JPH0824489B2 - Ecology management method for plants - Google Patents

Ecology management method for plants

Info

Publication number
JPH0824489B2
JPH0824489B2 JP4226458A JP22645892A JPH0824489B2 JP H0824489 B2 JPH0824489 B2 JP H0824489B2 JP 4226458 A JP4226458 A JP 4226458A JP 22645892 A JP22645892 A JP 22645892A JP H0824489 B2 JPH0824489 B2 JP H0824489B2
Authority
JP
Japan
Prior art keywords
plants
plant
frequency band
potential
low frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4226458A
Other languages
Japanese (ja)
Other versions
JPH06165620A (en
Inventor
裕司 銅金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP4226458A priority Critical patent/JPH0824489B2/en
Publication of JPH06165620A publication Critical patent/JPH06165620A/en
Publication of JPH0824489B2 publication Critical patent/JPH0824489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、園芸植物等の植物の生
態管理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ecological management method for plants such as horticultural plants.

【0002】[0002]

【従来の技術】近年、一般の圃場栽培に加えて水耕栽培
や温室栽培が盛んに行われ、園芸植物、果樹、農産物等
が四季を問わずに市場に出回るようになってきている。
2. Description of the Related Art In recent years, hydroponics and greenhouse cultivation have been actively carried out in addition to general field cultivation, and horticultural plants, fruit trees, agricultural products and the like have come to the market regardless of the four seasons.

【0003】従来、農業の作物の栽培技術は、圃場栽
培、施設栽培とも、その収量や質を向上するために自然
特性である温度、光量、水量、土壌などの環境要因につ
いての管理を適切に行うような制御をしている。
[0003] Conventionally, in agricultural crop cultivation techniques, both in field cultivation and institutional cultivation, appropriate management of environmental factors such as temperature, light quantity, water quantity, and soil, which are natural characteristics, is performed in order to improve the yield and quality. It has the control to do.

【0004】[0004]

【発明が解決しようとする課題】しかし、従来の方法で
は、温度や湿度等のいわゆるマクロ的な環境管理手段に
もとづいて植物の育成を管理しているもので、植物自身
の生態特性を十分に把握して行なっているものではな
い。そこで、特公昭51−42006号公報等のように
植物の葉面電位変化等を測定することが知られている
が、mVレベルのもので、正確で詳細な植物の挙動、特
性を知ることができないものであった。
However, in the conventional method, the growth of the plant is managed based on so-called macroscopic environmental management means such as temperature and humidity, and the ecological characteristics of the plant itself are sufficiently controlled. It's not something we know and do. So, like Japanese Patent Publication No. 51-42006
Known to measure changes in leaf surface potential of plants
However, at the mV level, accurate and detailed plant behavior and characteristics
I couldn't know his gender.

【0005】[0005]

【課題を解決するための手段】本発明は、上記のような
点に鑑みたもので、上記の課題を解決するために、園芸
植物等の植物の葉面の電位について、その0〜数+Hz
の低周波数帯でのμVレベルのスペクトル発生状態を植
物の朝、昼、夜において検し、上記植物の0〜数+Hz
の低周波数帯でのスペクトル線のピークの大きさおよび
数の基本特性を把握して植物の生態を管理することを特
徴とする植物の生態管理方法を提供するにある。
The present invention has been made in view of the above points, and in order to solve the above problems, the potential of the leaf surface of a plant such as a horticultural plant is 0 to several + Hz.
The spectrum generation state of μV level in the low frequency band of
Morning of thing, noon, and Oite inspection at night, of the plant from 0 to the number of + Hz
Of the peak of the spectral line in the low frequency band of
An object of the present invention is to provide a plant ecological management method characterized by grasping the basic characteristics of numbers to control the ecology of plants.

【0006】本発明の植物の生態管理方法を使用する
と、植物の活性状態をμVレベルの検出によって測定で
き、光合成などの生理活性状態を知る指標となって植物
の生態をより正確に管理することができる。
Using the method for ecological management of plants of the present invention, the active state of plants can be measured by detecting μV level.
Plants, which can be used as an indicator of physiological activity such as photosynthesis
The ecology of can be managed more accurately.

【0007】[0007]

【実施例】以下、本発明を実施例にもとづいて説明す
る。図1以下は、本発明の一実施例である。園芸植物1
の葉2には、図1のように一定の間隔をへだててセンサ
−3、3を貼り付け、葉面のμVレベルの微弱な電位を
測定できるようにしている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. FIG. 1 et seq. Are embodiments of the present invention. Garden plant 1
As shown in FIG. 1, the sensors 2 and 3 are attached to the leaf 2 at regular intervals so that the weak electric potential of the μV level on the leaf surface can be measured.

【0008】上記センサ−3、3には人間の心電図検査
用の導電性接着剤を利用した電極を流用していて、この
センサ−3、3を図のようにアンプ4やA−Dコンバ−
ダ−5を内蔵した送信機6に接続し、アンテナ7、8を
介してコンパレ−タ−9を内蔵した受信機10に信号を
送信して、適宜の場所でリアルタイムに観測できるよう
にしている。
Electrodes using a conductive adhesive for human electrocardiographic examination are diverted to the sensors 3 and 3, and the sensors 3 and 3 are connected to the amplifier 4 and AD converter as shown in the figure.
It is connected to a transmitter 6 with a built-in da 5 and transmits a signal to a receiver 10 with a built-in comparator 9 via antennas 7 and 8 so that it can be observed in real time at an appropriate place. .

【0009】そして、受信機10にマイクロコンピュ−
タ−のコンピュ−タ−11を接続し、検出した電位をF
FT解析等のフ−リエ変換処理し、CRT12やプリン
タ−13に出力できるようにしている。
Then, the receiver 10 has a microcomputer.
Connect the computer 11 of the computer and set the detected potential to F
The Fourier transform processing such as the FT analysis is performed, and the CRT 12 and the printer 13 can be output.

【0010】上記送信機6、受信機10の観測装置14
は、数μVの微弱な電位が検出可能な簡易型の脳波測定
装置を植物用に改造したもので、廉価かつ小型で、持ち
運びが自由で、容易に設置できるようにしている。
Observation device 14 of transmitter 6 and receiver 10
Is a simple electroencephalogram measuring device that can detect a weak electric potential of several μV for plants, and is inexpensive, small, portable, and easy to install.

【0011】[0011]

【観測例】年令が1年程度のファレノプシス(胡蝶
蘭)、カトレヤ、カポックについて、上記のように葉面
の電位を1回の測定時間を3分程度として6時間ごとに
24時間にわたって測定した。
[Observation example] With respect to Phalaenopsis (phalaenopsis), cattleya, and kapok aged about 1 year, the leaf potential was measured every 6 hours for 24 hours as described above, with one measurement time of about 3 minutes. .

【0012】これらの各葉面の電位の変化、フ−リエ変
換によるスペクトルの状態について、図2〜図4に示し
ている。
FIGS. 2 to 4 show the changes in the potential of each leaf surface and the state of the spectrum by the Fourier transform.

【0013】ファレノプシスの葉面の電位変化は、図2
のように昼間が小さく、夜間が大きい。そして、昼夜そ
れぞれに0〜10Hz 前後の周波数帯に数μV/√Hz
および10〜20μV/√Hz 程度のスペクトルがみら
れ、夜間に10Hz 前後の周波数帯において活性があっ
た。
The change in potential on the leaf surface of Phalaenopsis is shown in FIG.
The daytime is small and the nighttime is large. Then, several μV / √Hz in the frequency band around 0 to 10 Hz for each day and night
And a spectrum of about 10 to 20 μV / √Hz was observed, and it was active in the frequency band around 10 Hz at night.

【0014】カトレヤの葉面の電位変化は、図3のよう
に終日みられ、午前中は比較的小さい。スペクトルは、
昼夜とも0〜30Hz 前後の周波数帯に70〜50μV
/√Hz 程度の幅広い活性がみられる。
The change in the electric potential on the leaf surface of Cattleya is seen throughout the day as shown in FIG. 3, and is relatively small in the morning. The spectrum is
70 to 50 μV in the frequency band around 0 to 30 Hz both day and night
A broad activity of about / √Hz is observed.

【0015】カポックの葉面の電位変化は、図4のよう
に上記したファレノプシスとは逆に昼間が大きく、夜間
が小さい。スペクトルは、朝から昼にかけて0〜10H
z 前後の周波数帯で20〜70μV/√Hz 程度に増加
したが、それ以上の高周波数帯にはみられなかった。
Contrary to the above-described Phalaenopsis, the potential change on the leaf surface of the kapok is large in the daytime and small in the nighttime. The spectrum is 0-10H from morning to noon
It increased to about 20 to 70 μV / √Hz in the frequency band around z, but was not observed in the higher frequency band beyond that.

【0016】このように植物の葉面の電位変化は、従来
のmVレベルでは検出できなかった活性状態をμVレベ
ルの検出によって測定でき、植物の種類で異なる葉面の
電位の変化のパターンは、ファレノプシスとカトレヤが
夜間に活発なCAM型光合成を行う事実に、またカポッ
クが昼間に活発なC型光合成を行う事実に対応してい
ことから、光合成などの生理活性状態を知る指標とな
って植物の生態をより正確に管理することができる。
As described above, the change in the leaf surface potential of a plant can be measured by detecting the active state, which could not be detected at the conventional mV level, by detecting the μV level. in fact Phalaenopsis and Cattleya performs active CAM photosynthesis at night, see you since kapok corresponds to the fact of performing active C 3 -type photosynthesis during the day, an index to know the physiological activity state, such as photosynthesis
Therefore, the ecology of plants can be managed more accurately.

【0017】したがって、園芸植物の葉面の電位変化の
上記測定した特性にもとづいて、植物の各種のストレス
や刺激下等における電位変化の状態を把握しておくこと
によって、葉面の電位変化の基本パタ−ンに対してずれ
が生じると、何らかの異常が生じたことをリアルタイム
に検知することができ、温度、湿度、水分、酸素、養
分、光などの環境要因、窒素、りん酸、カリウムなどの
肥料、その他薬品などを適切にコントロ−ルして生育管
理をはかることができる。
Therefore, by grasping the state of the potential change under various stresses or stimuli of the plant based on the above-mentioned measured characteristics of the potential change on the leaf surface of the horticultural plant, When a deviation from the basic pattern occurs, it is possible to detect in real time that something is wrong, such as temperature, humidity, moisture, oxygen, nutrients, environmental factors such as light, nitrogen, phosphoric acid, potassium, etc. Appropriate control of fertilizers and other chemicals can be used for growth control.

【0018】たとえば、上記したカトレヤの栽培で水分
の補給を忘れると、上記した電位変化が非常に少なくな
り、スペクトルの大きなピ−クの数が少なくなって活性
がなくなるのを検出できる。そのため、スペクトルの所
定の大きさのピ−クの数を検出することによって、警報
やCRT、プリンタ−に指示してリアルタイムに対応す
るようにできる。観測デ−タ−が多くなって解析精度が
上がれば、AI手法で判別するようにもできる。
For example, if the water supply is forgotten in the cultivation of Cattleya as described above, it is possible to detect that the above-mentioned potential change becomes very small, the number of peaks having a large spectrum decreases, and the activity disappears. Therefore, by detecting the number of peaks of a predetermined size in the spectrum, it is possible to give an alarm, a CRT, or a printer to respond in real time. If the amount of observation data is large and the analysis accuracy is high, the AI method can be used for discrimination.

【0019】また、育種について、上記のようにして葉
面の電位変化を観測することによって、活性の高いもの
を容易にみつけられるので、活性の高いもの同志を交配
して、収量や質の高いものを効果的に育成するようにも
できる。
Regarding breeding, by observing the potential change on the leaf surface as described above, a highly active one can easily be found. Therefore, highly active ones can be crossed to obtain a high yield and high quality. You can also train things effectively.

【0020】上記では、園芸植物について説明したが、
野菜、その他の農産物や穀物、果樹、さらにバイオテク
ノロジ−の分野のもの等についても同様に適用すること
ができる。その際、観測時間、時間間隔は、本発明の趣
旨にもとづいて連続的としたり、時期、対象に対応して
適宜に決定することができる。
Although the garden plants have been described above,
The same can be applied to vegetables, other agricultural products, grains, fruit trees, and those in the field of biotechnology. At that time, the observation time and the time interval can be continuously determined based on the gist of the present invention, or can be appropriately determined according to the time and the object.

【0021】なお、以上では、圃場栽培や施設栽培につ
いて説明したが、異常な環境条件下などに設置し、上記
したように葉面の電位変化のずれを検出して、いわゆる
植物センサ−として環境の評価に流用することも可能で
ある。また、上述したように各植物に対して特定の葉面
電位変化、スペクトル特性がみられるので、これを音響
処理や画像処理を施して、音響的やビジュアル的に利用
することも可能で、植物栽培に対する興味を高めるよう
にすることができる。
Although field cultivation and facility cultivation have been described above, the apparatus is installed under abnormal environmental conditions, etc., and as described above, the deviation of the potential change on the leaf surface is detected, and a so-called plant sensor is used. It is also possible to use it for the evaluation of. Further, as described above, specific leaf surface potential changes and spectral characteristics are observed for each plant, so it is also possible to subject this to acoustic or image processing for acoustic or visual use. It is possible to increase interest in cultivation.

【0022】以上のように本発明にあっては、園芸植物
等の植物の葉面の電位を0〜数+Hzの低周波数帯でμ
Vレベルのスペクトル発生状態を植物の朝、昼、夜にお
いて検出し、上記植物の0〜数+Hzの低周波数帯での
スペクトル線のピークの大きさおよび数の基本特性を把
握して植物の生態を管理するので、人間の脳波状態の検
出と同じレベルで植物の光合成などの生理活性を知る指
標となる。たとえば胡蝶蘭とファレノプシスの葉面U電
位変化は、昼間が小さく、夜間が大きい。そして、昼夜
それぞれに0〜10Hz前後の周波数帯に数μV/√H
zおよび10〜20μV/√Hz程度のスペクトルがみ
られ、夜間に10Hz前後の周波数帯において活性があ
るなどが知られる。また、カトレヤの葉面の電位変化
は、終日みられ、午前中は比較的小さい。スペクトル
は、昼夜とも0〜30Hz前後の周波数帯に70〜50
μV/√Hz程度の幅広い活性がみられ、カポックの葉
面の電位変化は、上記したファレノプシスとは逆に昼間
が大きく、夜間が小さい。スペクトルは、朝から昼にか
けて0〜10Hz前後の周波数帯で20〜70μV/√
Hz程度に増加したが、それ以上の高周波数帯にはみら
れないなどの活性状態が分かる。このように植物の葉面
の電位変化は、従来のmVレベルでは検出できなかった
活性状態をμVレベルの検出によって測定でき、植物の
種類で異なる葉面の電位の変化のパターンは、ファレノ
プシスとカトレヤが夜間に活発なCAM型光合成を行う
事実に、またカポックが昼間に活発なC 型光合成を行
う事実に対応していることから、光合成などの生理活性
状態を知る指標となって植物の生態をより正確に管理す
ることができる。 また、育種について園芸植物等の植物
の葉面の電位を0〜数+Hzの低周波数帯でμVレベル
のスペクトル発生状態を植物の朝、昼、夜において検出
し、上記植物の0〜数+Hzの低周波数帯でのスペクト
ル線の発生が盛んで活性の高い育種同志を支配すること
によって、収量や質の高い植物を効果的に育成するよう
にできる。
As described above, according to the present invention, a garden plant
Of the leaf surface potential of plants such as μ in the low frequency band of 0 to several + Hz
V-level spectrum generation state in the morning, day and night of plants
In the low frequency band of 0 to several + Hz of the above plants
The basic characteristics of peak size and number of spectral lines are
Because it controls the ecology of the plant by grasping it,
Finger to know the bioactivity such as photosynthesis of plants at the same level as
Become a mark. For example, Phalaenopsis orchid and Phalaenopsis leaf surface U-den
The change of rank is small in the daytime and large in the nighttime. And day and night
Several μV / √H in the frequency band around 0 to 10 Hz for each
z and spectrum of 10 to 20 μV / √Hz
And is active in the frequency band around 10 Hz at night.
Is known. In addition, the potential change of the leaf surface of Cattleya
Are seen all day and are relatively small in the morning. Spectrum
Is 70 to 50 in the frequency band around 0 to 30 Hz both day and night.
A wide range of activity around μV / √Hz is observed, and leaves of Kapok
Contrary to the above-mentioned Phalaenopsis, the potential change on the surface changes in the daytime.
Is large and small at night. Spectrum from morning to noon
20 to 70 μV / √ in the frequency band around 0 to 10 Hz
Although it increased to about Hz, it is
You can see the active status such as not being. Thus the leaf surface of the plant
Potential change could not be detected at conventional mV level
The activity status can be measured by detection of μV level,
The pattern of changes in leaf potential, which is different for each type, is
Prussian and Cattleya perform active CAM-type photosynthesis at night
In fact, again, Kapok carries out active C 3 -type photosynthesis in the daytime.
Since it corresponds to the fact that bioactivity such as photosynthesis
It serves as an index to know the condition and manages the ecology of plants more accurately.
Can be Regarding breeding, plants such as garden plants
The electric potential of the leaf surface is 0V to a few + Hz in the low frequency band of μV level
Detects the spectrum generation state of plants in the morning, day and night of plants
And the spectrum of the above plants in the low frequency band of 0 to several + Hz
Dominance of highly active breeding comrades with strong outbreaks
To effectively grow high yield and quality plants
You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の観測説明図、FIG. 1 is an explanatory view of observation of one embodiment of the present invention,

【図2】同上のファレノプシスの観測デ−タ−図、FIG. 2 is an observation data diagram of Phalaenopsis as above,

【図3】同上のカトレヤの観測デ−タ−図、FIG. 3 is an observation data diagram of Cattleya,

【図4】同上のカポックの観測デ−タ−図。FIG. 4 is an observation data diagram of the same as above.

【符号の説明】[Explanation of symbols]

1…植物 2…葉 3…セ
ンサ− 6…送信機 10…受信機 11…コ
ンピュ−タ− 14…観測装置。
1 ... Plant 2 ... Leaf 3 ... Sensor 6 ... Transmitter 10 ... Receiver 11 ... Computer 14 ... Observation apparatus.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 園芸植物等の植物の葉面の電位につい
て、その0〜数+Hzの低周波数帯でのμVレベルのス
ペクトル発生状態を植物の朝、昼、夜において検し、上
記植物の0〜数+Hzの低周波数帯でのスペクトル線の
ピークの大きさおよび数の基本特性を把握して植物の生
態を管理することを特徴とする植物の生態管理方法。
[Claim 1] attached to the potential of the surfaces of leaves of plants such as garden plants
Therefore, the μV level sweep in the low frequency band of 0 to several + Hz
Spectrum generating state in the morning of the plant, noon, and Oite biopsy night, of spectral lines in the low frequency range of 0 to the number of + Hz of the plant
A plant ecology management method characterized by managing the ecology of a plant by grasping the basic characteristics of the size and number of peaks .
【請求項2】 園芸植物等の植物の葉面の電位につい
て、その0〜数+Hzの低周波数帯でのμVレベルのス
ペクトル発生状態を植物の朝、昼、夜において検出し、
上記植物の0〜数+Hzの低周波数帯でのスペクトル線
の発生が盛んで活性の高い育種同志を支配することを特
徴とする植物の生態管理方法。
2. The potential of leaf surface of plants such as garden plants
Therefore, the μV level sweep in the low frequency band of 0 to several + Hz
Detects the state of vector generation in the morning, day and night of plants,
Spectral lines in the low frequency band of 0 to several + Hz of the above plants
It is important to control breeding comrades that are highly active and highly active.
Ecological management method of plant to be collected.
JP4226458A 1992-08-03 1992-08-03 Ecology management method for plants Expired - Lifetime JPH0824489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4226458A JPH0824489B2 (en) 1992-08-03 1992-08-03 Ecology management method for plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4226458A JPH0824489B2 (en) 1992-08-03 1992-08-03 Ecology management method for plants

Publications (2)

Publication Number Publication Date
JPH06165620A JPH06165620A (en) 1994-06-14
JPH0824489B2 true JPH0824489B2 (en) 1996-03-13

Family

ID=16845415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4226458A Expired - Lifetime JPH0824489B2 (en) 1992-08-03 1992-08-03 Ecology management method for plants

Country Status (1)

Country Link
JP (1) JPH0824489B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2772630B2 (en) * 1995-08-25 1998-07-02 裕司 銅金 How to display plant ecological activity
JP4939243B2 (en) * 2006-01-30 2012-05-23 株式会社雪国まいたけ Mushroom cultivation method
JP4876257B2 (en) * 2007-01-09 2012-02-15 国立大学法人山口大学 Cultivation environment diagnosis system by measuring plant root pressure
IT201700110668A1 (en) * 2017-10-03 2019-04-03 Pnat S R L PHYTOSTATIC ANALYSIS DEVICE

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2438565B2 (en) * 1974-08-10 1976-06-24 Demag Ag, 4100 Duisburg DEVICE FOR HEAT TREATMENT OF ROLLED WIRE

Also Published As

Publication number Publication date
JPH06165620A (en) 1994-06-14

Similar Documents

Publication Publication Date Title
AU2007247732B2 (en) Method and system for monitoring growth characteristics
US6055480A (en) Environmental monitoring system
EP3298385B1 (en) Plant matter sensor
CN106718363B (en) Irrigation test method and test platform for fine agriculture
Reginato et al. Irrigation scheduling using crop indicators
Sihombing et al. Detection of air temperature, humidity and soil pH by using DHT22 and pH sensor based Arduino nano microcontroller
Yimwadsana et al. An IoT controlled system for plant growth
GB2132767A (en) Monitoring the property of a medium
JPH0824489B2 (en) Ecology management method for plants
Jurišić et al. Sensors and their application in precision agriculture
Peppi et al. Low-cost, high-resolution and no-manning distributed sensing system for the continuous monitoring of fruit growth in precision farming
Pietragalla et al. Normalized difference vegetation index
Potratz et al. Testing the accuracy and precision of wetness sensors in a tomato field and on turfgrass
Sartika et al. Development of irrigation tank monitoring system and its environment for the effectiveness of rice irrigation
JP2008271952A (en) Method for cultivating plant, and apparatus for cultivating plant
Bravdo et al. A fully-automated orchard irrigation system based on continuous monitoring of turgor potential with a leaf sensor
JP2772630B2 (en) How to display plant ecological activity
Shibayama et al. Remote assessment of wheat canopies under various cultivation conditions using polarized reflectance
Bar-On et al. Examination of Plant Physiological Monitoring Alongside in-Vivo Four-Point-Probe Impedance Spectroscopy of Live Tobacco Plants
Bar-On et al. Plant-Based Electrical Impedance Spectroscopy for Plant Health Monitoring
Tasić et al. Measurement of vertical soil compaction after barley harvesting
Hristov et al. Studying the Possibility of Using a Multi-Sensory System for Precise Monitoring of Some Environmental Factors in Order to Assist in the Management of an Orchard
SU1576039A1 (en) Plant bioelectric potential difference meter
Abaskhanova et al. INTRODUCTION OF" SMART GREENHOUSE" TECHNOLOGIES TO AGRICULTURE
Sardo et al. Environmental and physiological parameters in scheduling irrigations of orange trees