JPH08240309A - Treatment of pocket propellant and bursting charge - Google Patents

Treatment of pocket propellant and bursting charge

Info

Publication number
JPH08240309A
JPH08240309A JP7347647A JP34764795A JPH08240309A JP H08240309 A JPH08240309 A JP H08240309A JP 7347647 A JP7347647 A JP 7347647A JP 34764795 A JP34764795 A JP 34764795A JP H08240309 A JPH08240309 A JP H08240309A
Authority
JP
Japan
Prior art keywords
combustion
oil
propellant
explosive
rocket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7347647A
Other languages
Japanese (ja)
Inventor
Hirohiko Yoshitomi
宏彦 吉富
Masahiro Uyama
正弘 鵜山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIKKO GIKA KK
Original Assignee
NIKKO GIKA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIKKO GIKA KK filed Critical NIKKO GIKA KK
Priority to JP7347647A priority Critical patent/JPH08240309A/en
Publication of JPH08240309A publication Critical patent/JPH08240309A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B21/00Apparatus or methods for working-up explosives, e.g. forming, cutting, drying
    • C06B21/0091Elimination of undesirable or temporary components of an intermediate or finished product, e.g. making porous or low density products, purifying, stabilising, drying; Deactivating; Reclaiming

Abstract

PURPOSE: To provide this treatment wherein a rocket propellant and bursting charge are extremely safe so as to be burnt in the same manner as normal domestic waste, by changing the sensitivity and property of them, and the workability and efficiency of their treatment are remarkably heightened so that a large amount of them can be treated in a short time. CONSTITUTION: This treatment comprises a mixing or impregnating process and a combustion process. In the former process, a combustion retardant comprising any one or more mixtures of mineral oil, animal oil, vegetable oil, or these waste oil or polyhydric alcohol such as glycerin and ethylene glycol is mixed with a rocket propellant and a bursting charge which are cut or crushed in powder and grain shape, in shred shape, in tape shape, in belt shape, or in cord shape, or is permeated therein. In the latter process, the rocket propellant and the bursting charge with or in which the combustion retardant is mixed or permeated, in the former process, is burnt.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は製造工程から生じあるい
は不要になったミサイルや砲弾等から脱薬されたロケッ
ト推進薬や炸薬を廃棄処分するロケット推進薬や炸薬の
処理方法に関し、更に詳しくは、ロケット推進薬や炸薬
等を焼却炉内で緩慢な燃焼をさせることにより爆発や急
激な燃焼による炉内外への物的、人的被害の心配のない
極めて安全であるとともに短時間に効率よく処理できる
ロケット推進薬や炸薬の処理方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for treating rocket propellants and explosives, which disposes of rocket propellants and explosives that have been desensitized from missiles, shells and the like that have arisen from manufacturing processes or are no longer needed. , Rocket propellants, explosives, etc. are burned slowly in the incinerator, which is extremely safe and does not cause physical or human damage to the inside or outside of the furnace due to explosion or sudden combustion, and it can be processed efficiently in a short time. It relates to a method of processing rocket propellants and explosives that can be done.

【0002】[0002]

【従来の技術】近年、ロケット推進薬や炸薬等の危険物
の処理方法が安全性の面や環境上の点から注目を集め種
々の方法が研究開発されている。以下に従来のロケット
推進薬や炸薬等の処理方法について説明する。 (1)ロケット推進薬や炸薬等を容器中にコンクリート
詰めにし海洋中に投棄する方法。 (2)空き地等の広い空間がある場所を利用してロケッ
ト推進薬や炸薬等を大気中で燃焼する方法。 (3)ロケット推進薬や炸薬等が暴爆し燃焼炉を傷つけ
破壊しないようにロケット推進薬や炸薬等の燃焼炉への
投入量を燃焼炉内の温度を計測しながら、コンピュータ
ー等で制御しつつ、ロケット推進薬や炸薬等を燃焼炉中
に投入し燃焼させる方法。 (4)ロケット推進薬や炸薬等を、超臨界液体酸化、生
物分解等により化学的に変質させ爆発性を除去する方
法。 (5)また、特開平5−279160号公報(以下イ号
公報と呼ぶ。)には、「固体推進薬組成物の減感化方法
であって、減感された組成物を形成するために、前記固
体推進薬組成物と次の成分:(a)少なくとも約600
センチポアズの粘度を有する油、及び、(b)木粉、堅
果殻粒子、穀物粉末、スターチ及びトウモロコシの穂軸
粒子から成る群から選択された固体粒状物質とを組合せ
ることを含んで成り、ここで前記減感された組成物にお
ける成分(a)及び(b)の割合が、前記減感された組
成物に前記固体推進薬組成物の衝撃感受性の約25%以
下である衝撃感受性及び少なくとも約1000°Fの火
炎温度を付与するのに十分であることを特徴とする方
法。」が開示されている。
2. Description of the Related Art In recent years, various methods for treating dangerous substances such as rocket propellants and explosives have been researched and developed with a focus on safety and environment. The conventional methods for treating rocket propellants and explosives will be described below. (1) A method in which rocket propellant, explosive charge, etc. are packed in concrete in a container and dumped into the ocean. (2) A method of burning rocket propellants or explosives in the atmosphere by using a place with a large space such as a vacant lot. (3) In order to prevent the rocket propellant and explosive charge from exploding and damaging and destroying the combustion furnace, the amount of rocket propellant and explosive charge to the combustion furnace is controlled by a computer while measuring the temperature inside the combustion furnace. Meanwhile, a method of charging rocket propellant or explosive charge into a combustion furnace and burning it. (4) A method of chemically degrading rocket propellants, explosives, etc. by supercritical fluid oxidation, biodegradation, etc. to eliminate explosive properties. (5) In addition, Japanese Patent Application Laid-Open No. 5-279160 (hereinafter referred to as “A”) describes “A method for desensitizing a solid propellant composition, in order to form a desensitized composition, The solid propellant composition and the following components: (a) at least about 600
Comprising combining an oil having a viscosity of centipoise and (b) a solid particulate material selected from the group consisting of wood flour, nut shell particles, grain flour, starch and corn cob particles, wherein The impact sensitivity and at least about 25% of the components (a) and (b) in the desensitized composition are less than about 25% of the impact sensitivity of the solid propellant composition in the desensitized composition. A method characterized by being sufficient to impart a flame temperature of 1000 ° F. Is disclosed.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記従来
のロケット推進薬や炸薬の処理方法では、以下のような
問題点を有していた。 (1)陸上の空地等を利用したオープン状態の処理場で
の焼却・爆発処理や海洋投棄は大気中や海洋の環境汚染
の観点から好ましくないことが指摘されていた。 (2)ロケット推進薬や炸薬等を直接燃焼炉中で燃焼す
る方法では燃焼時の高温と爆発的燃焼への対策を要して
いた。即ち、燃焼時に高温の火炎が発生し、燃焼炉の損
耗を招く危険性があるので、これを防ぐために焼却する
火薬の諸特性(爆発し易さ、爆発威力、燃焼温度、発熱
量、分解速度等)に応じてコンピューターコントロール
を行わなければならず、そのため複雑な機構や装置を必
要としていた。また、爆発の危険性を除去するため燃焼
炉内や炉道を負圧にし、一度に多量の塊ができぬよう焼
却量を管理し、炉内温度を危険ゾーン外にコントロール
するに多大の労力と設備を要していた。更に、万一、電
気的、機械的な故障の場合にはコントロールの限界を逸
脱して爆発または燃焼し設備的・人的被害の危険性をは
らんでおり、作業上危険であるという問題点を有してい
た。 (3)ロケット推進薬や炸薬等を化学的に変成し爆発性
を消失させる方法では、未だ技術開発の段階であり現状
では多量のロケット推進薬や炸薬等を短時間で処理する
ことができず処理効率が低いという問題点を有してい
た。 (4)イ号公報に記載の処理方法では、推進薬と油と固
体粒状物質を均一に混合した後に所定の形状に成形しこ
の成形物を燃焼させるので、混合工程、成形工程、及
び、燃焼工程が必要で多大の設備や労力と時間を要し作
業性に欠け、処理効率が悪いという問題点を有してい
た。
However, the conventional rocket propellant and explosive charge treating methods described above have the following problems. (1) It has been pointed out that incineration / explosion processing and ocean dumping at open treatment plants using open land on land are not preferable from the viewpoint of atmospheric and ocean environmental pollution. (2) The method of directly burning the rocket propellant and explosive charge in the combustion furnace requires measures against high temperature and explosive combustion. That is, there is a risk that a high-temperature flame will be generated during combustion, which may cause wear of the combustion furnace.Therefore, various characteristics of the explosive to be incinerated to prevent this (ease of explosion, explosive power, combustion temperature, calorific value, decomposition rate) Computer control must be performed according to the requirements, and therefore complicated mechanisms and devices were required. Also, in order to eliminate the risk of explosion, negative pressure is applied to the inside of the combustion furnace and the furnace path, the amount of incineration is managed so that a large amount of lumps are not formed at one time, and a great deal of effort is required to control the temperature inside the furnace outside the danger zone. And required equipment. Furthermore, in the unlikely event of an electrical or mechanical failure, there is a danger of equipment or human damage due to explosion or combustion that deviates from the limit of control, which is a work hazard. Had. (3) The method of chemically modifying rocket propellants and explosives to eliminate their explosive properties is still at the stage of technological development, and at present, a large amount of rocket propellants and explosives cannot be treated in a short time. It had a problem of low processing efficiency. (4) In the treatment method described in JP-A-B, since the propellant, the oil, and the solid particulate matter are uniformly mixed, the mixture is molded into a predetermined shape and the molded article is burned. Therefore, the mixing step, the molding step, and the burning step are performed. There is a problem that a process is required, a large amount of equipment, labor and time are required, workability is poor, and processing efficiency is poor.

