JPH08239647A - Production of road surface antifreeze - Google Patents

Production of road surface antifreeze

Info

Publication number
JPH08239647A
JPH08239647A JP4409695A JP4409695A JPH08239647A JP H08239647 A JPH08239647 A JP H08239647A JP 4409695 A JP4409695 A JP 4409695A JP 4409695 A JP4409695 A JP 4409695A JP H08239647 A JPH08239647 A JP H08239647A
Authority
JP
Japan
Prior art keywords
calcium chloride
sodium silicate
aqueous solution
added
road surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4409695A
Other languages
Japanese (ja)
Inventor
Yoji Ueda
洋史 上田
Kenichiro Adachi
健一郎 足立
Nobuhiko Imaizumi
展彦 今泉
Yasushi Okinaka
康 沖中
Eiji Kurama
英司 鞍馬
Yoshinari Hirose
良成 広瀬
Nobuhiro Okada
宣広 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP4409695A priority Critical patent/JPH08239647A/en
Publication of JPH08239647A publication Critical patent/JPH08239647A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)

Abstract

PURPOSE: To produce a road surface antifreeze by uniformly dispersing an anticorrosive agent in an aqueous calcium chloride solution and concentrating the solution by heating. CONSTITUTION: A process for producing solid calcium chloride by concentrating an aqueous clacium chloride solution by heating, which comprises adding 0.1-10wt.%, based on the solid calcium chloride, sodium silicate diluted with water two- to fifty-fold to the calcium chloride solution under agitation and concentrating the mixture by heating or comprises adding an acid to sodium silicate to adjust its pH to 1 or below, adding the sodium silicate to the calcium chloride solution to adjust its pH to 5 or below, adding an alkali to the mixture to adjust its pH to 7 or above and concentrating the solution by heating.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、金属等に対する腐食を
抑制させた塩化カルシウム系の路面凍結防止剤の製造法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a calcium chloride-based road surface antifreezing agent in which corrosion of metals and the like is suppressed.

【0002】[0002]

【従来技術とその解決しようとする問題点】塩化カルシ
ウムは、冷凍機ブライン、ダストカーマー、路面凍結防
止剤等に用いられるが、なかでも路面凍結防止剤として
は安価であり、しかもその融雪効果が優れていることか
ら非常によく用いられる材料である。路面凍結防止剤と
して用いる場合には、一般に濃度の高い液体(約40%
CaCl2 )もしくは固形(CaCl2 ・2H2 O)で
用いる。固形塩化カルシウムは、通常工業的には液体の
塩化カルシウムを加熱・濃縮したのち冷却・固化して製
造する。
PRIOR ART AND PROBLEMS TO BE SOLVED The calcium chloride is used as a refrigerator brine, a dust carmer, a road surface antifreezing agent, etc. Among them, it is inexpensive as a road surface antifreezing agent, and its snow melting effect is excellent. Therefore, it is a material that is very often used. When used as a road surface anti-icing agent, it generally has a high concentration of liquid (about 40%
CaCl 2 ) or solid (CaCl 2 · 2H 2 O). Solid calcium chloride is usually industrially produced by heating and concentrating liquid calcium chloride, then cooling and solidifying.

