布(n=4) 〔上段:%ID/g(組織),下段:平均±標準偏差〕 ─────────────────────────── 1分 5分 30分 ─────────────────────────── 血液 21.41 2.78 1.79 (7.15) (0.64) (0.38) 脳 1.82 1.54 0.50 (0.74) (O.39) (0.11) 心臓 14.70 2.64 1.60 (7.87) (0.75) (0.27) 肺 85.75 12.23 7.37 (20.70) (5.48) (1.46) 肝臓 19.40 30.70 17.59 (6.41) (6.46) (1.35) 腎臓 4.84 3.77 6.32 (1.36) (0.95) (1.06) ─────────────────────────── 脳/血液 0.08 8.56 0.28 (0.01) (0.13) (0.06) 心臓/血液 0.65 0.95 0.28 (0.65) (0.95) (0.91) ───────────────────────────[Table 6] Distribution of Cu-62-ATSM2 in the body (n = 4) [Upper row:% ID / g (tissue), lower row: Mean ± standard deviation] ──────────────── ──────────── 1 minute 5 minutes 30 minutes ─────────────────────────── Blood 21.41 2.78 1.79 ( 7.15) (0.64) (0.38) Brain 1.82 1.54 0.50 (0.74) (O.39) (0.11) Heart 14.70 2.64 1.60 (7.87) (0.75) (0.27) Lung 85.75 12.23 7.37 (20.70) (5.48) (1.46) Liver 19.40 30.70 17.59 (6.41) (6.46) (1.35) Kidney 4.84 3.77 6.32 (1.36) (0.95) (1.06) ────────────────────────── --Brain / Blood 0.08 8.56 0.28 (0.01) (0.13) (0.06) Heart / Blood 0.65 0.95 0.28 (0.65) (0.95) (0.91) ────────────────── ─────────
【0022】[0022]
【表7】 Cu-62-ETSM の体内分布(n=5) 〔上段:%ID/g(組織),下段:平均±標準偏差〕 ─────────────────────────── 1分 10分 20分 ─────────────────────────── 血液 5.85 4.46 2.94 (0.78) (0.30) (0.31) 脳 9.63 9.79 8.50 (0.63) (O.69) (1.17) 心臓 18.64 16.43 12.10 (2.00) (0.96) (2.06) 肺 27.24 28.95 23.76 (2.63) (2.79) (4.70) 肝臓 10.17 18.80 17.95 (1.98) (1.23) (1.84) 腎臓 25.27 21.02 15.17 (1.91) (1.49) (1.73) ───────────────────────────[Table 7] Cu-62-ETSM distribution in the body (n = 5) [Upper row:% ID / g (tissue), lower row: Mean ± standard deviation] ──────────────── ──────────── 1 minute 10 minutes 20 minutes ─────────────────────────── Blood 5.85 4.46 2.94 ( 0.78) (0.30) (0.31) Brain 9.63 9.79 8.50 (0.63) (O.69) (1.17) Heart 18.64 16.43 12.10 (2.00) (0.96) (2.06) Lung 27.24 28.95 23.76 (2.63) (2.79) (4.70) Liver 10.17 18.80 17.95 (1.98) (1.23) (1.84) Kidney 25.27 21.02 15.17 (1.91) (1.49) (1.73) ────────────────────────── ──
【0023】[0023]
【表8】 Cu-62-ETSE の体内分布(n=5) 〔上段:%ID/g(組織),下段:平均±標準偏差〕 ─────────────────────────── 1分 10分 20分 ─────────────────────────── 血液 5.90 3.92 3.21 (0.62) (0.41) (0.62) 脳 9.99 6.69 5.88 (0.73) (O.77) (0.65) 心臓 16.13 8.43 6.96 (1.40) (1.51) (0.96) 肺 17.95 18.67 16.71 (1.50) (2.35) (0.69) 肝臓 10.92 21.37 19.87 (1.47) (2.40) (2.52) 腎臓 21.34 15.76 12.35 (1.14) (1.60) (1.97) ───────────────────────────[Table 8] Distribution of Cu-62-ETSE in the body (n = 5) [Upper row:% ID / g (tissue), lower row: Mean ± standard deviation] ──────────────── ──────────── 1 minute 10 minutes 20 minutes ─────────────────────────── Blood 5.90 3.92 3.21 ( 0.62) (0.41) (0.62) Brain 9.99 6.69 5.88 (0.73) (O.77) (0.65) Heart 16.13 8.43 6.96 (1.40) (1.51) (0.96) Lung 17.95 18.67 16.71 (1.50) (2.35) (0.69) Liver 10.92 21.37 19.87 (1.47) (2.40) (2.52) Kidney 21.34 15.76 12.35 (1.14) (1.60) (1.97) ────────────────────────── ──