【0004】本発明は上記従来の問題点を解決するもの
で、ロケット推進薬や炸薬に油類または多価アルコール
を含浸または混合することによりロケット推進薬や炸薬
の感度及び燃焼特性を変化させこのロケット推進薬や炸
薬を燃焼炉内に投入し燃焼処理できるように改質したも
ので、通常の生活ゴミ等と殆ど変わりなく極めて安全か
つ短時間に大量に処理できる作業性や処理効率が著しく
高いロケット推進薬や炸薬の処理方法を提供することを
目的とする。
The present invention solves the above-mentioned conventional problems by changing the sensitivity and combustion characteristics of rocket propellants and explosives by impregnating or mixing oils or polyhydric alcohols with rocket propellants and explosives. Rocket propellants and explosives are put into a combustion furnace and modified so that they can be burned. They are extremely safe and can process large amounts in a short time, which is almost the same as ordinary household waste. It is intended to provide a method for treating rocket propellants and explosives.

【0005】[0005]

【課題を解決するための手段】この目的を達成するため
に本発明は以下の構成を有している。請求項1に記載の
ロケット推進薬や炸薬の処理方法は、鉱物油,動物油,
植物油,又はこれらの廃油若しくは、グリセリン,エチ
レングリコール等の多価アルコールの内いずれか1また
は2以上の混合物からなる燃焼遅延剤を、粉粒体状,細
断状,テープ状,帯状または紐状に切削・破砕加工され
たロケット推進薬や炸薬に混合または含浸する混合・含
浸工程と、混合・含浸工程で燃焼遅延剤が混合・含浸さ
れたロケット推進薬や炸薬を燃焼させる燃焼工程と、を
有する構成を有している。請求項2に記載のロケット推
進薬や炸薬の処理方法は、請求項1において、混合・含
浸工程において、燃焼遅延剤がロケット推進薬や炸薬に
3〜90wt%好ましくは10〜70wt%混合または
含浸されている構成を有している。請求項3に記載のロ
ケット推進薬や炸薬の処理方法は、請求項1又は2の内
いずれか1において、燃焼遅延剤が水及び/又は界面活
性剤を含有する構成を有している。請求項4に記載のロ
ケット推進薬や炸薬の処理方法は、請求項1乃至3の内
いずれか1において、燃焼遅延剤の粘度が0.3〜50
0センチポアズである構成を有している。請求項5に記
載のロケット推進薬や炸薬の処理方法は、請求項1乃至
4の内いずれか1において、ロケット推進薬がコンポジ
ット系推進薬である構成を有している。請求項6に記載
のロケット推進薬や炸薬の処理方法は、請求項1乃至5
の内いずれか1において、コンポジット系推進薬が過塩
素酸アンモニウムを主成分とし、平均の厚みが0.01
〜5mmのテープ状若しくは帯状に切削加工された切削
物である構成を有している。請求項7に記載のロケット
推進薬や炸薬の処理方法は、請求項1乃至4の内いずれ
か1において、炸薬が切削・破砕加工されその平均粒径
が0.001〜5mm、好ましくは平均粒径が0.00
1〜3mm、更に好ましくは平均粒径が0.001〜
1.5mmの粉粒体状の切削物である構成を有してい
る。
To achieve this object, the present invention has the following constitution. A method for treating rocket propellant or explosive charge according to claim 1 is a mineral oil, an animal oil,
A vegetable oil, or a waste oil thereof, or a combustion retardant consisting of a mixture of one or more of polyhydric alcohols such as glycerin and ethylene glycol, in the form of powder, granules, shreds, tapes, strips or cords. A mixing / impregnation process of mixing or impregnating the rocket propellant or explosive that has been cut or crushed into a mixture, and a combustion process of burning the rocket propellant or explosive mixed or impregnated with the combustion retardant in the mixing / impregnation process. It has the composition which has. The method for treating a rocket propellant or explosive charge according to claim 2 is the method according to claim 1, wherein the combustion retardant is mixed or impregnated in the rocket propellant or explosive charge in an amount of 3 to 90 wt%, preferably 10 to 70 wt%. It has a configuration that is configured. According to a third aspect of the present invention, there is provided a method for treating a rocket propellant or explosive charge according to any one of the first or second aspects, wherein the combustion retardant contains water and / or a surfactant. A method for treating a rocket propellant or explosive charge according to claim 4 is the method according to any one of claims 1 to 3, wherein the combustion retardant has a viscosity of 0.3 to 50.
It has a configuration that is 0 centipoise. According to a fifth aspect of the present invention, there is provided a method for treating a rocket propellant or explosive charge according to any one of the first to fourth aspects, wherein the rocket propellant is a composite propellant. The rocket propellant and explosive charge treating method according to claim 6 is the method according to any one of claims 1 to 5.
In any one of the above, the composite propellant contains ammonium perchlorate as a main component and has an average thickness of 0.01
It has a configuration that is a cut product that is cut into a tape shape or a band shape of about 5 mm. A method for treating a rocket propellant or explosive charge according to claim 7 is the method according to any one of claims 1 to 4, wherein the explosive charge is cut and crushed to have an average particle size of 0.001 to 5 mm, preferably an average particle size. Diameter 0.00
1-3 mm, more preferably 0.001-average particle size
It has a structure which is a cut product in the form of a 1.5 mm powder or granule.