【0003】しかし、塩化カルシウムは、金属、特に炭
素綱等を腐食させる作用があり、例えば道路に散布した
場合には、自動車や道路標識等の金属部分に対して腐食
作用を及ぼす欠点がある。そのため、これまで塩化カル
シウム中にいろいろな腐食抑制剤を添加して金属に対す
る腐食を抑制することが提案されてきた。例えば、亜鉛
塩、亜硝酸塩、燐酸塩、各種有機化合物等が腐食抑制剤
として提案されている。しかし、亜鉛塩や亜硝酸塩は、
その毒性の故に大量に道路等に散布することで環境問題
を引き起こす恐れがある。一方、燐酸塩、例えばヘキサ
メタ燐酸ソーダは、効果の高い腐食抑制剤であるが、こ
れも大量に散布すると燐酸塩による水質の富栄養化の問
題が発生する恐れがあると共に、固形塩化カルシウムの
製造工程において、ヘキサメタ燐酸ソーダを含んだ塩化
カルシウム水溶液を加熱・濃縮すると該水溶液の金属に
対する腐食性が非常に高くなり濃縮設備を著しく腐食す
る問題があった。また、有機系の腐食抑制剤について
は、液体塩化カルシウムに添加して加熱・濃縮するとき
に170℃以上の高温にさらされるため、ほとんどの有
機化合物は分解して効果が出ないという問題があった。
However, calcium chloride has a function of corroding metals, especially carbon steel, and has a drawback that when it is sprayed on roads, it has a corrosive effect on metal parts such as automobiles and road signs. Therefore, it has been proposed so far to add various corrosion inhibitors to calcium chloride to suppress corrosion on metals. For example, zinc salts, nitrites, phosphates, various organic compounds, etc. have been proposed as corrosion inhibitors. However, zinc salts and nitrites
Due to its toxicity, it may cause environmental problems when it is sprayed in large quantities on roads. On the other hand, phosphate, such as sodium hexametaphosphate, is a highly effective corrosion inhibitor, but if it is also sprayed in a large amount, it may cause problems of eutrophication of water quality due to phosphate, and production of solid calcium chloride. In the process, if a calcium chloride aqueous solution containing sodium hexametaphosphate is heated and concentrated, the corrosiveness of the aqueous solution with respect to metal becomes extremely high, and there is a problem that the concentration equipment is significantly corroded. In addition, organic corrosion inhibitors are exposed to a high temperature of 170 ° C. or higher when added to liquid calcium chloride and heated / concentrated, so that there is a problem that most organic compounds are decomposed and ineffective. It was

【0004】また、腐食抑制剤を塩化カルシウム中に添
加する方法として、液体塩化カルシウムの場合は、水溶
性の腐食抑制剤を単に添加して混合すれば問題ないが、
固形の塩化カルシウム中に添加する方法としては、粒
状の塩化カルシウム表面に腐食抑制剤をコーティングす
る、粒状の塩化カルシウムに粒状の腐食抑制剤を混合
する、固形塩化カルシウムの製造時に腐食抑制剤を添
加して均一に分散させる、等の方法がある。このうち腐
食抑制効果が最も期待できるのは、塩化カルシウムと腐
食抑制剤が均一に混合されているの方法である。しか
し、の方法で腐食抑制剤を添加するためには、腐食抑
制剤が170℃以上の高温にさらされるのを回避するこ
とは出来ない。そのため、170℃以上の高温に対して
安定で、毒性のない、しかも高温での腐食性のない腐食
抑制剤が要望されてきた。
Further, as a method for adding a corrosion inhibitor to calcium chloride, in the case of liquid calcium chloride, there is no problem if a water-soluble corrosion inhibitor is simply added and mixed.
As a method of adding it to solid calcium chloride, the surface of granular calcium chloride is coated with a corrosion inhibitor, the granular calcium chloride is mixed with a granular corrosion inhibitor, and the corrosion inhibitor is added during the production of solid calcium chloride. Then, it is dispersed uniformly. Among these, the method in which the corrosion inhibition effect is most expected is the method in which calcium chloride and the corrosion inhibitor are uniformly mixed. However, in order to add a corrosion inhibitor by the method of 1, it is unavoidable that the corrosion inhibitor is exposed to a high temperature of 170 ° C. or higher. Therefore, there has been a demand for a corrosion inhibitor that is stable to high temperatures of 170 ° C. or higher, is not toxic, and is not corrosive at high temperatures.

【0005】[0005]

【問題点を解決するための具体的手段】本発明者らは、
上記の問題点に鑑み種々検討の結果、非晶質の珪酸塩を
塩化カルシウム中に均一に分散させることで上記の問題
点を解決できる事を見出し本発明に到達した。
[Means for Solving the Problems] The present inventors
As a result of various studies in view of the above problems, the inventors have found that the above problems can be solved by uniformly dispersing an amorphous silicate in calcium chloride, and arrived at the present invention.