【0024】[0024]
【表9】 Cu-62-PTSE の体内分布(n=5) 〔上段:%ID/g(組織),下段:平均±標準偏差〕 ─────────────────────────── 1分 10分 20分 ─────────────────────────── 血液 4.89 3.89 2.56 (0.34) (0.48) (0.21) 脳 8.45 8.28 6.42 (0.77) (O.30) (O.73) 心臓 13.24 11.61 8.48 (1.81) (1.58) (1.28) 肺 17.20 23.14 18.79 (1.80) (1.11) (3.36) 肝臓 8.78 18.82 16.97 (1.05) (2.63) (4.58) 腎臓 19.80 17.43 13.23 (3.08) (1.93) (0.95) ───────────────────────────[Table 9] Cu-62-PTSE distribution in the body (n = 5) [Upper row:% ID / g (organization), lower row: Mean ± standard deviation] ──────────────── ──────────── 1 minute 10 minutes 20 minutes ─────────────────────────── Blood 4.89 3.89 2.56 ( 0.34) (0.48) (0.21) Brain 8.45 8.28 6.42 (0.77) (O.30) (O.73) Heart 13.24 11.61 8.48 (1.81) (1.58) (1.28) Lung 17.20 23.14 18.79 (1.80) (1.11) (3.36) ) Liver 8.78 18.82 16.97 (1.05) (2.63) (4.58) Kidney 19.80 17.43 13.23 (3.08) (1.93) (0.95) ─────────────────────── ────
【0025】[0025]
【表10】 Cu-62-ATSE の体内分布(n=5) 〔上段:%ID/g(組織),下段:平均±標準偏差〕 ─────────────────────────── 1分 10分 20分 ─────────────────────────── 血液 4.51 2.78 1.73 (0.41) (0.49) (0.10) 脳 7.54 2.99 1.59 (0.64) (O.55) (0.18) 心臓 7.32 3.42 2.20 (0.76) (0.64) (0.34) 肺 40.42 27.96 20.52 (3.33) (1.46) (2.04) 肝臓 8.08 16.93 13.46 (2.16) (1.05) (1.79) 腎臓 20.24 12.62 7.84 (1.78) (2.07) (1.13) ───────────────────────────[Table 10] Distribution of Cu-62-ATSE in the body (n = 5) [Upper row:% ID / g (organization), lower row: Mean ± standard deviation] ──────────────── ──────────── 1 minute 10 minutes 20 minutes ─────────────────────────── Blood 4.51 2.78 1.73 ( 0.41) (0.49) (0.10) Brain 7.54 2.99 1.59 (0.64) (O.55) (0.18) Heart 7.32 3.42 2.20 (0.76) (0.64) (0.34) Lung 40.42 27.96 20.52 (3.33) (1.46) (2.04) Liver 8.08 16.93 13.46 (2.16) (1.05) (1.79) Kidney 20.24 12.62 7.84 (1.78) (2.07) (1.13) ───────────────────────── ──
【0026】[0026]