【0006】ここで、ロケット推進薬としては、ダブル
ベース推進薬、コンポジット系推進薬、コンポジット化
ダブルベース推進薬、ロケットラム推進薬等が挙げられ
る。コンポジット系推進薬とは、過塩素酸塩、硝酸塩な
どの酸化剤、燃料兼固体成分結合剤である合成樹脂、ア
ルミニウムなどの金属粉末、その他少量成分として、硬
化剤、硬化触媒、燃焼触媒、可塑剤、界面活性剤、安定
剤などを加え、硬化させ成形させたものである。ロケッ
ト推進薬の処理対象物としては、製造工程から発生する
余剰分や不良品等、耐用年数が切れたロケットモーター
から取り出されたもの等がある。本発明で用いる場合は
旋盤等による機械的方法や、高水圧ジェットにより削り
だす方法や、液体窒素等により極低温に冷凍した後に破
砕する方法等により切削裁断される。特に、コンポジッ
ト系推進薬は厚さが0.05〜5mm、好ましくは0.
1〜3mmに切削加工されたものが用いられる。厚さが
0.1mm未満になるにつれ切削や裁断が困難となり作
業性に劣る傾向があり好ましくない。また、厚さが3m
mを越えるにつれ燃焼遅延剤の含浸時間が数十時間を越
え含浸作業性に劣るとともに推進薬の深部にまで燃焼遅
延剤の含浸が十分に行われず、含浸斑が生じ安全性に欠
ける傾向となり好ましくない。
Examples of rocket propellants include double base propellants, composite propellants, composite double base propellants, and rocket ram propellants. Composite propellants include oxidizers such as perchlorates and nitrates, synthetic resins that are fuel and solid component binders, metal powders such as aluminum, and other minor components such as curing agents, curing catalysts, combustion catalysts, plasticizers. It is obtained by adding agents, surfactants, stabilizers, etc., and curing and molding. The objects to be processed by the rocket propellant include surplus and defective products generated in the manufacturing process, and those taken out from the rocket motor whose service life has expired. When used in the present invention, cutting is performed by a mechanical method using a lathe or the like, a method of shaving with a high water pressure jet, a method of freezing to extremely low temperature with liquid nitrogen or the like, and then crushing. In particular, the composite propellant has a thickness of 0.05 to 5 mm, preferably 0.
What is cut to 1 to 3 mm is used. If the thickness is less than 0.1 mm, cutting and cutting become difficult and workability tends to be poor, which is not preferable. Also, the thickness is 3m
When it exceeds m, the impregnation time of the combustion retardant exceeds several tens of hours, the impregnation workability is poor, and the combustion retardant is not sufficiently impregnated to the deep part of the propellant. Absent.

【0007】炸薬としては通常砲弾内に充填され弾体を
破壊させる爆薬類を指し通常硝酸エステル、ニトロ化合
物、フロキサン、ニトラミン、アミン硝酸塩等の単体ま
たは混合物や共融物等が挙げられる。炸薬の廃棄物とし
ては、製造工程において発生する粉体、固形ブロック、
砲弾から溶出された粉体、固形ブロック等が挙げられ
る。これらの炸薬類の取り出し方法としては、砲弾の弾
殻から溶出固化させた後に切削・破砕する方法、高圧ジ
ェットにより粉砕する方法、液体窒素等により極低温に
冷凍した後に破砕する方法等を用いて、平均粒径が7m
m以下好ましくは0.001〜5mm,更に好ましくは
0.001〜3mm,より好ましくは0.001〜1.
5mmに切削・破砕される。粒径が1.5mmを越える
につれ炸薬の種類にもよるが爆発性が残り燃焼速度が速
く燃焼温度が高い傾向がみられ、3mmを越えるにつれ
燃焼遅延剤の含浸に時間を要するとともに含浸斑が生じ
易く安全性に欠ける傾向がみられるので好ましくない。
The explosive charge refers to explosives that are usually filled in shells and destroy the shell, and usually include nitrates, nitro compounds, furoxane, nitramine, amine nitrates as a single substance or a mixture or eutectic. Explosive wastes include powder, solid blocks,
Examples include powders and solid blocks eluted from shells. As a method of taking out these explosives, a method of cutting and crushing after elution and solidification from the shell of a shell, a method of crushing with a high pressure jet, a method of crushing after freezing to extremely low temperature with liquid nitrogen etc. are used. , Average particle size is 7m
m or less, preferably 0.001 to 5 mm, more preferably 0.001 to 3 mm, and more preferably 0.001 to 1.
It is cut and crushed to 5 mm. As the particle size exceeds 1.5 mm, explosive properties remain, but the burning rate tends to be high and the burning temperature tends to be high, depending on the type of explosive, and as the particle size exceeds 3 mm, it takes time to impregnate the combustion retardant and uneven impregnation occurs. This is not preferred because it tends to occur and tends to lack safety.

【0008】燃焼遅延剤としては鉱物油,動物油,植物
油又はこれらの廃油,若しくはグリセリン,エチレング
リコール等の多価アルコールの内いずれか1又は2以上
の混合物が用いられる。ロケット推進薬や炸薬になじみ
易く、また、沸点が高く、燃焼時間を遅延させるととも
に燃焼温度を有効に下げることができるためである。鉱
物油としては、原油を生成源とする重油、軽油、灯油等
が挙げられる。また、マシン油、タービン油、ギヤー
油、潤滑油、切削油、アスファルト基材油、芳香族鉱油
等も用いることができる。動物油としては、魚油、鯨油
等の常温で液状のものが好適に用いられる。植物油とし
ては、アマニ油、エノ油、キリ油、ゴマ油、ナタネ油、
綿実油、大豆油、ツバキ油、オリーブ油、ヒマシ油、ヤ
シ油、パーム油、トウモロコシ油、落花生油等が用いら
れる。多価アルコールとしては、エチレングリコール,
トリメチレングリコール,プロピレングリコール,グリ
セリン等が挙げられる。
As the combustion retardant, mineral oil, animal oil, vegetable oil or waste oil thereof, or a polyhydric alcohol such as glycerin or ethylene glycol, or a mixture of two or more thereof is used. This is because it is easily compatible with rocket propellants and explosives, has a high boiling point, and can delay combustion time and effectively lower the combustion temperature. Examples of the mineral oil include heavy oil, light oil, kerosene, etc., which are produced from crude oil. Further, machine oil, turbine oil, gear oil, lubricating oil, cutting oil, asphalt base oil, aromatic mineral oil and the like can be used. As the animal oil, those which are liquid at room temperature, such as fish oil and whale oil, are preferably used. Vegetable oils include linseed oil, eno oil, tung oil, sesame oil, rapeseed oil,
Cottonseed oil, soybean oil, camellia oil, olive oil, castor oil, coconut oil, palm oil, corn oil, peanut oil and the like are used. As the polyhydric alcohol, ethylene glycol,
Examples include trimethylene glycol, propylene glycol, glycerin and the like.