【0006】本発明は、塩化カルシウムの原料水溶液に
珪酸塩を分散・添加し、加熱・濃縮させた後冷却・固化
させて固形の塩化カルシウムを製造する際、(1)珪酸
ソーダを水で前もって2〜50倍の濃度に希釈し撹拌し
ながら塩化カルシウム水溶液に投入する方法、(2)珪
酸ソーダに酸(塩酸、硝酸)をあらかじめ添加しpHを
1以下とし、該珪酸ソーダ液を塩化カルシウム水溶液に
撹拌しながら添加・分散させ該混合液のpHを5以下と
した後アルカリを添加してpHを7以上に調節する方法
を提供するものである。
According to the present invention, when a solid calcium chloride is produced by dispersing and adding a silicate to a raw material aqueous solution of calcium chloride, heating and concentrating it, and then cooling and solidifying it, (1) sodium silicate is preliminarily added with water. A method of diluting to a concentration of 2 to 50 times and adding to a calcium chloride aqueous solution with stirring, (2) Acid (hydrochloric acid, nitric acid) is previously added to sodium silicate to adjust the pH to 1 or less, and the sodium silicate solution is added to the calcium chloride aqueous solution. The present invention provides a method of adjusting and adjusting the pH to 7 or more by adding and dispersing while stirring to adjust the pH of the mixed solution to 5 or less and then adding an alkali.

【0007】珪酸ソーダは、腐食抑制剤としては古くか
ら用いられており公知の材料であり、先に述べた条件、
すなわち毒性が無く、腐食抑制効果が高く、耐熱性を有
し、高温での腐食性のない材料である。
Sodium silicate has been used as a corrosion inhibitor for a long time and is a known material.
That is, it is a material that is not toxic, has a high corrosion inhibiting effect, has heat resistance, and is not corrosive at high temperatures.

【0008】しかし、単に塩化カルシウム水溶液に珪酸
ソーダを添加し加熱・濃縮し固形塩化カルシウムを製造
したのでは、充分な腐食抑制効果を得ることは出来な
い。なぜならば通常10〜50%の濃度の原料塩化カル
シウム水溶液に珪酸ソーダを添加した場合には、かなり
激しく撹拌しても珪酸ソーダと塩化カルシウムが急速に
反応して固い非晶質のシリカゲルが生じ速やかに沈降し
てしまう。この時の上澄みの塩化カルシウム水溶液中に
は、珪酸分はほとんど含まれず、腐食抑制効果は乏しい
ものとなる。これを改善するためには珪酸ソーダを均一
に分散させる条件で塩化カルシウム水溶液に添加し、生
成するシリカをコロイド状に該水溶液中に存在させる必
要がある。
However, if sodium silicate is simply added to an aqueous calcium chloride solution and heated and concentrated to produce solid calcium chloride, a sufficient corrosion inhibiting effect cannot be obtained. This is because when sodium silicate is added to a raw calcium chloride aqueous solution having a concentration of 10 to 50%, sodium silicate rapidly reacts with calcium chloride even if it is vigorously stirred to form a solid amorphous silica gel. Settles in. At this time, the supernatant calcium chloride aqueous solution contains almost no silicic acid, and the corrosion inhibiting effect is poor. In order to improve this, it is necessary to add sodium silicate to an aqueous solution of calcium chloride under the condition that the sodium silicate is uniformly dispersed, and allow the produced silica to exist in a colloidal state in the aqueous solution.

【0009】本発明者らは種々検討の結果、塩化カルシ
ウム水溶液中に珪酸ソーダを分散良く添加する二つの方
法を見いだした。その一つは、珪酸ソーダを水で2〜5
0倍、好ましくは5〜20倍に希釈して添加する方法で
ある。水で希釈することにより塩化カルシウムと珪酸ソ
ーダの反応がおだやかに進行し、固いゲルが生じること
なく生じたシリカゲルの分散性は良好となる。この時希
釈倍数が小さいと固いゲルが生じ易くなり効果は小さ
い。また、希釈倍数が大きくなると系内に水が大量に入
り、その後の工程において濃縮のためのエネルギーを多
く必要とし経済的でない。
As a result of various investigations, the present inventors have found two methods of adding sodium silicate in a calcium chloride aqueous solution with good dispersion. One of them is to use sodium silicate with water for 2-5
This is a method of adding it after diluting it 0 times, preferably 5 to 20 times. By diluting with water, the reaction between calcium chloride and sodium silicate progresses gently, and the dispersibility of the silica gel produced without forming a hard gel becomes good. At this time, if the dilution ratio is small, a hard gel is likely to be formed, and the effect is small. In addition, when the dilution ratio becomes large, a large amount of water enters the system, which requires a large amount of energy for concentration in the subsequent steps, which is not economical.