【表11】 Cu-62-DSDPの体内分布(n=5) 〔上段:%ID/g(組織),下段:平均±標準偏差〕 ─────────────────────────── 1分 10分 20分 ─────────────────────────── 血液 16.03 5.40 3.09 (2.12) (0.77) (0.53) 脳 1.50 0.69 0.53 (1.19) (0.11) (0.03) 心臓 8.32 6.66 5.01 (1.37) (0.92) (0.72) 肺 17.49 21.49 16.49 (1.63) (2.56) (3.43) 肝臓 14.61 25.03 24.42 (1.29) (0.57) (2.90) 腎臓 19.76 22.22 15.71 (1.49) (1.48) (2.84) ───────────────────────────[Table 11] Distribution of Cu-62-DSDP in the body (n = 5) [Upper row:% ID / g (tissue), lower row: Mean ± standard deviation] ──────────────── ──────────── 1 minute 10 minutes 20 minutes ─────────────────────────── Blood 16.03 5.40 3.09 ( 2.12) (0.77) (0.53) Brain 1.50 0.69 0.53 (1.19) (0.11) (0.03) Heart 8.32 6.66 5.01 (1.37) (0.92) (0.72) Lung 17.49 21.49 16.49 (1.63) (2.56) (3.43) Liver 14.61 25.03 24.42 (1.29) (0.57) (2.90) Kidney 19.76 22.22 15.71 (1.49) (1.48) (2.84) ────────────────────────────
【0027】[0027]
【表12】 Cu-62-DAEDの体内分布(n=5) 〔上段:%ID/g(組織),下段:平均±標準偏差〕 ─────────────────────────── 1分 10分 20分 ─────────────────────────── 血液 16.03 4.76 3.42 (2.36) (0.60) (0.27) 脳 0.69 0.52 0.43 (0.11) (0.07) (0.06) 心臓 7.36 6.13 4.99 (1.46) (0.46) (0.59) 肺 16.48 20.19 15.94 (2.44) (3.72) (2.25) 肝臓 14.78 25.55 22.48 (1.73) (3.27) (2.62) 腎臓 19.64 20.13 15.36 (2.88) (2.04) (1.55) ───────────────────────────[Table 12] Distribution of Cu-62-DAED in the body (n = 5) [Upper row:% ID / g (organization), lower row: Mean ± standard deviation] ───────────────── ──────────── 1 minute 10 minutes 20 minutes ─────────────────────────── Blood 16.03 4.76 3.42 ( 2.36) (0.60) (0.27) Brain 0.69 0.52 0.43 (0.11) (0.07) (0.06) Heart 7.36 6.13 4.99 (1.46) (0.46) (0.59) Lung 16.48 20.19 15.94 (2.44) (3.72) (2.25) Liver 14.78 25.55 22.48 (1.73) (3.27) (2.62) Kidney 19.64 20.13 15.36 (2.88) (2.04) (1.55) ────────────────────────────
【0028】[0028]
【発明の効果】本発明の放射性ジチオセミカルバゾン誘
導体の銅錯体または放射性ジアミンジオールシッフベー
ス誘導体の銅錯体を含有する低酸素症およびミトコンド
リア機能障害診断剤は、低酸素症またはミトコンドリア
機能障害検出体として良好な標的組織移行性、低酸素部
位での還元反応親和性、非標的組織での高い安定性とそ
こからの速やかな消失性を有するので脳、心筋等の各種
臓器、組織の低酸素症またはミトコンドリア機能障害の
診断剤として極めて有用である。INDUSTRIAL APPLICABILITY The diagnostic agent for hypoxia and mitochondrial dysfunction containing the copper complex of radioactive dithiosemicarbazone derivative or the copper complex of radioactive diamine diol Schiff base derivative of the present invention is a hypoxia or mitochondrial dysfunction detector. As it has good target tissue transferability, affinity for reduction reaction at hypoxic sites, high stability in non-target tissues and rapid elimination from it, hypoxia of various organs such as brain and myocardium and tissues It is also extremely useful as a diagnostic agent for mitochondrial dysfunction.
【図面の簡単な説明】[Brief description of drawings]
【図1】Cu−ATSMおよびCu−PTSM2の還元
に及ぼすミトコンドリア電子伝達阻害の影響を示す図で
ある。FIG. 1 shows the effect of mitochondrial electron transfer inhibition on the reduction of Cu-ATSM and Cu-PTSM2.