【0009】燃焼遅延剤は粘度を0.3〜500センチ
ポアズ好ましくは1〜400センチポアズに調整されて
用いられる。粘度が1センチポアズ未満になるにつれ燃
焼工程時に一般的に燃焼遅延剤の蒸発速度が速くなる傾
向があり燃焼遅延剤の含浸量が減り減感性が低下し炸薬
が直接燃焼し安全性に欠ける傾向が生じ好ましくない。
粘度が400センチポアズを越えるにつれロケット推進
薬や炸薬に混合または含浸する速度が遅くなり含浸斑等
が生じ易く安全性に欠ける傾向があるので好ましくな
い。これらの燃焼遅延剤の沸点は150℃以上好ましく
は200℃以上のものが好適に用いられる。沸点が20
0℃未満になるにつれ燃焼時に燃焼遅延剤の蒸発速度が
速くロケット推進薬や炸薬が再活性化し爆発性を有する
傾向が現れ易いので好ましくない。
The flame retardant is used by adjusting its viscosity to 0.3 to 500 centipoise, preferably 1 to 400 centipoise. As the viscosity becomes less than 1 centipoise, the evaporation rate of the combustion retardant generally tends to increase during the combustion process, the impregnated amount of the flame retardant decreases, the desensitization decreases, and the explosive charge directly burns, leading to a lack of safety. It is not preferred.
When the viscosity exceeds 400 centipoise, the speed of mixing or impregnating with the rocket propellant or explosive becomes slow, and impregnation spots are likely to occur, which is unfavorable for safety. The boiling point of these combustion retardants is preferably 150 ° C. or higher, more preferably 200 ° C. or higher. Boiling point is 20
When the temperature is lower than 0 ° C, the evaporation rate of the combustion retardant is high at the time of combustion and the rocket propellant and explosive charge tend to be reactivated and explosive, which is not preferable.

【0010】燃焼遅延剤に水や界面活性剤又はこれらの
混合物を含有させてもよい。界面活性剤としては、高級
脂肪酸アルカリ塩、アルキル硫酸塩、アルキルアリール
スルホン酸塩等の陰イオン界面活性剤、高級アミンハロ
ゲン酸塩、第4アンモニウム塩、ハロゲン化アルキルピ
リジニウム等の陽イオン界面活性剤、アミノ酸等の両性
界面活性剤、ポリエチレングリコールアルキルエーテ
ル、ポリエチレングリコール脂肪酸エステル、ソルビタ
ン脂肪酸エステル等の非イオン界面活性剤、フルオロア
ルキルカルボン酸、N−パーフルオロオクタンスルホニ
ルグルタミン酸ジナトリウム、フルオロアルキルカルボ
ン酸等のフッ素系界面活性剤、ポリオキシエチレンアリ
ルグリシジルノニルフェニルエーテルの硫酸エステル
塩、ポリオキシエチレンアリルグリシジルノニルフェニ
ルエーテル等の反応性界面活性剤等が挙げられる。特に
親水性のものが好ましい。界面活性剤は水を油や油脂中
に分散しエマルジョン化できる。また、燃焼遅延剤の濡
れ性を改善し含浸混合を容易にすることができる。
The flame retardant may contain water, a surfactant or a mixture thereof. Examples of the surfactant include anionic surfactants such as higher fatty acid alkali salt, alkylsulfate and alkylaryl sulfonate, higher amine halogenate, quaternary ammonium salt and cationic surfactant such as alkylpyridinium halide. , Amphoteric surfactants such as amino acids, nonionic surfactants such as polyethylene glycol alkyl ethers, polyethylene glycol fatty acid esters, sorbitan fatty acid esters, fluoroalkylcarboxylic acids, disodium N-perfluorooctanesulfonylglutamate, fluoroalkylcarboxylic acids, etc. Fluorine-based surfactants, polyoxyethylene allyl glycidyl nonyl phenyl ether sulfate ester salts, polyoxyethylene allyl glycidyl nonyl phenyl ether reactive surfactants, and the like. Particularly hydrophilic ones are preferable. Surfactants can disperse water in oils and fats to form an emulsion. Also, the wettability of the combustion retardant can be improved to facilitate impregnation and mixing.

【0011】燃焼遅延剤がロケット推進薬や炸薬に3〜
90wt%好ましくは10〜70wt%混合または含浸
される。混合または含浸量が10wt%未満になるにつ
れ該炸薬等の種類にもよるが含浸斑が生じ易く燃焼遅延
効果が減退し急激な燃焼が生じるおそれが有り好ましく
ない。混合または含浸量が70wt%を越えるにつれ燃
焼工程での燃焼性に斑が生じたり燃焼持続性が生じ作業
時間が長くなり作業性に欠ける場合があるので好ましく
ない。混合・含浸工程においては、上記の形状に加工さ
れたロケット推進薬や炸薬を燃焼遅延剤を満たした容器
中に投入し1分〜数十分間浸した後に取り出す。燃焼工
程において用いられる燃焼炉は固定床、移動床、回転炉
等が挙げられる。これらの燃焼炉に燃焼遅延剤が混合・
含浸処理されたロケット推進薬や炸薬を投入し通常の燃
焼物と同様の扱いで燃焼させることができる。
The combustion retardant is used in rocket propellants and explosives.
90 wt%, preferably 10-70 wt% are mixed or impregnated. When the mixed or impregnated amount is less than 10 wt%, impregnation unevenness is liable to occur depending on the kind of the explosive and the like, and the combustion retarding effect is diminished and rapid combustion may occur, which is not preferable. When the mixing or impregnation amount exceeds 70 wt%, the combustibility in the combustion process may be uneven or the combustion continuity may occur, resulting in a long working time and lack of workability, which is not preferable. In the mixing / impregnating step, the rocket propellant or explosive processed into the above shape is put into a container filled with a combustion retardant, soaked for 1 minute to several tens of minutes, and then taken out. Examples of the combustion furnace used in the combustion process include a fixed bed, a moving bed, and a rotary furnace. A combustion retardant is mixed in these combustion furnaces.
The impregnated rocket propellant or explosive charge can be added and burned in the same manner as ordinary combustion products.

【0012】この構成により、切削、裁断されたロケッ
ト推進薬や炸薬に燃焼遅延剤が混合、含浸されるので、
該炸薬等の組成が変質されオイルリッチな組成となる。
従って、燃焼組成の条件が緩和されその分燃焼速度が遅
くなりかつ燃焼温度を低くすることができ、ロケット推
進薬や炸薬を穏やかに燃焼させることができる。また、
通常の燃焼物と同程度の燃焼反応まで反応速度を低下さ
せるので燃焼炉を損傷することが少ない。燃焼遅延剤に
水と界面活性剤を含有された場合はロケット推進薬や炸
薬の濡れ性を著しく向上させるので含浸速度が速くまた
混合も均一に行うことができる。また、水は蒸発潜熱が
高いので燃焼温度を低くし燃焼速度を遅くすることがで
きる。
With this configuration, the rocket propellant and explosive that have been cut and cut are mixed and impregnated with the combustion retardant,
The composition of the explosive or the like is altered to become an oil-rich composition.
Therefore, the condition of the combustion composition is relaxed, the combustion speed is reduced correspondingly, and the combustion temperature can be lowered, so that the rocket propellant and the explosive charge can be gently combusted. Also,
Since the reaction rate is reduced to the same level of combustion reaction as a normal combustion product, the combustion furnace is less damaged. When the combustion retardant contains water and a surfactant, the wettability of the rocket propellant and explosive is significantly improved, so that the impregnation rate is high and the mixing can be performed uniformly. Further, since water has a high latent heat of vaporization, it is possible to lower the combustion temperature and slow the combustion rate.

【0013】[0013]

【実施の形態】以下、本発明の実施の形態について説明
する。 (実施の形態1)過塩素酸アンモニウム80wt%とポ
リブタジエン系バインダ20wt%からなるコンポジッ
ト系推進薬1kgを旋盤で帯状に最大厚さ約2.5mm
に切り出した。このコンポジット系推進薬を粘度50セ
ンチポアズであるギヤーオイルの廃油からなる燃焼遅延
剤に15分間浸した後に余分の燃焼遅延剤を滴下させ
た。次に、燃焼遅延剤を含浸させたコンポジット系推進
薬を燃焼炉に投入した。燃焼炉は通常の燃焼状態を維持
しコンポジット系推進薬は6分後に完全に燃焼した。以
上のように本実施例ではコンポジット系推進薬に粘度が
50センチポアズであるギヤーオイルの廃油からなる燃
焼遅延剤を含浸させた後に燃焼炉中で燃焼させたので、
処理工程が極めて単純で作業性に優れるとともに、燃焼
速度が遅く燃焼温度が低いので安全性に優れ、本発明の
処理を行わないものに比し燃焼が穏やかに進み燃焼炉を
損傷させないものであることがわかった。
Embodiments of the present invention will be described below. (Embodiment 1) 1 kg of a composite propellant consisting of 80 wt% of ammonium perchlorate and 20 wt% of a polybutadiene-based binder is formed into a strip shape on a lathe with a maximum thickness of about 2.5 mm.
I cut it out. This composite propellant was immersed in a combustion retardant composed of waste oil of gear oil having a viscosity of 50 centipoise for 15 minutes, and then an excessive combustion retardant was dropped. Next, the composite propellant impregnated with the combustion retardant was charged into the combustion furnace. The combustion furnace maintained a normal combustion state, and the composite propellant completely burned after 6 minutes. As described above, in this embodiment, the composite propellant was impregnated with the combustion retardant made of waste oil of gear oil having a viscosity of 50 centipoise and then burned in the combustion furnace.
The treatment process is extremely simple and excellent in workability, and since the combustion speed is slow and the combustion temperature is low, it is excellent in safety, and the combustion proceeds gently compared with the case where the treatment of the present invention is not performed and the combustion furnace is not damaged. I understand.

【0014】(実施の形態2)過塩素酸アンモニウム8
0wt%とポリブタジエン系バインダ20wt%からな
るコンポジット系推進薬1kgを旋盤で細断状に最大厚
さ約1mmに切り出した。このコンポジット系推進薬を
軽油50wt%、タービン油50wt%からなる粘度1
9センチポアズである燃焼遅延剤に15分間浸した後に
余分の燃焼遅延剤を滴下させた。次に、この燃焼遅延剤
を含浸させたコンポジット系推進薬を燃焼炉に投入し
た。燃焼炉は通常の燃焼状態を維持しコンポジット系推
進薬は6分後に完全に燃焼した。以上のように本実施例
ではコンポジット系推進薬に粘度が19センチポアズで
ある軽油50wt%、タービン油50wt%からなる燃
焼遅延剤を含浸させた後に燃焼炉中で燃焼させたので、
第1実施例で挙げた効果の他に燃焼時間が長く燃焼が穏
やかに進むので炉を損傷することがなくコンポジット系
推進薬を安全に処理することができることがわかった。
(Embodiment 2) Ammonium perchlorate 8
1 kg of a composite propellant consisting of 0 wt% and a polybutadiene-based binder of 20 wt% was cut into a maximum thickness of about 1 mm with a lathe. The viscosity of this composite propellant is 50 wt% of light oil and 50 wt% of turbine oil.
After soaking in a flame retardant which is 9 centipoise for 15 minutes, an excess flame retardant was dropped. Next, the composite propellant impregnated with the combustion retardant was put into a combustion furnace. The combustion furnace maintained a normal combustion state, and the composite propellant completely burned after 6 minutes. As described above, in this example, the composite propellant was impregnated with the combustion retardant consisting of 50 wt% of light oil having a viscosity of 19 centipoise and 50 wt% of turbine oil, and then burned in the combustion furnace.
In addition to the effects described in the first example, it was found that the composite propellant can be safely treated without damaging the furnace because the combustion time is long and the combustion proceeds gently.

【0015】(実施の形態3)粒径を1mm以下に粉砕
したTNT爆薬1kgを軽油90wt%とアスファルト
基材油10wt%からなる粘度が350センチポアズの
燃焼遅延剤に15分間浸し混合した。この燃焼遅延剤を
混合されたTNT爆薬を燃焼炉に投入した。燃焼炉は通
常の燃焼状態を維持しTNT爆薬は7分後に完全に燃焼
し消滅した。以上のように本実施例によれば、TNT爆
薬をも燃焼炉等に損傷を与えることがなくまた爆発の心
配もなく安全に処理することができることがわかった。
また、処理方法が簡便であり短時間に処理が完了し特別
な装置も必要がないことがわかった。
(Embodiment 3) 1 kg of a TNT explosive pulverized to a particle size of 1 mm or less was dipped and mixed in a combustion retardant having a viscosity of 350 centipoise consisting of 90 wt% of light oil and 10 wt% of asphalt base oil for 15 minutes. The TNT explosive mixed with the combustion retardant was put into a combustion furnace. The combustion furnace maintained a normal combustion state, and the TNT explosive completely burned and disappeared after 7 minutes. As described above, according to this example, it was found that the TNT explosive can be safely processed without damaging the combustion furnace or the like and without fear of explosion.
It was also found that the treatment method is simple, the treatment is completed in a short time, and no special device is required.

【0016】(実施の形態4)粒径を1mm以下に粉砕
したTNT爆薬1kgを軽油50wt%、ギヤー油50
wt%からなる粘度が23センチポアズの燃焼遅延剤に
30分間浸し混合した。この燃焼遅延剤が混合されたT
NT爆薬を焼却用の固定床式の燃焼炉に投入した。燃焼
炉は通常の燃焼状態を維持しTNT爆薬は6分後に完全
に燃焼し消滅した。以上のように本実施例によれば、第
3実施例で挙げた効果の他に燃焼時間が長く燃焼温度を
低くすることができるので燃焼炉を損傷することが少な
くより安全にTNT爆薬を処理することができることが
わかった。
(Embodiment 4) 1 kg of TNT explosive crushed to a particle size of 1 mm or less is 50 wt% of light oil and 50 gear oil.
The composition was immersed in a combustion retardant having a viscosity of 23% by weight of 23 centipoise for 30 minutes and mixed. T mixed with this combustion retardant
The NT explosive was put into a fixed-bed combustion furnace for incineration. The combustion furnace maintained a normal combustion state and the TNT explosive completely burned and disappeared after 6 minutes. As described above, according to this embodiment, in addition to the effect of the third embodiment, the combustion time can be long and the combustion temperature can be lowered, so that the combustion furnace is less damaged and the TNT explosive can be treated more safely. I found that I could do it.

