JPH08240550A - Ground water penetration property measuring method and device - Google Patents

Ground water penetration property measuring method and device

Info

Publication number
JPH08240550A
JPH08240550A JP4557695A JP4557695A JPH08240550A JP H08240550 A JPH08240550 A JP H08240550A JP 4557695 A JP4557695 A JP 4557695A JP 4557695 A JP4557695 A JP 4557695A JP H08240550 A JPH08240550 A JP H08240550A
Authority
JP
Japan
Prior art keywords
ground
electrodes
electrode
current
modulation component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4557695A
Other languages
Japanese (ja)
Inventor
Nobuyoshi Yamazaki
宣悦 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RADIC KK
Sakata Denki Co Ltd
Original Assignee
RADIC KK
Sakata Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RADIC KK, Sakata Denki Co Ltd filed Critical RADIC KK
Priority to JP4557695A priority Critical patent/JPH08240550A/en
Publication of JPH08240550A publication Critical patent/JPH08240550A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/30Assessment of water resources

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

PURPOSE: To limitedly perform grouting operation by accurately obtaining the depth of a part with a high ground water penetration property utilizing the shifting phenomenon of water. CONSTITUTION: First and second electrodes 13 and 14 are inserted into first and second drilling holes 11 and 12 formed on a ground 10 to enable the first and second electrodes to face each other via the ground. An oscillation voltage is applied between the first and second electrodes by an oscillation circuit 15 and a conduction current between the first and second electrodes is detected by a current detection circuit 17. Further, by referring to the frequency of the oscillation voltage by a phase detection circuit 18, the waveform of the conduction current is detected to generate a waveform signal. The frequency component of the oscillation voltage is removed from the waveform signal by a filter circuit 19 to make remaining frequency components as modulation components.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は地盤の透水性を測定する
方法及び装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the water permeability of the ground.

【0002】[0002]

【従来の技術】ダムを建設する場合、基礎地盤を通じて
の漏水の有無が重要な要素となっている。破砕帯は基礎
地盤が劣化領域であると同時に水みちとなることが予想
される。このためダムの基礎地盤調査では特に破砕帯の
存在に注意が払われている。具体的には、地表地質踏
査、ボーリング調査、横孔調査、弾性波調査、ボーリン
グ孔間インピーダンス調査などが行われている。破砕帯
を水が通過すると、破砕して表面積が増大した岩片と水
が反応し、吸水反応が起り、長石類や雲母から粘土物質
に変化して行く。粘土物質にはモンモリロナイトのよう
に水を含むと体積が膨脹するようなものもあり、地盤透
水性の存在が重要な要素となっている。
2. Description of the Related Art When constructing a dam, the presence or absence of water leakage through the foundation ground is an important factor. It is expected that the shatter zone will be a water area as well as the degraded area of the foundation ground. For this reason, particular attention is paid to the existence of shatter zones in the basic ground survey of dams. Concretely, surface geological survey, boring survey, lateral hole survey, elastic wave survey, impedance survey between boreholes, etc. are conducted. When water passes through the crush zone, it reacts with the rock fragments that have been crushed and the surface area has increased, and a water absorption reaction occurs, changing from feldspars and mica to clay substances. Some clay substances, such as montmorillonite, expand in volume when they contain water, and the existence of ground permeability is an important factor.

【0003】このような理由から、地盤の透水性を調査
するため地盤ボーリングを行い、コアサンプルを得てこ
れを調査する。コアサンプル中にクラック等が認められ
る場合にはボーリング孔からセメントミルクを注入して
地盤のクラックを塞ぐグラウチング作業が行われてい
る。グラウチング作業の効果を判定する手段として、グ
ラウチング作業の前後の地盤の弾性波速度を測定しその
比較をすることが行われている。グラウチング作業が有
効に作用した場合、弾性波の伝搬速度はグラウチング作
業前に比べて2400m/s前後の低速成分の比率が著
しく減少することからグラウチング作業の効果の判定が
行われている。
For these reasons, ground boring is performed to investigate the water permeability of the ground, core samples are obtained, and this is investigated. When cracks are found in the core sample, cement milk is injected from the boring hole to perform grouting work to close the cracks in the ground. As a means for determining the effect of the grouting work, the elastic wave velocities of the ground before and after the grouting work are measured and compared. When the grouting work effectively works, the ratio of the low-speed component of the elastic wave propagation velocity around 2400 m / s is remarkably reduced as compared with that before the grouting work, so that the effect of the grouting work is judged.

【0004】また、地盤の強度を判定する手段としてル
ジオン試験も行われている。ルジオン試験はボーリング
孔に高圧の水を注入し、その透水度より地盤の透水性を
評価する試験である。したがってルジオン試験は、比較
的簡便に実施でき、かつ地盤の状態をおおむね判断でき
るという利点をもつ。
The Lugeon test is also conducted as a means for judging the strength of the ground. The Lugeon test is a test in which high-pressure water is injected into a boring hole and the water permeability of the ground is evaluated based on the water permeability. Therefore, the Lugeon test has advantages that it can be carried out relatively easily and the ground condition can be roughly judged.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、コアサ
ンプルから水みちの有無を判定する方式では、採取した
コアサンプルが実際に水みちの存在する場所から得られ
たものでない場合には判定できない。また、弾性波調査
やルジオン試験による方法では、地盤の水みちが存在す
る深度を正確に求めることができないことから、グラウ
チング作業を必要回数以上行って地盤中に不必要なクラ
ックを発生させて水みちを作ってしまうという欠点があ
る。さらに、ルジオン試験は、注入圧力管理とヒストグ
ラム作成とが判定に必要となることから、実際に注入を
行ってからでないと注入の効果を判定することができな
いという問題をもつ。
However, the method of judging the presence or absence of water flow from the core sample cannot be judged when the collected core sample is not actually obtained from the place where the water flow exists. In addition, because the method using elastic wave survey and Lugeon test cannot accurately determine the depth at which the ground water channels exist, grouting work must be performed more than the required number of times to generate unnecessary cracks in the ground and It has the drawback of making a road. Further, the Lugeon test has a problem that the effect of the injection cannot be judged until the injection is actually performed because the injection pressure management and the histogram creation are necessary for the judgment.

【0006】またインピーダンス調査により水みちの有
無を判定する方式では、グラウチング作業によって地盤
の固有抵抗に変化が生じている場合や地盤中に帯水層が
存在する場合には測定誤差を起こすため、地盤の実際に
水が流れている部分の深度を測定することが必要とされ
る。
Further, in the method of judging the presence or absence of a water channel by the impedance survey, a measurement error occurs when the specific resistance of the ground changes due to grouting work or when an aquifer exists in the ground. It is necessary to measure the depth of the actual water flow in the ground.

【0007】それ故に本発明の課題は、地盤の透水性が
高い部分の深度を水の移動現象を利用して正確に求める
ことで、グラウチング作業を限定して行うことを可能に
する地盤透水性測定方法及び装置を提供することにあ
る。
Therefore, an object of the present invention is to accurately determine the depth of a portion of the ground where water permeability is high by utilizing the movement phenomenon of water, thereby making it possible to limit the grouting work. It is to provide a measuring method and an apparatus.

【0008】[0008]

【課題を解決するための手段】本発明によれば、第1及
び第2の電極を地盤の第1の部分を介して互いに対向さ
せて前記第1及び第2の電極間に発振電圧を印加し、前
記第1及び第2の電極間に通電した通電電流の変調成分
を前記発振電圧を参照して検出することと、前記第1及
び第2の電極を地盤の第2の部分を介して互いに対向さ
せて前記第1及び第2の電極間に発振電圧を印加し、前
記第1及び第2の電極間に通電した通電電流の変調成分
を前記発振電圧を参照して検出することとを含むことを
特徴とする地盤透水性測定方法が得られる。
According to the present invention, the first and second electrodes are opposed to each other via the first portion of the ground, and an oscillating voltage is applied between the first and second electrodes. Then, the modulation component of the energizing current that has been applied between the first and second electrodes is detected by referring to the oscillation voltage, and the first and second electrodes are inserted through the second portion of the ground. Oscillating voltage is applied between the first and second electrodes facing each other, and the modulation component of the energizing current passed between the first and second electrodes is detected by referring to the oscillating voltage. A ground water permeability measuring method characterized by including the above is obtained.

【0009】また本発明によれば、地盤を介して互いに
対向するように配置される第1及び第2の電極と、前記
第1及び第2の電極間に発振電圧を印加する発振回路
と、前記第1及び第2の電極間に通電した通電電流を検
出する電流検出回路と、前記発振電圧を参照して前記通
電電流の変調成分を検出する変調成分検出手段とを含む
ことを特徴とする地盤透水性測定装置が得られる。
Further, according to the present invention, the first and second electrodes are arranged so as to face each other across the ground, and an oscillation circuit for applying an oscillation voltage between the first and second electrodes, A current detecting circuit for detecting a current flowing through the first and second electrodes; and a modulation component detecting means for detecting a modulation component of the current by referring to the oscillation voltage. A ground water permeability measuring device is obtained.

【0010】[0010]

【作用】第1及び第2の電極の間の地盤に水みちが存在
する場合には、水みち部分の電気伝導度が他の部分に比
べて高いため、通電電流が増加する傾向を示す。さらに
水みちの水が流れる影響で水みち部分の電気伝導度が動
的に変化する。特に、水には微細な粒子も含まれている
ため、水の流れに伴い第1及び第2の電極の間の抵抗が
微少な変動を来たし、電気伝導を動的に変化させる。こ
の電気伝導度の変化により、通電電流は発振電圧の周波
数とは異なる周波数で振幅変調を受け、変調成分をもつ
ようになる。したがって、通電電流に含まれる変調成分
を測定することで地盤中の水みちの存在箇所の深度を正
確に求めることができる。このため、グラウチング作業
を必要とする箇所が限定されると共に、グラウチング作
業の後に同様の測定を行うことでグラウチング作業によ
る防水効果を判定することが可能となる。
When a water channel exists in the ground between the first and second electrodes, the electric conductivity of the water channel portion is higher than that of the other portions, so that the energizing current tends to increase. Furthermore, the electric conductivity of the water channel changes dynamically due to the influence of the water flowing through the water channel. In particular, since water also contains fine particles, the resistance between the first and second electrodes slightly changes with the flow of water, and the electric conduction is dynamically changed. Due to this change in electrical conductivity, the energized current undergoes amplitude modulation at a frequency different from the frequency of the oscillating voltage and has a modulation component. Therefore, by measuring the modulation component contained in the energizing current, the depth of the location of the water channel in the ground can be accurately obtained. For this reason, the place where the grouting work is required is limited, and the waterproof effect by the grouting work can be determined by performing the same measurement after the grouting work.

【0011】[0011]

【実施例】次に本発明の実施例を図面を参照して説明す
る。図1は本発明の一実施例による地盤透水性測定装置
の全体構成を示す図である。この地盤透水性測定装置
は、ダムを建設する場合などに地盤1の透水性を測定す
るのに適した装置である。透水性の測定に先立ち、地盤
10中に第1及び第2のボーリング孔11,12を設け
る。第1のボーリング孔11には第1の電極13を第2
のボーリング孔12には第2の電極14を夫々配置す
る。こうして第1及び第2の電極13,14を地盤を介
して互いに対向するように配置する。
Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an overall configuration of a ground water permeability measuring apparatus according to an embodiment of the present invention. This ground water permeability measuring device is a device suitable for measuring the water permeability of the ground 1 when constructing a dam or the like. Prior to the measurement of water permeability, first and second boring holes 11 and 12 are provided in the ground 10. The first boring hole 11 has a second electrode 13
The second electrodes 14 are arranged in the respective boring holes 12. Thus, the first and second electrodes 13 and 14 are arranged so as to face each other with the ground interposed.

【0012】第1及び第2の電極13,14間には発振
回路15を接続し、これにより所定周波数、例えば、約
1KHzの発振電圧を印加する。この結果、地盤10に
透水層16が存在するときには第1及び第2の電極1
3,14間に電流が通電電流として流れる。この通電電
流を検出するため、発振回路15と第2の電極14との
間に電流検出回路17が接続されている。
An oscillating circuit 15 is connected between the first and second electrodes 13 and 14 to apply an oscillating voltage of a predetermined frequency, for example, about 1 KHz. As a result, when the water-permeable layer 16 exists in the ground 10, the first and second electrodes 1
A current flows between 3 and 14 as an energizing current. A current detection circuit 17 is connected between the oscillation circuit 15 and the second electrode 14 in order to detect this energized current.

【0013】さらにこの地盤透水性測定装置は位相検波
回路18とフィルタ回路19とを含んでいる。位相検波
回路18は発振回路15と電流検出回路17とに接続さ
れ、発振電圧の周波数で上述した通電電流の波形を検波
して波形信号を生成するものである。フィルタ回路19
は発振回路15と電流検出回路17とに接続され、上述
した波形信号から発振回路15の発振電圧の周波数成分
を取り除き残りの周波数成分を変調成分とするものであ
る。具体的には、フィルタ回路19はローパスフィルタ
であって、波形信号のうち上述した所定周波数よりも低
周波数の周波数成分のみを通過させる。位相検波回路1
8とフィルタ回路19は合せて、通電電流の変調成分を
検出する変調成分検出手段を構成する。なおフィルタ回
路19は変調成分を交流信号として出力する。
The ground water permeability measuring apparatus further includes a phase detection circuit 18 and a filter circuit 19. The phase detection circuit 18 is connected to the oscillation circuit 15 and the current detection circuit 17, and detects the waveform of the energizing current described above at the frequency of the oscillation voltage and generates a waveform signal. Filter circuit 19
Is connected to the oscillating circuit 15 and the current detecting circuit 17, and removes the frequency component of the oscillation voltage of the oscillating circuit 15 from the above-mentioned waveform signal and uses the remaining frequency component as the modulation component. Specifically, the filter circuit 19 is a low-pass filter, and passes only the frequency component having a frequency lower than the above-mentioned predetermined frequency in the waveform signal. Phase detection circuit 1
8 and the filter circuit 19 together constitute a modulation component detecting means for detecting the modulation component of the energized current. The filter circuit 19 outputs the modulation component as an AC signal.

【0014】この地盤透水性測定装置はさらに、フィル
タ回路19から出力される交流信号を直線検波して直流
信号を生成する直線検波回路21を含んでいる。
The ground water permeability measuring apparatus further includes a linear detection circuit 21 for linearly detecting the AC signal output from the filter circuit 19 to generate a DC signal.

【0015】測定に際しては、第1及び第2の電極1
3,14を第1及び第2のボーリング孔11,12中に
順次降下させる。地盤10のクラック中を水と気泡等の
微小粒子が流れる部位では通電電流が増加する現象が現
れる。この現象は地盤10内にクラックが存在している
ことを示す。
In the measurement, the first and second electrodes 1
3, 14 are successively lowered into the first and second boring holes 11, 12. A phenomenon in which the energization current increases at a portion where water and fine particles such as bubbles flow in the crack of the ground 10. This phenomenon indicates that a crack exists in the ground 10.

【0016】また通電電流が上述した所定周波数とは異
なる低周波成分をもつことがある。この低周波成分はク
ラックのサイズと気泡等の微小粒子のサイズとが同等の
場合に生じ、通電電流に微少な変動を起こす。従って1
KHz以下の低周波成分を測定することにより、クラッ
クの存在を検出するだけでなく、クラック中の抵抗変動
による電流変動からクラックを流れる流水の存在も測定
されることになる。
Further, the energized current may have a low frequency component different from the above-mentioned predetermined frequency. This low-frequency component occurs when the size of cracks is equal to the size of minute particles such as bubbles, and causes a slight fluctuation in the energizing current. Therefore 1
By measuring the low-frequency component of KHz or less, not only the presence of cracks is detected, but also the presence of running water flowing through the cracks is measured due to current fluctuations due to resistance fluctuations in the cracks.

【0017】図2は第1及び第2の電極13,14の地
盤10中の深度と通電電流との関係の一例を示す。図2
から分かるように、地盤10中のクラックにより電気伝
導度が高くなっている部分に第1及び第2の電極13,
14が対向した時に通電電流が上昇する現象が生じる。
FIG. 2 shows an example of the relationship between the depth of the first and second electrodes 13 and 14 in the ground 10 and the applied current. Figure 2
As can be seen from the above, the first and second electrodes 13,
A phenomenon occurs in which the energizing current increases when 14 are opposed to each other.

【0018】図3は直線検波回路21の出力の一例を示
す。図3から分かるように、地盤10中のクラックによ
り電気伝導度が高くなっている部分に第1及び第2の電
極13,14が対向したときに通電電流の変動成分に周
波数が異なる成分が上昇する現象が生じる。
FIG. 3 shows an example of the output of the linear detection circuit 21. As can be seen from FIG. 3, when the first and second electrodes 13 and 14 face the portion of the ground 10 where the electrical conductivity is high due to cracks, the component of different frequency rises in the variation component of the energizing current. Phenomenon occurs.

【0019】[0019]

【発明の効果】以上説明したように、本発明によれば、
地盤の漏水発生の原因となる水みちの存在箇所を現場測
定によって検出することにより、グラウチング作業を限
定してセメントミルクの注入量を管理することと、注入
前後の測定結果の比較により注入の効果を判定すること
とが可能になる。したがってセメントミルクの注入作業
を計画的に行うことができるので、得られる経済的効果
は大である。その上、不必要なグラウチング作業を行う
ことによって地盤を痛めることを防止できるという効果
も奏する。
As described above, according to the present invention,
The effect of injection is determined by comparing the measurement results before and after controlling the amount of cement milk injected by limiting the grouting work by detecting the locations of water channels that cause water leakage in the ground by on-site measurement. Can be determined. Therefore, the cement milk injection work can be carried out systematically, and the obtained economic effect is great. In addition, it is possible to prevent the ground from being damaged by performing unnecessary grouting work.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による地盤透水性測定装置の
全体構成を示すブロック図。
FIG. 1 is a block diagram showing an overall configuration of a ground water permeability measuring apparatus according to an embodiment of the present invention.

【図2】電極深度と通電電流との関係の一例を示すグラ
フ。
FIG. 2 is a graph showing an example of the relationship between electrode depth and energization current.

【図3】図1の地盤透水性測定装置に含まれる直線検波
回路の出力の一例を示すグラフ。
FIG. 3 is a graph showing an example of the output of a linear detection circuit included in the ground water permeability measuring apparatus of FIG.

【符号の説明】[Explanation of symbols]

10 地盤 11 第1のボーリング孔 12 第2のボーリング孔 13 第1の電極 14 第2の電極 15 発振回路 16 透水層 17 電流検出回路 18 位相検波回路 19 フィルタ回路 21 直線検波回路 10 Ground 11 First Boring Hole 12 Second Boring Hole 13 First Electrode 14 Second Electrode 15 Oscillation Circuit 16 Water-permeable Layer 17 Current Detection Circuit 18 Phase Detection Circuit 19 Filter Circuit 21 Linear Detection Circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 第1及び第2の電極を地盤の第1の部分
を介して互いに対向させて前記第1及び第2の電極間に
発振電圧を印加し、前記第1及び第2の電極間に通電し
た通電電流の変調成分を前記発振電圧を参照して検出す
ることと、前記第1及び第2の電極を地盤の第2の部分
を介して互いに対向させて前記第1及び第2の電極間に
発振電圧を印加し、前記第1及び第2の電極間に通電し
た通電電流の変調成分を前記発振電圧を参照して検出す
ることとを含むことを特徴とする地盤透水性測定方法。
1. A first electrode and a second electrode are opposed to each other via a first portion of the ground to apply an oscillating voltage between the first electrode and the second electrode, and the first electrode and the second electrode. Detecting a modulation component of the energizing current that has been applied between them by referring to the oscillating voltage, and making the first and second electrodes face each other via the second portion of the ground to make them the first and second Applying an oscillating voltage between the electrodes, and detecting the modulation component of the energizing current applied between the first and second electrodes with reference to the oscillating voltage. Method.
【請求項2】 地盤を介して互いに対向するように配置
される第1及び第2の電極と、前記第1及び第2の電極
間に発振電圧を印加する発振回路と、前記第1及び第2
の電極間に通電した通電電流を検出する電流検出回路
と、前記発振電圧を参照して前記通電電流の変調成分を
検出する変調成分検出手段とを含むことを特徴とする地
盤透水性測定装置。
2. A first electrode and a second electrode which are arranged so as to face each other via the ground, an oscillation circuit which applies an oscillation voltage between the first electrode and the second electrode, and the first and second electrodes. Two
A ground water permeability measuring apparatus, comprising: a current detection circuit for detecting an energized current that has been energized between the electrodes, and a modulation component detection means for detecting a modulation component of the energized current with reference to the oscillation voltage.
【請求項3】 前記変調成分検出手段は、前記発振電圧
の周波数を参照して前記通電電流の波形を検波して波形
信号を生成する位相検波回路と、前記波形信号から前記
発振電圧の周波数成分を取り除き残りの周波数成分を前
記変調成分とするフィルタ回路とを含む請求項2記載の
地盤透水性測定装置。
3. The phase detection circuit, wherein the modulation component detection means refers to the frequency of the oscillation voltage to detect the waveform of the energizing current to generate a waveform signal, and the frequency component of the oscillation voltage from the waveform signal. 3. The ground water permeability measuring apparatus according to claim 2, further comprising a filter circuit that removes the residual frequency component and uses the remaining frequency component as the modulation component.
【請求項4】 前記フィルタ回路は前記変調成分を交流
信号として出力するものであり、さらに、前記交流信号
を直線検波して直流信号を生成する直線検波回路を備え
た請求項3記載の地盤透水性測定装置。
4. The ground permeable water according to claim 3, wherein the filter circuit outputs the modulation component as an AC signal, and further includes a linear detection circuit that linearly detects the AC signal to generate a DC signal. Sex measuring device.
JP4557695A 1995-03-06 1995-03-06 Ground water penetration property measuring method and device Withdrawn JPH08240550A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4557695A JPH08240550A (en) 1995-03-06 1995-03-06 Ground water penetration property measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4557695A JPH08240550A (en) 1995-03-06 1995-03-06 Ground water penetration property measuring method and device

Publications (1)

Publication Number Publication Date
JPH08240550A true JPH08240550A (en) 1996-09-17

Family

ID=12723183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4557695A Withdrawn JPH08240550A (en) 1995-03-06 1995-03-06 Ground water penetration property measuring method and device

Country Status (1)

Country Link
JP (1) JPH08240550A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100763955B1 (en) * 2006-05-26 2007-10-05 한국해양연구원 Cross-hole type elastic wave test method by a bender element
JP2011252812A (en) * 2010-06-03 2011-12-15 Ohbayashi Corp System and method for detecting bleeding channel in bedrock
CN109211735A (en) * 2018-10-31 2019-01-15 成都理工大学 The experimental rig of sandy pear variety slip casting dilation angle under a kind of simulation circumstance of flowing water
CN109211736A (en) * 2018-10-31 2019-01-15 成都理工大学 The test method of sandy pear variety slip casting dilation angle under a kind of simulation circumstance of flowing water
EP3605152A1 (en) * 2018-07-31 2020-02-05 Lombardi SA Ingegneri Consulenti Ground penetrating radar and electromagnetic soil analysis method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100763955B1 (en) * 2006-05-26 2007-10-05 한국해양연구원 Cross-hole type elastic wave test method by a bender element
JP2011252812A (en) * 2010-06-03 2011-12-15 Ohbayashi Corp System and method for detecting bleeding channel in bedrock
EP3605152A1 (en) * 2018-07-31 2020-02-05 Lombardi SA Ingegneri Consulenti Ground penetrating radar and electromagnetic soil analysis method
CN109211735A (en) * 2018-10-31 2019-01-15 成都理工大学 The experimental rig of sandy pear variety slip casting dilation angle under a kind of simulation circumstance of flowing water
CN109211736A (en) * 2018-10-31 2019-01-15 成都理工大学 The test method of sandy pear variety slip casting dilation angle under a kind of simulation circumstance of flowing water

Similar Documents

Publication Publication Date Title
Lapcevic et al. The interpretation of a tracer experiment conducted in a single fracture under conditions of natural groundwater flow
CA2195794C (en) Device for measuring the permeability of rock fragments
Song et al. Resistivity response of coal under hydraulic fracturing with different injection rates: A laboratory study
Ban et al. Revealing the laminar shale microdamage mechanism considering the relationship between fracture geometrical morphology and acoustic emission power spectrum characteristics
CN104655826A (en) Method and device for detecting adsorption parameters of tight reservoir adsorbed state crude oil
Maldaner et al. Improving estimates of groundwater velocity in a fractured rock borehole using hydraulic and tracer dilution methods
US10662768B2 (en) Methods of determining a spatial distribution of an injected tracer material within a subterranean formation
JPH08240550A (en) Ground water penetration property measuring method and device
CA2529539C (en) Method to measure and locate a fluid communication pathway in a material behind a casing
US7679992B2 (en) Wettability from electro-kinetic and electro-osmosis measurements
CA2793786A1 (en) Methods and apparatus for measuring streaming potentials and determining earth formation characteristics
CN101498644B (en) Wettability measurement employing dynamic electricity and electroosmosis
Young et al. Application of the electromagnetic borehole flowmeter
JPH0886764A (en) Method and device for measuring water permeability of ground
Wishart et al. Hydraulic anisotropy characterization of pneumatic-fractured sediments using azimuthal self potential gradient
JPH09222377A (en) Method and device for measuring drilling hole water leakage position
Wang et al. Detection of internal erosion and piping in embankment dams
Hu et al. Experimental and numerical study of electro-osmosis on kaolinite under intermittent current
Dudgeon Unconfined non-Darcy flow near open-pit mines
Brouyère et al. About the influence of the injection mode on tracer test results
RU2402048C2 (en) Measurement methods and devices for filtration potentials and determination of characteristics of underground formation
CN109386282B (en) Identification method for drilling oil layer under mixed oil drilling fluid condition
SU1726741A1 (en) Method for determination of residual water saturation in rock
Huang et al. Dimensionless Parameters for Interpretation of WFT Data: Simulations and Experiments
Shakas et al. Hydrogeophysical characterization of transport processes in fractured rock by combining push-pull tracer tests and single-hole ground penetrating radar

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507