【図2】潅流心筋モデルによるCu−62−ATSM錯
体の心筋への滞留に対する酸素の影響を示す図である。FIG. 2 shows the effect of oxygen on the retention of Cu-62-ATSM complex in the myocardium in a perfused myocardial model.
【図3】灌流心筋モデルによるCu−62−PTSM2
錯体の心筋への滞留に対する酸素の影響を示す図であ
る。FIG. 3 Cu-62-PTSM2 by perfusion myocardial model.
It is a figure which shows the influence of oxygen with respect to the retention | restoration in a cardiac muscle of a complex.
【図4】灌流心筋モデルによるCu−62−ATSM錯
体およびCu−62−PTSM2の心筋への集積性に対
する酸素の影響を示す図である。FIG. 4 is a diagram showing the effect of oxygen on the accumulation of Cu-62-ATSM complex and Cu-62-PTSM2 in the myocardium in a perfused myocardial model.
Claims (7)
セミカルバゾン銅錯体または一般式化2もしくは一般式
化3で示される放射性ジアミンジオールシッフベース銅
錯体を含有する低酸素症またはミトコンドリア機能障害
診断剤。 【化1】 (但し、R1、R2、R3、R4はそれぞれ独立して、
水素原子、アルキル基またはアルコキシ基を表す。Cu
は放射性同位体Cu−62を表す。) 【化2】 (但し、R5、R6、R7はそれぞれ独立して、水素原
子、アルキル基またはアルコキシ基を表す。Cuは放射
性同位体Cu−62を表す。) 【化3】 (但し、R8は水素原子、またはアルキル基を表す。C
uは放射性同位体Cu−62を表す。)1. A hypoxia or mitochondrial dysfunction comprising a radioactive dithiosemicarbazone copper complex represented by the following general formula 1 or a radioactive diamine diol Schiff base copper complex represented by the general formula 2 or formula 3. Diagnostic agent. Embedded image (However, R1, R2, R3 and R4 are each independently
It represents a hydrogen atom, an alkyl group or an alkoxy group. Cu
Represents the radioactive isotope Cu-62. ) (However, R5, R6, and R7 each independently represent a hydrogen atom, an alkyl group, or an alkoxy group. Cu represents the radioactive isotope Cu-62.) (However, R8 represents a hydrogen atom or an alkyl group. C
u represents the radioactive isotope Cu-62. )
セミカルバゾン銅錯体を含有する低酸素症またはミトコ
ンドリア機能障害診断剤。 【化4】 (但し、R1、R2、R3、R4はそれぞれ独立して、
水素原子、アルキル基またはアルコキシ基を表す。Cu
は放射性同位体Cu−62を表す。)2. A diagnostic agent for hypoxia or mitochondrial dysfunction, which comprises a radioactive dithiosemicarbazone copper complex represented by the following general formula 4. [Chemical 4] (However, R1, R2, R3 and R4 are each independently
It represents a hydrogen atom, an alkyl group or an alkoxy group. Cu
Represents the radioactive isotope Cu-62. )
ンジオールシッフベース銅錯体を含有する低酸素症また
はミトコンドリア機能障害診断剤。 【化5】 (但し、R5、R6、R7はそれぞれ独立して、水素原
子、アルキル基またはアルコキシ基を表す。Cuは放射
性同位体Cu−62を表す。)3. A diagnostic agent for hypoxia or mitochondrial dysfunction, which comprises a radioactive diaminediol Schiff-based copper complex represented by the following general formula 5. Embedded image (However, R5, R6, and R7 each independently represent a hydrogen atom, an alkyl group, or an alkoxy group. Cu represents the radioactive isotope Cu-62.)