【0017】(実施の形態5)過塩素酸アンモニウム8
0wt%とポリブタジエン系バインダ20wt%からな
るコンポジット系推進薬1kgを旋盤で細断状に最大厚
さ約3mmに切り出した。このコンポジット系推進薬を
軽油95wt%水4.5wt%にポリエチレングリコー
ルアルキルエーテルを0.5wt%含有された粘度3セ
ンチポアズである燃焼遅延剤に10分間浸した。この燃
焼遅延剤を含浸させたコンポジット系推進薬を燃焼炉に
投入した。燃焼炉は通常の燃焼状態を維持しコンポジッ
ト系推進薬は5分後に完全に燃焼した。以上のように本
実施例によればコンポジット系推進薬にポリエチレング
リコールアルキルエーテルと水を含有した燃焼遅延剤を
含浸させることにより、第1実施例で挙げた効果の他に
コンポジット系推進薬への燃焼遅延剤の含浸速度を速め
含浸時間を短くでき、作業性を高めることがわかった。
また、水をコンポジット系推進薬に含浸しているので蒸
発潜熱が大きい水の影響により燃焼温度を更に低くする
ことができ燃焼速度を遅延化させ燃焼を穏やかにできる
ことがわかった。
(Embodiment 5) Ammonium perchlorate 8
1 kg of a composite propellant consisting of 0 wt% and a polybutadiene-based binder of 20 wt% was cut into a maximum thickness of about 3 mm with a lathe. This composite propellant was immersed in a combustion retardant having a viscosity of 3 centipoise containing 95 wt% of light oil and 4.5 wt% of water and 0.5 wt% of polyethylene glycol alkyl ether for 10 minutes. The composite propellant impregnated with the combustion retardant was placed in a combustion furnace. The combustion furnace maintained a normal combustion state, and the composite propellant completely burned after 5 minutes. As described above, according to the present embodiment, by impregnating the composite propellant with the combustion retardant containing polyethylene glycol alkyl ether and water, in addition to the effects described in the first embodiment, It was found that the impregnation speed of the combustion retardant can be increased and the impregnation time can be shortened, thus improving workability.
In addition, it was found that since the composite propellant was impregnated with water, the combustion temperature could be further lowered due to the influence of water having a large latent heat of vaporization, and the combustion speed could be delayed and combustion could be moderated.

【0018】(実験例)過塩素酸アンモニウム80wt
%とポリブタジエン系バインダ20wt%からなるコン
ポジット系推進薬200gを旋盤で帯状に最大厚さ2.
5mmに切り出した。このコンポジット系推進薬を以下
の燃焼遅延剤に含浸混合した。 実験例1 軽油50wt%ギヤー油50wt% 粘度 23cp 実験例2 軽油 粘度 3cp 実験例3 軽油25wt%菜種油75wt% 粘度 8cp 実験例4 軽油50wt%タービン油50wt% 粘度 19cp 実験例5 軽油50wt%大豆油50wt% 粘度 6cp 実験例6 軽油25wt%タービン油75wt% 粘度 35cp 実験例7 大豆油 粘度 10cp 実験例8 菜種油 粘度 15cp 実験例9 エチレングリコール 粘度 45cp 実験例10 ギヤー油 粘度 40cp 実験例11 軽油50wt%菜種油50wt% 粘度 9cp 次に、平均粒径1mm以下のTNT爆薬を200g準備
した。このTNT爆薬を以下の燃焼遅延剤に含浸混合し
た。 実験例12 軽油 粘度 3cp 実験例13 軽油25wt%菜種油75wt% 粘度 8cp 実験例14 軽油50wt%ギヤー油50wt% 粘度 23cp 実験例15 軽油50wt%タービン油50wt%粘度 19cp 実験例16 タービン油 粘度 48cp 実験例17 大豆油 粘度 10cp また、燃焼遅延剤に浸さないTNT爆薬(実験例18)
及びコンポジット系推進薬(実験例19)を200g準
備した。次に、実験例1〜19を底面の直径が10cm
高さが15cmの円錐状に積み上げ底部の一端から着火
した。火薬全体の90%程度が燃焼するまでの時間を燃
焼時間とし、燃焼時の温度の最高温度を放射温度計によ
り測定しそれぞれの結果を(表1)及び(表2)に示し
た。
Experimental Example Ammonium perchlorate 80 wt
% And 200 g of polybutadiene-based binder, 200 g of composite propellant in a lathe on a lathe with a maximum thickness of 2.
It was cut into 5 mm. This composite propellant was impregnated and mixed with the following flame retardant. Experimental Example 1 Light oil 50 wt% Gear oil 50 wt% Viscosity 23 cp Experimental example 2 Light oil viscosity 3 cp Experimental example 3 Light oil 25 wt% Rapeseed oil 75 wt% Viscosity 8 cp Experimental example 4 Light oil 50 wt% Turbine oil 50 wt% Viscosity 19 cp Experimental example 5 Light oil 50 wt% Soybean oil 50 wt % Viscosity 6 cp Experimental example 6 Light oil 25 wt% Turbine oil 75 wt% Viscosity 35 cp Experimental example 7 Soybean oil viscosity 10 cp Experimental example 8 Rapeseed oil viscosity 15 cp Experimental example 9 Ethylene glycol viscosity 45 cp Experimental example 10 Gear oil viscosity 40 cp Experimental example 11 Light oil 50 wt% Rapeseed oil 50 wt % Viscosity 9 cp Next, 200 g of TNT explosive having an average particle diameter of 1 mm or less was prepared. This TNT explosive was impregnated and mixed with the following flame retardant. Experimental Example 12 Light Oil Viscosity 3 cp Experimental Example 13 Light Oil 25 wt% Rapeseed Oil 75 wt% Viscosity 8 cp Experimental Example 14 Light Oil 50 wt% Gear Oil 50 wt% Viscosity 23 cp Experimental Example 15 Light Oil 50 wt% Turbine Oil 50 wt% Viscosity 19 cp Experimental Example 16 Turbine Oil Viscosity 48 cp Experimental Example 17 Soybean oil Viscosity 10 cp TNT explosive not soaked in combustion retardant (Experimental Example 18)
Also, 200 g of a composite propellant (Experimental Example 19) was prepared. Next, in Experimental Examples 1 to 19, the diameter of the bottom surface is 10 cm.
It was piled up in a conical shape with a height of 15 cm and ignited from one end of the bottom. The time until about 90% of the entire explosive was burned was defined as the burning time, and the maximum temperature during burning was measured by the radiation thermometer, and the respective results are shown in (Table 1) and (Table 2).

【表1】 [Table 1]

【表2】 次に、落槌感度を実験例1〜19について、JIS K
4810に準拠して測定し、その結果を(表1)及び
(表2)に示した。さらに、6号雷管起爆感度試験を実
験例1〜19に対して行った。6号雷管起爆感度試験は
容量50ml内径30mmの底付きカートン紙筒に供試
薬を50g詰め6号電気雷管を挿入して蓋をしやわらか
い砂の上に直立させた。電気雷管を爆発させ砂の上に3
回ともろ斗孔を生じないものを不爆、1回でも生じたも
のを半爆、3回ともろ斗孔が生じたものを起爆とした。
その結果を(表1)及び(表2)に示した。
[Table 2] Next, the sensitivity of the hammer was measured according to JIS K for Experimental Examples 1 to 19.
The measurement was performed according to 4810, and the results are shown in (Table 1) and (Table 2). Further, No. 6 detonator detonation sensitivity test was conducted on Experimental Examples 1 to 19. In the No. 6 detonator detonation sensitivity test, 50 g of the reagent was packed in a bottomed carton box having a capacity of 50 ml and an inner diameter of 30 mm, the No. 6 electric detonator was inserted, and the lid was placed upright on soft sand. Explode an electric detonator on the sand 3
The one that did not cause the funnel hole at all times was non-explosive, the one that occurred even once was half-explosive, and the thing that caused the funnel hole at all three times was detonated.
The results are shown in (Table 1) and (Table 2).

【0019】この(表1)及び(表2)から明らかなよ
うに、本発明の混合・含浸工程を施したコンポジット系
推進薬は燃焼時間が30秒〜3分20秒であった。直接
燃焼させた実験例19(比較例)は3秒であった。この
ことから本実施例によれば、比較例に比し10倍〜65
倍も燃焼時間が長く燃焼速度が遅いことがわかった。ま
た、本発明の混合・含浸工程を施したTNT爆薬の燃焼
時間は1分38秒〜3分17秒であり、比較例の直接燃
焼させた実験例18(比較例)は49秒であり、本実施
例によれば比較例に比べ燃焼時間は2倍〜4倍長いこと
がわかった。本発明の混合・含浸工程を施したコンポジ
ット系推進薬の燃焼温度は840〜980℃であり、直
接燃焼させた実施例19(比較例)の燃焼温度は156
0℃であり燃焼温度は580℃も低下させることがわか
った。また、同様にTNT爆薬の燃焼温度は790〜9
80℃であり、比較例の直接燃焼させた実施例18の燃
焼温度は1100℃であり燃焼温度は120〜310℃
低下させることができることがわかった。落槌感度は本
発明の混合・含浸工程を施した実施例1〜17において
は8級と感度を著しく低下させることがわかった。また
6号雷管起爆感度は本発明の混合・含浸工程を施した実
施例1〜17では不爆と感度が極めて低いことがわかっ
た。尚、比較例では落槌感度が7級(実験例18),5
級(実験例19)であり、6号電管起爆感度はいずれも
起爆であった。
As is clear from (Table 1) and (Table 2), the combustion time of the composite propellant subjected to the mixing / impregnation step of the present invention was 30 seconds to 3 minutes and 20 seconds. Experimental example 19 (comparative example) in which direct combustion was performed took 3 seconds. From this, according to the present embodiment, it is 10 times to 65 times that of the comparative example.
It was found that the burning time was twice as long and the burning speed was slow. Further, the burning time of the TNT explosive subjected to the mixing / impregnation process of the present invention is 1 minute 38 seconds to 3 minutes 17 seconds, and the direct burning experimental example 18 (comparative example) of the comparative example is 49 seconds, According to this example, it was found that the burning time was 2 to 4 times longer than that of the comparative example. The combustion temperature of the composite propellant that has been subjected to the mixing / impregnation step of the present invention is 840 to 980 ° C., and the combustion temperature of Example 19 (comparative example) in which it is directly burned is 156.
It was 0 ° C, and it was found that the combustion temperature was lowered by 580 ° C. Similarly, the combustion temperature of TNT explosive is 790 to 9
80 ° C., the combustion temperature of Example 18 in which direct combustion of the comparative example is 1100 ° C., and the combustion temperature is 120 to 310 ° C.
It turned out that it can be lowered. It was found that the drop sensitivity was grade 8 in Examples 1 to 17 in which the mixing / impregnation step of the present invention was performed, which markedly reduces the sensitivity. It was also found that the detonator detonation sensitivity of No. 6 was non-explosive and extremely low in Examples 1 to 17 to which the mixing / impregnation process of the present invention was applied. In the comparative example, the sensitivity of the mallet is 7 (Experimental Example 18), 5
It was Class (Experimental Example 19), and the detonation sensitivity of No. 6 tube was detonation.

【0020】[0020]

【発明の効果】以上のように本発明は鉱物油,動物油,
植物油,又はこれらの廃油、若しくは多価アルコールの
内1または2以上の混合物からなる燃焼遅延剤をロケッ
ト推進薬や炸薬に含浸または混合する工程を設けること
によって、以下のような著しい効果を有する優れたロケ
ット推進薬や炸薬の処理方法を実現できる。 (1)ロケット推進薬や炸薬の取扱感度が低下し安全に
作業ができる。また、燃焼状態は通常の紙、木材、廃油
等と同様の可燃性を有し焼却中に急激かつ高温性の燃焼
や爆発などによる物的、人的災害の懸念なく極めて安全
な処理を行える。 (2)燃焼遅延剤にロケット推進薬や炸薬の処理材を浸
すだけで処理が完了するので、特別な装置も必要なく、
処理が極めて簡便であり処理時間も短く効果的に処理を
行える。 (3)粉粒体状や、細断状,紐状,テープ状,帯状に切
削加工したロケット推進薬や炸薬を燃焼遅延剤に浸した
後に燃焼させるだけなので、大量のロケット推進薬や炸
薬を同時に短時間で処理することができ作業効率が良く
多量の処理に適する。 (4)燃焼遅延剤に界面活性剤を含有させたので、処理
薬への含浸速度が速く混合・含浸工程の作業効率が高く
処理効率が向上する。また、水を含浸するので蒸発潜熱
が高く燃焼温度が低く燃焼速度が遅延化しより安全で確
実な処理が可能である。
INDUSTRIAL APPLICABILITY As described above, the present invention is applied to mineral oil, animal oil,
By providing a step of impregnating or mixing rocket propellant or explosive with a combustion retardant consisting of vegetable oil, waste oil thereof, or a mixture of one or more of polyhydric alcohols, the following remarkable effects are obtained. It is possible to realize a method for processing rocket propellants and explosives. (1) The handling sensitivity of rocket propellants and explosives is reduced, and work can be performed safely. Further, the combustion state is as flammable as ordinary paper, wood, waste oil, etc., and extremely safe treatment can be performed without fear of physical or human accident due to rapid and high temperature combustion or explosion during incineration. (2) The treatment is completed simply by immersing the rocket propellant or explosive treatment material in the combustion retardant, so no special equipment is required.
The processing is extremely simple, the processing time is short, and the processing can be performed effectively. (3) A large amount of rocket propellant or explosive powder is simply burned after soaking the rocket propellant or explosive powder that has been cut into powder, shredded, string-shaped, tape-shaped, or strip-shaped in a combustion retardant. At the same time, it can be processed in a short time and has good work efficiency, which is suitable for a large amount of processing. (4) Since the combustion retardant contains a surfactant, the impregnation speed of the treatment agent is high, the work efficiency of the mixing / impregnation step is high, and the treatment efficiency is improved. Further, since water is impregnated, the latent heat of vaporization is high, the combustion temperature is low, the combustion speed is delayed, and safer and more reliable treatment is possible.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 鉱物油,動物油,植物油,又はこれらの
廃油若しくは、グリセリン,エチレングリコール等の多
価アルコールの内いずれか1または2以上の混合物から
なる燃焼遅延剤を、粉粒体状,細断状,テープ状,帯状
または紐状に切削・破砕加工されたロケット推進薬や炸
薬に混合または含浸する混合・含浸工程と、前記混合・
含浸工程で燃焼遅延剤が混合・含浸された前記ロケット
推進薬や炸薬を燃焼させる燃焼工程と、を有することを
特徴とするロケット推進薬や炸薬の処理方法。
1. A combustion retardant comprising a mineral oil, an animal oil, a vegetable oil, a waste oil thereof, or a mixture of one or more of polyhydric alcohols such as glycerin and ethylene glycol, in the form of powder or fine particles. Mixing / impregnating step of mixing or impregnating rocket propellant or explosive which has been cut or crushed into a cut shape, tape shape, band shape or string shape;
And a burning step of burning the rocket propellant or explosive mixed and impregnated with a combustion retardant in the impregnating step.
【請求項2】 前記混合・含浸工程において、前記燃焼
遅延剤がロケット推進薬や炸薬に3〜90wt%好まし
くは10〜70wt%混合または含浸されていることを
特徴とする請求項1に記載のロケット推進薬や炸薬の処
理方法。
2. The mixing and impregnating step according to claim 1, wherein the combustion retardant is mixed or impregnated with rocket propellant or explosive in an amount of 3 to 90 wt%, preferably 10 to 70 wt%. How to process rocket propellants and explosives.
【請求項3】 前記燃焼遅延剤が水及び/又は界面活性
剤を含有することを特徴とする請求項1又は2の内いず
れか1に記載のロケット推進薬や炸薬の処理方法。
3. The method for treating a rocket propellant or explosive charge according to claim 1 or 2, wherein the combustion retardant contains water and / or a surfactant.
【請求項4】 前記燃焼遅延剤の粘度が0.3〜500
センチポアズであることを特徴とする請求項1乃至3の
内いずれか1に記載のロケット推進薬や炸薬の処理方
法。
4. The viscosity of the combustion retardant is 0.3 to 500.
The method for treating a rocket propellant or explosive charge according to any one of claims 1 to 3, wherein the method is centipoise.
【請求項5】 前記ロケット推進薬がコンポジット系推
進薬であることを特徴とする請求項1乃至4の内いずれ
か1に記載のロケット推進薬や炸薬の処理方法。
5. The method for treating a rocket propellant or an explosive charge according to claim 1, wherein the rocket propellant is a composite propellant.
【請求項6】 前記コンポジット系推進薬が過塩素酸ア
ンモニウムを主成分とし、平均の厚みが0.01〜5m
mのテープ状若しくは帯状に切削加工された切削物であ
ることを特徴とする請求項1乃至5の内いずれか1に記
載のロケット推進薬や炸薬の処理方法。
6. The composite propellant contains ammonium perchlorate as a main component and has an average thickness of 0.01 to 5 m.
The method for treating a rocket propellant or explosive charge according to any one of claims 1 to 5, wherein the cut object is a tape-shaped or band-shaped cut product of m.
【請求項7】 前記炸薬が切削・破砕加工されその平均
粒径が0.001〜5mm、好ましくは平均粒径が0.
001〜3mm、更に好ましくは平均粒径が0.001
〜1.5mmの粉粒体状の切削物であることを特徴とす
る請求項1乃至4の内いずれか1に記載のロケット推進
薬や炸薬の処理方法。
7. The explosive powder is cut and crushed to have an average particle size of 0.001 to 5 mm, preferably an average particle size of 0.
001 to 3 mm, more preferably an average particle size of 0.001
The method for treating rocket propellant or explosive charge according to any one of claims 1 to 4, which is a cut product in the form of powder or granules having a size of up to 1.5 mm.
JP7347647A 1994-12-22 1995-12-15 Treatment of pocket propellant and bursting charge Withdrawn JPH08240309A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7347647A JPH08240309A (en) 1994-12-22 1995-12-15 Treatment of pocket propellant and bursting charge

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-336407 1994-12-22
JP33640794 1994-12-22
JP7347647A JPH08240309A (en) 1994-12-22 1995-12-15 Treatment of pocket propellant and bursting charge

Publications (1)

Publication Number Publication Date
JPH08240309A true JPH08240309A (en) 1996-09-17

Family

ID=26575460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7347647A Withdrawn JPH08240309A (en) 1994-12-22 1995-12-15 Treatment of pocket propellant and bursting charge

Country Status (1)

Country Link
JP (1) JPH08240309A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116041122A (en) * 2022-12-20 2023-05-02 本溪钢铁(集团)矿业有限责任公司 Method for controlling residual explosive in ground station matrix bin of emulsion explosive

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116041122A (en) * 2022-12-20 2023-05-02 本溪钢铁(集团)矿业有限责任公司 Method for controlling residual explosive in ground station matrix bin of emulsion explosive
CN116041122B (en) * 2022-12-20 2024-02-23 本溪钢铁(集团)矿业有限责任公司 Method for controlling residual explosive in ground station matrix bin of emulsion explosive

Similar Documents

Publication Publication Date Title
US20200326170A1 (en) Modified blasting agent
FR2573066A1 (en) PRIMER LOAD COMPOSITION CONTAINING MANGANESE DIOXIDE
RU2136640C1 (en) Method of preparing explosive and explosive prepared by claimed method
US4019932A (en) Incendiary composition
US3774541A (en) Selection control methods for explosive systems
KR20010079983A (en) Castable double base solid rocket propellant containing ballistic modifier pasted in an inert polymer
US3749024A (en) Outgassing technique
JP3688855B2 (en) Non-explosive crushing composition
JPH08240309A (en) Treatment of pocket propellant and bursting charge
US5220107A (en) Process for the preparation of solid rocket propellant and other solid explosives for thermal disposal or reclamation
RU2301789C1 (en) Method of manufacture of the blasting explosive and the blasting explosive produced by this method
US4140562A (en) Solid propellant with alginate binder
US3096223A (en) Slurry blasting explosives containing inorganic prechlorate or chlorate
TWI772444B (en) Composition for single-base propelling powder for ammunition and ammunition provided with such composition
EP0661251B1 (en) Flegmatized explosive
JPH09253600A (en) Treatment of propellant and projectile
Osmont et al. Overview of energetic materials
KR101472732B1 (en) Under water demilitarization method for large propulsion unit using easily transferable device
RU2096396C1 (en) Explosive substance and method of preparation thereof
US5506366A (en) Desensitization of cured energetic compositions in aqueous media
Wulfman et al. Reformulation of solid propellants and high explosives: an environmentally benign means of demilitarizing explosive ordnance
Akhavan et al. Modification of pyrotechnic formulations to aid recovery, recycling and demilitarization
RU2209806C2 (en) Multiple-factor elevated-power blasting composition
JPH0340986A (en) Explosive containing large quantity of emul- sifier
Ahmed et al. Synthesis and Characterization of Commercial Grade Energetic Materials using Decanted 2, 4, 6 Tri-nitrotoluene (TNT)

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030304