【0010】また、もう一つの方法は、あらかじめ珪酸
ソーダに酸を添加しpHを1以下とし、該珪酸ソーダと
酸の混合物を原料の塩化カルシウム水溶液に添加しpH
を5以下、望ましくは1以下とした後、アルカリでpH
を7以上に中和することで達成される。この方法は、塩
化カルシウムと珪酸ソーダが接触することにより生成す
る非晶質のシリカゲルが酸性で溶解し、アルカリ性で析
出することを利用したものである。このとき添加する珪
酸ソーダと酸の混合液は、あらかじめ十分に混合したも
のを用いるのが好ましい。但し、長時間経過するとシル
カゲルが析出してくるので、混合後なるべく速やかに使
用することが望ましい。珪酸ソーダと酸の混合割合は、
塩化カルシウム水溶液のpHを5以下にするために必要
な酸の量と珪酸ソーダの添加量により適宜決定すればよ
い。また、珪酸ソーダを添加し、pHを5以下とした液
のpHを7以上に調整するためのアルカリは、水酸化カ
ルシウム、水酸化ナトリウム等の一般的なもので構わな
いが、特に反応性が緩やかである水酸化カルシウムが好
ましい。
Another method is to previously add an acid to sodium silicate to adjust the pH to 1 or less, and then add the mixture of the sodium silicate and the acid to the aqueous calcium chloride solution as a raw material.
To 5 or less, preferably 1 or less, and then pH with alkali
Is neutralized to 7 or more. This method makes use of the fact that amorphous silica gel produced by contact between calcium chloride and sodium silicate dissolves in acid and precipitates in alkali. As the mixed solution of sodium silicate and acid added at this time, it is preferable to use a sufficiently mixed solution in advance. However, it is desirable to use it as soon as possible after mixing, because the silica gel will precipitate after a long time. The mixing ratio of sodium silicate and acid is
It may be appropriately determined depending on the amount of acid required to bring the pH of the aqueous calcium chloride solution to 5 or less and the amount of sodium silicate added. Alkali for adjusting the pH of the liquid to pH 7 or higher by adding sodium silicate to pH 5 or lower may be a common one such as calcium hydroxide or sodium hydroxide, but is particularly reactive. Calcium hydroxide, which is mild, is preferred.

【0011】本発明で使用する珪酸塩は、市販のJIS
3号もしくは4号珪酸ソーダが好適であるが、そのほか
の珪酸塩であっても構わない。また、使用する酸は、一
般的な塩酸、硝酸で十分である。
The silicate used in the present invention is commercially available JIS
No. 3 or No. 4 sodium silicate is preferable, but other silicates may be used. As the acid to be used, general hydrochloric acid and nitric acid are sufficient.

【0012】また、珪酸塩を添加するときの塩化カルシ
ウム水溶液の濃度は、10〜72%が好ましい。濃度が
10%以下の場合、その後の工程において加熱・濃縮し
固形塩化カルシウムとするのにエネルギーを多く必要と
し経済的でない。一方、72%以上の場合、175℃と
いう高温においても固体であり、珪酸塩の添加が困難と
なり好ましくない。
The concentration of the calcium chloride aqueous solution when the silicate is added is preferably 10 to 72%. If the concentration is 10% or less, a lot of energy is required to heat and concentrate the solid calcium chloride in the subsequent steps, which is not economical. On the other hand, when it is 72% or more, it is solid even at a high temperature of 175 ° C., and it is difficult to add the silicate, which is not preferable.

【0013】塩化カルシウム水溶液中に珪酸ソーダを分
散良く添加する二つの方法について記したが、これらの
方法を別々に実施しても有効であるが、二つの方法を併
用することでさらに効果的である。
Two methods of adding sodium silicate with good dispersion to an aqueous solution of calcium chloride have been described. Although it is effective to carry out these methods separately, it is more effective to use the two methods together. is there.

【0014】[0014]

【実施例】以下に本発明を実施例によって説明するが、
かかる実施例により本発明が制限されるものではない。
EXAMPLES The present invention will be described below with reference to examples.
The present invention is not limited to the embodiments.

【0015】実施例1 市販の3号珪酸ソーダ(42ボーメ)1.0gを水で1
0倍に希釈(4.2ボーメ)し、252gの30%塩化
カルシウム水溶液に撹拌しながら添加した(珪酸ソーダ
添加率=1%)。その後、該塩化カルシウム水溶液を沸
点が175℃になるまで加熱濃縮し、該濃縮した液を冷
却・固化させて固形の塩化カルシウム97gを得た。得
られた固形塩化カルシウムの腐食抑制率評価法を以下に
示す。得られた結果は、表1に示した。
Example 1 1.0 g of commercially available No. 3 sodium silicate (42 Baume) was added to 1 g of water.
It was diluted 0 times (4.2 Baume) and added to 252 g of a 30% calcium chloride aqueous solution with stirring (sodium silicate addition rate = 1%). Then, the calcium chloride aqueous solution was heated and concentrated until the boiling point reached 175 ° C., and the concentrated liquid was cooled and solidified to obtain 97 g of solid calcium chloride. The method for evaluating the corrosion inhibition rate of the obtained solid calcium chloride is shown below. The obtained results are shown in Table 1.

【0016】[腐食抑制率評価法]固形塩化カルシウム
(CaCl2 ・2H2 O)8gを水に溶解して200g
とする(CaCl2 の3%水溶液)。20℃の環境下で
この液に前もって重量を測定したSS−41の炭素鋼試
験片を、一日浸漬し、一日引き上げるという(乾湿交
互)繰り返しを7日間継続する。浸漬後の試験片を酸洗
し錆を除去した後の重量を測定する。同時に腐食抑制剤
を添加していない塩化カルシウム(ブランク)を用い
て、浸漬の前後の試験片の重量を測定する。
[Corrosion Inhibition Rate Evaluation Method] 8 g of solid calcium chloride (CaCl 2 .2H 2 O) was dissolved in water to obtain 200 g.
(3% CaCl 2 aqueous solution). A carbon steel test piece of SS-41 whose weight has been measured in advance in this liquid under an environment of 20 ° C. is immersed for one day and lifted up for one day (dry and wet alternating) is repeated for 7 days. The test piece after immersion is pickled to measure the weight after removing rust. At the same time, the weight of the test piece before and after the immersion is measured using calcium chloride (blank) to which a corrosion inhibitor is not added.

【0017】[腐食抑制率] 腐食抑制率=[(ブランクの浸漬前後の重量差)−(試
験片の浸漬前後の重量差)]/(ブランクの浸漬前後の
重量差)×100%
[Corrosion Inhibition Rate] Corrosion inhibition rate = [(weight difference before and after immersion of blank)-(weight difference before and after immersion of test piece)] / (weight difference before and after immersion of blank) × 100%

【0018】実施例2 市販の3号珪酸ソーダ(42ボーメ)1.0gを水で5
倍に希釈(8.4ボーメ)し、252gの30%塩化カ
ルシウム水溶液に撹拌しながら添加した(珪酸ソーダ添
加率=1%)。その後、該塩化カルシウム水溶液を沸点
が175℃になるまで加熱濃縮し、該濃縮した液を冷却
・固化させて固形の塩化カルシウム95gを得た。得ら
れた固形塩化カルシウムについて、腐食抑制率を実施例
1で示した方法で求めた。結果を表1に示す。
Example 2 1.0 g of commercially available No. 3 sodium silicate (42 Baume) was added to 5 g of water.
It was diluted twice (8.4 Baume) and added to 252 g of a 30% calcium chloride aqueous solution with stirring (sodium silicate addition rate = 1%). Then, the calcium chloride aqueous solution was heated and concentrated until the boiling point reached 175 ° C., and the concentrated liquid was cooled and solidified to obtain 95 g of solid calcium chloride. The corrosion inhibition rate of the obtained solid calcium chloride was determined by the method shown in Example 1. The results are shown in Table 1.

【0019】実施例3 市販の4号珪酸ソーダ(34ボーメ)1.0gを水で1
0倍に希釈(3.4ボーメ)し、216gの35%塩化
カルシウム水溶液に撹拌しながら添加した(珪酸ソーダ
添加率=1%)。その後、該塩化カルシウム水溶液を沸
点が175℃になるまで加熱濃縮し、該濃縮した液を冷
却・固化させて固形の塩化カルシウム96gを得た。得
られた固形塩化カルシウムについて、腐食抑制率を実施
例1で示した方法で求めた。結果を表1に示す。
Example 3 1.0 g of commercially available No. 4 sodium silicate (34 Baume) was added to 1 g of water.
It was diluted to 0 times (3.4 Baume) and added to 216 g of 35% calcium chloride aqueous solution with stirring (sodium silicate addition rate = 1%). Then, the calcium chloride aqueous solution was heated and concentrated until the boiling point reached 175 ° C., and the concentrated liquid was cooled and solidified to obtain 96 g of solid calcium chloride. The corrosion inhibition rate of the obtained solid calcium chloride was determined by the method shown in Example 1. The results are shown in Table 1.

【0020】実施例4 市販の3号珪酸ソーダ(42ボーメ)1.0gを水で2
倍に希釈し、4.2gの35%塩酸を加えた。その結果
珪酸ソーダ溶液のpHは0以下となった。この珪酸ソー
ダ溶液を252gの30%塩化カルシウム水溶液に撹拌
しながら添加した(珪酸ソーダ添加率=1%)。添加後
の塩化カルシウム水溶液のpHは4.3となった。該塩
化カルシウム水溶液に1.6gの水酸化カルシウムを加
えpHを7.5とした後、該塩化カルシウム水溶液を沸
点が175℃になるまで加熱濃縮し、濃縮した液を冷却
・固化させて固形の塩化カルシウム98gを得た。得ら
れた固形塩化カルシウムについて、腐食抑制率を実施例
1で示した方法で求めた。結果を表1に示す。
Example 4 1.0 g of commercially available sodium silicate No. 3 (42 baume) was added to 2 g of water.
After doubling the dilution, 4.2 g of 35% hydrochloric acid was added. As a result, the pH of the sodium silicate solution became 0 or less. This sodium silicate solution was added to 252 g of a 30% calcium chloride aqueous solution with stirring (sodium silicate addition rate = 1%). The pH of the calcium chloride aqueous solution after addition was 4.3. After 1.6 g of calcium hydroxide was added to the calcium chloride aqueous solution to adjust the pH to 7.5, the calcium chloride aqueous solution was heated and concentrated until the boiling point reached 175 ° C., and the concentrated liquid was cooled and solidified to form a solid solution. 98 g of calcium chloride was obtained. The corrosion inhibition rate of the obtained solid calcium chloride was determined by the method shown in Example 1. The results are shown in Table 1.

【0021】実施例5 市販の3号珪酸ソーダ(42ボーメ)1.0gを水で1
0倍に希釈し、8.4gの35%塩酸を加えた。その結
果珪酸ソーダ溶液のpHは0以下となった。この珪酸ソ
ーダ溶液を252gの30%塩化カルシウム水溶液に撹
拌しながら添加した(珪酸ソーダ添加率=1%)。添加
後の塩化カルシウム水溶液のpHは0.9となった。該
塩化カルシウム水溶液に3.2gの水酸化カルシウムを
加えpHを7.3とした後、該塩化カルシウム水溶液を
沸点が175℃になるまで加熱濃縮し、濃縮した液を冷
却・固化させて固形の塩化カルシウム96gを得た。得
られた固形塩化カルシウムについて、腐食抑制率を実施
例1で示した方法で求めた。結果を表1に示す。
Example 5 1.0 g of commercially available sodium silicate No. 3 (42 Baume) was added to 1 g of water.
It was diluted to 0 times and 8.4 g of 35% hydrochloric acid was added. As a result, the pH of the sodium silicate solution became 0 or less. This sodium silicate solution was added to 252 g of a 30% calcium chloride aqueous solution with stirring (sodium silicate addition rate = 1%). The pH of the calcium chloride aqueous solution after addition was 0.9. After 3.2 g of calcium hydroxide was added to the calcium chloride aqueous solution to adjust the pH to 7.3, the calcium chloride aqueous solution was heated and concentrated until the boiling point reached 175 ° C., and the concentrated liquid was cooled and solidified to obtain a solid solution. 96 g of calcium chloride was obtained. The corrosion inhibition rate of the obtained solid calcium chloride was determined by the method shown in Example 1. The results are shown in Table 1.

【0022】比較例 市販の3号珪酸ソーダ(42ボーメ)1.0gを252
gの30%塩化カルシウム水溶液に撹拌しながら添加し
た(珪酸ソーダ添加率=1%)。その後、該塩化カルシ
ウム水溶液を沸点が175℃になるまで加熱濃縮し、該
濃縮した液を冷却・固化させて固形の塩化カルシウム9
4gを得た。得られた固形塩化カルシウムについて、腐
食抑制率を実施例1で示した方法で求めた。結果を表1
に示す。
Comparative Example 1.0 g of commercially available No. 3 sodium silicate (42 baume) was added to 252
It was added to 30 g of a 30% calcium chloride aqueous solution with stirring (sodium silicate addition rate = 1%). Then, the calcium chloride aqueous solution is heated and concentrated until the boiling point reaches 175 ° C., and the concentrated liquid is cooled and solidified to obtain solid calcium chloride 9
4 g was obtained. The corrosion inhibition rate of the obtained solid calcium chloride was determined by the method shown in Example 1. The results are shown in Table 1.
Shown in

【0023】[0023]

【表1】 [Table 1]

【0024】[0024]

【発明の効果】本発明の方法により、塩化カルシウム中
に金属等に対する腐食抑制剤を均一に分散させることが
可能となる。
According to the method of the present invention, it becomes possible to uniformly disperse a corrosion inhibitor against metals and the like in calcium chloride.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 沖中 康 山口県宇部市大字沖宇部5253番地 セント ラル硝子株式会社宇部工場内 (72)発明者 鞍馬 英司 山口県宇部市大字沖宇部5253番地 セント ラル硝子株式会社宇部工場内 (72)発明者 広瀬 良成 山口県宇部市大字沖宇部5253番地 セント ラル硝子株式会社宇部工場内 (72)発明者 岡田 宣広 山口県宇部市大字沖宇部5253番地 セント ラル硝子株式会社宇部工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasushi Okinaka 5253 Oki Ube, Ube City, Yamaguchi Prefecture Central Rural Glass Co., Ltd. Ube Factory (72) Inventor Eiji Kurama 5253 Oki Ube, Ube City Yamaguchi Prefecture Central Glass Co., Ltd.Ube Factory (72) Inventor Yoshinari Hirose 5253 Oki Obe, Ube, Yamaguchi Prefecture Central Ube Factory (72) Inventor Nobuhiro Okada 5253 Oki Ube, Yamaguchi Prefecture Central Glass Co., Ltd. Company Ube factory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 塩化カルシウムの水溶液を加熱・濃縮し
て固形の塩化カルシウムとする工程において、非晶質の
珪酸塩を該塩化カルシウム水溶液に均一に分散せしめ
て、その後加熱・濃縮することを特徴とする路面凍結防
止剤の製造方法。
1. A method of heating and concentrating an aqueous solution of calcium chloride into solid calcium chloride by uniformly dispersing an amorphous silicate in the aqueous solution of calcium chloride, and then heating and concentrating. And a method for producing a road surface antifreezing agent.
【請求項2】 非晶質の珪酸塩が珪酸ソーダであること
を特徴とする請求項1記載の路面凍結防止剤の製造方
法。
2. The method for producing a road surface antifreezing agent according to claim 1, wherein the amorphous silicate is sodium silicate.
【請求項3】 珪酸塩の添加量が固形の塩化カルシウム
に対して0.1〜10%の範囲であることを特徴とする
請求項1記載の路面凍結防止剤の製造方法。
3. The method for producing a road surface antifreezing agent according to claim 1, wherein the amount of silicate added is in the range of 0.1 to 10% with respect to solid calcium chloride.
【請求項4】 珪酸塩を塩化カルシウム水溶液に均一に
分散させる方法として、珪酸ソーダを水で2〜50倍に
希釈して撹拌しながら塩化カルシウム水溶液に添加する
ことを特徴とする請求項1記載の路面凍結防止剤の製造
方法。
4. A method for uniformly dispersing a silicate in an aqueous calcium chloride solution, wherein sodium silicate is diluted 2 to 50 times with water and added to the aqueous calcium chloride solution with stirring. Method for producing a road surface antifreezing agent.
【請求項5】 珪酸塩を塩化カルシウム水溶液に均一に
分散させる方法として、珪酸ソーダに酸を添加しpHを
1以下とし、その後塩化カルシウム水溶液に該珪酸ソー
ダを添加して塩化カルシウム水溶液のpHを5以下とし
た後に該水溶液にアルカリを添加してpHを7以上に調
整することを特徴とする請求項1記載の路面凍結防止剤
の製造方法。
5. A method for uniformly dispersing a silicate in a calcium chloride aqueous solution, wherein an acid is added to sodium silicate to adjust the pH to 1 or less, and then the sodium silicate is added to the calcium chloride aqueous solution to adjust the pH of the calcium chloride aqueous solution. The method for producing a road surface antifreezing agent according to claim 1, wherein the pH is adjusted to 7 or more by adding an alkali to the aqueous solution after adjusting the pH to 5 or less.
【請求項6】 珪酸塩を添加する時の塩化カルシウム水
溶液の濃度が10〜72%であることを特徴とする請求
項1記載の路面凍結防止剤の製造方法。
6. The method for producing a road surface antifreezing agent according to claim 1, wherein the concentration of the calcium chloride aqueous solution when the silicate is added is 10 to 72%.
JP4409695A 1995-03-03 1995-03-03 Production of road surface antifreeze Pending JPH08239647A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4409695A JPH08239647A (en) 1995-03-03 1995-03-03 Production of road surface antifreeze

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4409695A JPH08239647A (en) 1995-03-03 1995-03-03 Production of road surface antifreeze

Publications (1)

Publication Number Publication Date
JPH08239647A true JPH08239647A (en) 1996-09-17

Family

ID=12682094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4409695A Pending JPH08239647A (en) 1995-03-03 1995-03-03 Production of road surface antifreeze

Country Status (1)

Country Link
JP (1) JPH08239647A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007113658A2 (en) * 2006-04-05 2007-10-11 La Perla S.R.L. Antifreeze composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007113658A2 (en) * 2006-04-05 2007-10-11 La Perla S.R.L. Antifreeze composition
WO2007113658A3 (en) * 2006-04-05 2007-11-29 Perla S R L Antifreeze composition

Similar Documents

Publication Publication Date Title
US3658710A (en) Method of removing tubercles using organic polymers and silica and/or chromium compounds
US4202796A (en) Anti-corrosion composition
US6846437B2 (en) Ammonium polyphosphate solutions containing multi-functional phosphonate corrosion inhibitors
CA2049723C (en) Liquid anticorrosive and antiscaling deicing composition
JPH07173359A (en) Deicing fluid
JP2000511958A (en) Deicing agent based on acetate and / or formate, and method for melting snow and ice in traffic areas using this agent
CA1122394A (en) Anti-corrosion composition, its method of preparation and its use in the protection of metallic surfaces
US4849171A (en) Corrosion inhibition of sodium and calcium chloride
JPH08239647A (en) Production of road surface antifreeze
JPS6246635B2 (en)
CA2074335A1 (en) Naphthylamine polycarboxylic acids
JPS5937750B2 (en) metal corrosion inhibitor
CN111252912A (en) Multifunctional sustained-release agent for industrial circulating water system and preparation method thereof
JPH10509477A (en) Corrosion inhibiting composition for aqueous system
JP4463391B2 (en) Inorganic chloride snow melting agent
KR100486485B1 (en) Rust retarding compounds and the method of manufacturing thereof
US6319422B1 (en) Environmentally safe snow and ice dissolving liquid
CA1169873A (en) Aluminum-gluconic acid complex corrosion inhibitor
JPS6056080A (en) Anticorrosive for metal preventing formation of scale
JPS5912799A (en) Antiscaling agent
JP2004516387A (en) Corrosion inhibition methods suitable for use in drinking water
JPS5937751B2 (en) Metal corrosion protection method
RU2114215C1 (en) Composition for chemical cleaning of product surfaces from scale and corrosion deposits
US5073339A (en) Method of inhibiting corrosion and scale formation in aqueous systems
CA2341559A1 (en) Antifreezing agent