ンジオールシッフベース銅錯体を含有する低酸素症また
はミトコンドリア機能障害診断剤。 【化6】 (但し、R8は水素原子、またはアルキル基を表す。C
uは放射性同位体Cu−62を表す。)4. A diagnostic agent for hypoxia or mitochondrial dysfunction, which comprises a radioactive diaminediol Schiff-based copper complex represented by the following general formula 6. [Chemical 6] (However, R8 represents a hydrogen atom or an alkyl group. C
u represents the radioactive isotope Cu-62. )
u−62−ジアセチル−ビス(N4−メチルチオセミカ
ルバゾン)錯体またはCu−62−ピルブアルデヒド−
ビス(N4−ジメチルチオセミカルバゾン)錯体である
請求項1または2記載の低酸素症またはミトコンドリア
機能障害診断剤。5. The radioactive dithiosemicarbazone copper complex is C
u-62-Diacetyl-bis (N4-methylthiosemicarbazone) complex or Cu-62-pyruvaldehyde-
The diagnostic agent for hypoxia or mitochondrial dysfunction according to claim 1 or 2, which is a bis (N4-dimethylthiosemicarbazone) complex.
錯体がCu−62−ジサリチルアルデヒド−2,2−ジ
メチル−1,3−プロパンジアミン錯体である請求項1
または3記載の低酸素症またはミトコンドリア機能障害
診断剤。6. The radioactive diamine diol Schiff base copper complex is a Cu-62-disalicylic aldehyde-2,2-dimethyl-1,3-propanediamine complex.
Or the diagnostic agent for hypoxia or mitochondrial dysfunction according to 3.
錯体がジアセチルアセトンエチレンジアミン錯体である
請求項1または4記載の低酸素症またはミトコンドリア
機能障害診断剤。7. The diagnostic agent for hypoxia or mitochondrial dysfunction according to claim 1 or 4, wherein the radioactive diaminediol Schiff-based copper complex is a diacetylacetone ethylenediamine complex.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP34973595A JP3808121B2 (en) | 1995-01-09 | 1995-12-21 | Diagnostic agent for hypoxia or mitochondrial dysfunction |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1750495 | 1995-01-09 | ||
JP7-17504 | 1995-01-09 | ||
JP34973595A JP3808121B2 (en) | 1995-01-09 | 1995-12-21 | Diagnostic agent for hypoxia or mitochondrial dysfunction |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08245425A true JPH08245425A (en) | 1996-09-24 |
JP3808121B2 JP3808121B2 (en) | 2006-08-09 |
Family
ID=26354037
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP34973595A Expired - Lifetime JP3808121B2 (en) | 1995-01-09 | 1995-12-21 | Diagnostic agent for hypoxia or mitochondrial dysfunction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3808121B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100879559B1 (en) * | 1999-02-23 | 2009-01-22 | 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 | A Pharmaceutical Composition for the Treatement or Prevention of a Mitochondrial Disorders |
EP2749295A1 (en) | 2012-12-27 | 2014-07-02 | Nihon Medi-Physics Co., Ltd. | Radiopharmaceutical and pharmaceutical kit |
EP2749294A1 (en) | 2012-12-27 | 2014-07-02 | Nihon Medi-Physics Co., Ltd. | Anti-tumor agent and anti-tumor kit |
JP2015134798A (en) * | 2008-12-12 | 2015-07-27 | ザ ユニバーシティ オブ メルボルン | Process for preparation of asymmetrical bis(thiosemicarbazones) |
WO2021042048A1 (en) * | 2019-08-30 | 2021-03-04 | Research Institute At Nationwide Children's Hospital | Copper-atsm for treating neurodegenerative disorders associated with mitochondrial dysfunction |
-
1995
- 1995-12-21 JP JP34973595A patent/JP3808121B2/en not_active Expired - Lifetime
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100879559B1 (en) * | 1999-02-23 | 2009-01-22 | 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 | A Pharmaceutical Composition for the Treatement or Prevention of a Mitochondrial Disorders |
JP2015134798A (en) * | 2008-12-12 | 2015-07-27 | ザ ユニバーシティ オブ メルボルン | Process for preparation of asymmetrical bis(thiosemicarbazones) |
EP2749295A1 (en) | 2012-12-27 | 2014-07-02 | Nihon Medi-Physics Co., Ltd. | Radiopharmaceutical and pharmaceutical kit |
EP2749294A1 (en) | 2012-12-27 | 2014-07-02 | Nihon Medi-Physics Co., Ltd. | Anti-tumor agent and anti-tumor kit |
JP2014129316A (en) * | 2012-12-27 | 2014-07-10 | Nihon Medi Physics Co Ltd | Radiopharmaceutical and pharmaceutical kit |
WO2021042048A1 (en) * | 2019-08-30 | 2021-03-04 | Research Institute At Nationwide Children's Hospital | Copper-atsm for treating neurodegenerative disorders associated with mitochondrial dysfunction |
Also Published As
Publication number | Publication date |
---|---|
JP3808121B2 (en) | 2006-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Fujibayashi et al. | Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential | |
CN105025933A (en) | Triazine based radiopharmaceuticals and radioimaging agents | |
Mallia et al. | On the structural modification of 2-nitroimidazole-99mTc (CO) 3 complex, a hypoxia marker, for improving in vivo pharmacokinetics | |
Yang et al. | Noninvasive assessment of tumor hypoxia with 99mTc labeled metronidazole | |
Chu et al. | Synthesis and biological results of the technetium-99m-labeled 4-nitroimidazole for imaging tumor hypoxia | |
JP3385048B2 (en) | Rhenium and technetium complexes containing hypoxia-localized residues | |
KR100419760B1 (en) | A diagnostic agent for hypoxia or mitochondrial function, containing radioactive copper complexes of a dithiothreimecarbazone derivative or a diamine diol siffer base derivative | |
Engelhardt et al. | The synthesis and radiolabeling of 2-nitroimidazole derivatives of cyclam and their preclinical evaluation as positive markers of tumor hypoxia | |
Li et al. | Synthesis and in vitro and in vivo evaluation of three radioiodinated nitroimidazole analogues as tumor hypoxia markers | |
US20100228012A1 (en) | Pendant fatty acid imaging agents | |
Shamsel-Din et al. | A novel radiolabeled indole derivative as solid tumor imaging agent: in silico and preclinical pharmacological study | |
Mukai et al. | Design of Ga–DOTA-based bifunctional radiopharmaceuticals: Two functional moieties can be conjugated to radiogallium–DOTA without reducing the complex stability | |
Ito et al. | PET and planar imaging of tumor hypoxia with labeled metronidazole | |
Murugesan et al. | Technetium-99m-cyclam AK 2123: a novel marker for tumor hypoxia | |
JP5085824B2 (en) | Production of compounds useful for hypoxia detection | |
JPH08245425A (en) | Diagnostic for low hypoxia or mitochondria function disorder | |
US5688485A (en) | Radiolabelled complexes of ester-substituted diaminethiols | |
Ruan et al. | Preparation of two 99m Tc (CO) 3 labelled complexes with a 4-nitroimidazole isocyanide at different temperatures for molecular imaging of tumor hypoxia | |
Mallia et al. | Preparation and preliminary evaluation of a tris-metronidazole-99m Tc (CO) 3 complex for targeting tumor hypoxia | |
AU2013324636B2 (en) | Radiopharmaceutical products for diagnosis and therapy of adrenal carcinoma | |
Karamalakova et al. | Biological evaluation of new potential anticancer agent for tumour imaging and radiotherapy by two methods: 99mTc-radiolabelling and EPR spectroscopy | |
ARANO et al. | Stable and lipophilic technetium-99m dithiosemicarbazone complexes with 5-6-5 membered chelate ring structure | |
Zhang et al. | Synthesis, radiolabeling and biological evaluation of butene amine oxime containing nitrotriazole as a tumor hypoxia marker | |
Ghosh et al. | Research Article Targeted Tumor Therapy with Radiolabeled DNA Intercalator: A Possibility? Preclinical Investigations with 177 Lu-Acridine | |
Kronauge | Functionalized isonitrile complexes of technetium as radiopharmaceuticals |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060509 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060517 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090526 Year of fee payment: 3 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D04 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090526 Year of fee payment: 3 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: R3D04 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090526 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090526 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100526 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110526 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110526 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120526 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130526 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140526 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |