JPH08239474A - Production of polyphenylene sulfide - Google Patents

Production of polyphenylene sulfide

Info

Publication number
JPH08239474A
JPH08239474A JP7041754A JP4175495A JPH08239474A JP H08239474 A JPH08239474 A JP H08239474A JP 7041754 A JP7041754 A JP 7041754A JP 4175495 A JP4175495 A JP 4175495A JP H08239474 A JPH08239474 A JP H08239474A
Authority
JP
Japan
Prior art keywords
polymer
melt viscosity
pps
sulfide
alkali metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7041754A
Other languages
Japanese (ja)
Inventor
Toheiji Kawabata
十平次 川端
Takahiro Kawabata
隆広 川端
Toshio Inoue
敏夫 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP7041754A priority Critical patent/JPH08239474A/en
Publication of JPH08239474A publication Critical patent/JPH08239474A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)

Abstract

PURPOSE: To produce a polyphenylene sulfide having a melt viscosity markedly increased as compared with that of the starting polyphenylene sulfide and being excellent in viscosity stability also in a molten state. CONSTITUTION: A polyphenylene sulfide terminated with a covalently bonded chlorine, mainly consisting of repeating units represented by the formula:-ϕ- S-(wherein-ϕ-is p-phenylene) and having a melt viscosity of 10P or above at 316 deg.C, is reacted with 0.05-1.0mol, most desirably 0.2-0.5mol, per equivalent of the covalently bonded chlorine atoms contained in the polymer, alkali metal sulfide at desirably 210-270 deg.C in an organic amide solvent to obtain a polymer having a melt viscosity higher as compared with that of the starting polymer.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高分子量でかつ溶融粘
度安定性に優れたポリフェニレンスルフィド(以下、P
PSと略すことがある)の製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention relates to a polyphenylene sulfide (hereinafter referred to as P) having a high molecular weight and excellent melt viscosity stability.
(Sometimes abbreviated as PS).

【0002】PPSは、その優れた耐熱性、耐薬品性等
により電気・電子部品、自動車機器部材等として注目を
浴びている。また、射出成形、押出成形等により各種成
形部品、フィルム、シート、繊維等に成形可能であり、
特に耐熱性、耐薬品性の要求される分野に幅広く用いら
れている。
PPS has been attracting attention as an electric / electronic component, an automobile equipment member and the like due to its excellent heat resistance and chemical resistance. Also, it can be molded into various molded parts, films, sheets, fibers, etc. by injection molding, extrusion molding, etc.
In particular, it is widely used in fields where heat resistance and chemical resistance are required.

【0003】[0003]

【従来の技術】PPSの製造方法としては、N−メチル
ピロリドン等の非プロトン性極性溶媒中でジハロ芳香族
化合物と硫化ナトリウム等のアルカリ金属硫化物とを反
応させる方法が従来、工業的に広く用いられており、例
えば特公昭45−3368号公報に開示されている。し
かし、この方法で製造されたPPSは分子量及び溶融粘
度が低くて、フィルム、シート、繊維等には用いること
ができなかった。そのため、従来、熱架橋処理によって
高分子量化する手法が採用されていたが、この架橋され
たPPSは機械的に脆弱なためフィルム、シート、繊維
等へと加工することが困難であった。
2. Description of the Related Art As a method for producing PPS, a method of reacting a dihaloaromatic compound with an alkali metal sulfide such as sodium sulfide in an aprotic polar solvent such as N-methylpyrrolidone has hitherto been industrially widely used. It is used and is disclosed in, for example, Japanese Patent Publication No. 45-3368. However, the PPS produced by this method has a low molecular weight and melt viscosity and cannot be used for films, sheets, fibers and the like. Therefore, conventionally, a method of increasing the molecular weight by thermal crosslinking treatment has been adopted, but since this crosslinked PPS is mechanically weak, it is difficult to process it into a film, sheet, fiber or the like.

【0004】熱架橋によらない高分子量PPSが近年製
造されるようになり、種々の改善された方法が提案され
ている。例えば、特公昭52−12240号公報記載の
ものでは、反応系に重合助剤としてアルカリ金属カルボ
ン酸塩を用いている。この方法によれば重合助剤の添加
量はアルカリ金属硫化物に対して等モル程度必要とされ
ており、さらにより高重合度のPPSを得るためには重
合助剤の中でも酢酸リチウムや安息香酸ナトリウムを多
量に使用することが必要である。また、この方法では、
重合反応後のPPS回収時に重合助剤を分離、回収する
ために複雑な付帯設備及び多大の費用がかかり、経済的
見地からも著しく不利である。
High molecular weight PPS that does not rely on thermal crosslinking has recently been produced and various improved processes have been proposed. For example, in Japanese Patent Publication No. 52-12240, an alkali metal carboxylate is used as a polymerization aid in the reaction system. According to this method, the addition amount of the polymerization aid is required to be about equimolar to the alkali metal sulfide, and in order to obtain PPS having a higher polymerization degree, lithium acetate and benzoic acid among the polymerization aids are used. It is necessary to use a large amount of sodium. Also, with this method,
Since the polymerization aid is separated and collected at the time of collecting PPS after the polymerization reaction, complicated auxiliary equipment and a large amount of cost are required, which is extremely disadvantageous from an economical point of view.

【0005】特開昭63−39926号公報記載の方法
は、反応を2段階で行い、第2段階で積極的に多量の水
を添加することによって高分子量PPSを得る方法であ
る。この方法では反応途中に水を追加しなければなら
ず、そのために第1段階終了時、一旦温度を下げて常圧
とした後に水を加えるか、高温加圧下にある反応缶に水
を圧入する必要があり、実際には操作が煩雑となり不利
である。また、第2段階で多量の水を存在させることか
ら圧力が約20kg/cm2G以上にもなり、比較的高
価な高耐圧の設備が必要であり好ましくない。
The method described in JP-A-63-39926 is a method in which the reaction is carried out in two stages, and a large amount of water is positively added in the second stage to obtain a high molecular weight PPS. In this method, water must be added during the reaction, so at the end of the first step, the temperature is once lowered to normal pressure and then water is added, or water is injected under pressure into a reaction can. It is necessary, and in fact, the operation is complicated and disadvantageous. Further, since a large amount of water is present in the second stage, the pressure becomes about 20 kg / cm 2 G or more, which is not preferable because relatively expensive high pressure equipment is required.

【0006】従来、重合のみによって高分子量PPSを
得る方法には種々の困難な点があり、より簡便で経済的
に有利な製法は未だ見いだされていないと言える。一
方、PPSの高分子量化を目的とした方法ではないが、
ポリマー末端基の反応性を向上させる手法として、比較
的簡便な方法が提案されている。
Conventionally, there are various difficulties in obtaining a high molecular weight PPS only by polymerization, and it can be said that a simpler and economically advantageous production method has not been found yet. On the other hand, although it is not a method aimed at increasing the molecular weight of PPS,
A relatively simple method has been proposed as a method for improving the reactivity of polymer end groups.

【0007】特開平2−140233号公報は、重合後
期または重合体を単離した後、極性非プロトン性溶媒中
にアルカリ金属硫化物および(または)アルカリ金属水
硫化物を比較的多量添加し、PPSと反応させることに
よってポリマー末端にチオラート基もしくはチオール基
を有する反応性に富んだPPSを得る方法である。この
方法は実施例によると、PPSの溶融粘度は見かけ上約
2倍程度増大しているものの、ポリマー鎖長の増大、即
ち高分子量化は殆ど達成できていないものであった。ま
た、200℃以上では殆ど粘度上昇がなく、さらに22
0℃では逆に著しく粘度及び分子量の低下を引き起こし
ており、溶融粘度向上及び高分子量化の面からは好適な
方法とは言えない。さらにこの方法で得られたポリマー
は溶融時の粘度安定性が悪く、また発生ガスが多いとい
う欠点を有し成形上不利である。
Japanese Unexamined Patent Publication (Kokai) No. 2-140233 discloses that a relatively large amount of an alkali metal sulfide and / or an alkali metal hydrosulfide is added to a polar aprotic solvent after the polymerization or the isolation of the polymer. It is a method of obtaining a highly reactive PPS having a thiolate group or a thiol group at the polymer terminal by reacting with PPS. According to this method, the melt viscosity of PPS was apparently increased by about 2 times, but the increase of the polymer chain length, that is, the increase in the molecular weight was hardly achieved. Further, at 200 ° C or higher, there is almost no increase in viscosity.
On the contrary, at 0 ° C., the viscosity and the molecular weight are remarkably lowered, and it cannot be said to be a suitable method from the viewpoint of improving the melt viscosity and increasing the molecular weight. Further, the polymer obtained by this method is disadvantageous in terms of molding because it has a drawback that the viscosity stability upon melting is poor and that a large amount of gas is generated.

【0008】[0008]

【発明が解決しようとする課題】本発明者らは上記の点
に鑑み、高分子量でかつ溶融粘度安定性に優れたPPS
を比較的簡便な方法で得るべく、PPSのポリマー末端
塩素の量に対し、厳密に限定された量のアルカリ金属硫
化物を添加し重合することによって、容易に高分子量化
が可能であることを見い出し、本発明に到達した。
In view of the above points, the present inventors have found that PPS having a high molecular weight and excellent melt viscosity stability.
In order to obtain the compound by a relatively simple method, it is possible to easily increase the molecular weight by adding a strictly limited amount of an alkali metal sulfide to the amount of the polymer terminal chlorine of PPS and polymerizing. Found and arrived at the present invention.

【0009】[0009]

【課題を解決するための手段】すなわち、本発明は[−
φ−S−](但し、−φ−はp−フェニレン基を示
す。)で示される繰り返し単位を主な構成成分とし、3
16℃での溶融粘度が10ポイズ以上であるポリフェニ
レンスルフィド(a)と、このポリマーに含まれる共有
結合性塩素1当量に対し0.05〜1.0モル、好ましく
は0.1〜0.7モル、さらに好ましくは0.2〜0.5モ
ルのアルカリ金属硫化物(b)を有機アミド系溶媒中で
反応させ、元のポリマーに比べ溶融粘度及び分子量の大
きいポリマーを得ることを特徴とするポリフェニレンス
ルフィドの製造方法であり、以下にその詳細について説
明する。
That is, the present invention provides [-
[phi] -S-] (however,-[phi]-represents a p-phenylene group.) as a main constituent component, 3
Polyphenylene sulfide (a) having a melt viscosity of 10 poise or more at 16 ° C. and 0.05 to 1.0 mol, preferably 0.1 to 0.7 mol, relative to 1 equivalent of covalent chlorine contained in this polymer. It is characterized in that a polymer having a larger melt viscosity and a higher molecular weight than the original polymer is obtained by reacting 1 mol, more preferably 0.2 to 0.5 mol of an alkali metal sulfide (b) in an organic amide solvent. This is a method for producing polyphenylene sulfide, and its details will be described below.

【0010】本発明の重要な要件は、直鎖状にPPSの
重合度を増すためにクロルフェニル基をポリマー末端に
有するPPSを用い、その共有結合性塩素1当量に対し
0.05〜1.0モル、好ましくは0.1〜0.7モル、さ
らに好ましくは0.2〜0.5モルのアルカリ金属硫化物
と反応させることである。この硫化物の量が上記範囲よ
り少なすぎたり、逆に多すぎると、重合度が伸びなかっ
たり、またポリマーの分解が起こり重合度が低下し、本
発明の目的が達成できない。
An important requirement of the present invention is that PPS having a chlorophenyl group at the polymer end is used in order to linearly increase the polymerization degree of PPS, and 0.05 to 1.50 per 1 equivalent of covalent bond chlorine is used. The reaction is carried out with 0 mol, preferably 0.1 to 0.7 mol, more preferably 0.2 to 0.5 mol of an alkali metal sulfide. If the amount of this sulfide is less than the above range, or conversely too much, the degree of polymerization does not extend, or the polymer is decomposed to lower the degree of polymerization, and the object of the present invention cannot be achieved.

【0011】本発明において使用するPPSとしては特
に制限はなく、公知の方法例えば特公昭45−3368
号公報に開示されている方法で製造されたPPSや、特
公昭52−12240号公報に開示されている方法で製
造された高重合度PPS等を挙げることができるが、一
般式[−φ−S−](但し、−φ−は前記に同じ。)を
主な構成単位とし、末端に共有結合性塩素を含み、31
6℃での溶融粘度が10ポイズ以上でなければならな
い。ここで主な構成単位とは、少なくとも70モル%以
上、好ましくは90モル%以上が前記一般式[−φ−S
−]であることを示すものであり、残りの構成単位とし
ては[−φ−S−]と共重合可能な単位、例えば、
The PPS used in the present invention is not particularly limited, and known methods such as JP-B-45-3368 can be used.
Examples thereof include PPS produced by the method disclosed in Japanese Patent Publication No. 52-12240 and high polymerization degree PPS produced by the method disclosed in Japanese Patent Publication No. 52-12240. S-] (provided that -φ- is the same as above) as a main constituent unit, and contains covalent chlorine at the terminal, 31
The melt viscosity at 6 ° C should be 10 poise or higher. Here, the main constituent unit is at least 70 mol% or more, preferably 90 mol% or more, in the general formula [-φ-S
-], And the remaining constitutional unit is a unit copolymerizable with [-φ-S-], for example,

【0012】[0012]

【化1】 Embedded image

【0013】[0013]

【化2】 Embedded image

【0014】[0014]

【化3】 Embedded image

【0015】[0015]

【化4】 [Chemical 4]

【0016】[0016]

【化5】 Embedded image

【0017】[0017]

【化6】 [Chemical 6]

【0018】[0018]

【化7】 [Chemical 7]

【0019】などが挙げられる。また他の共重合可能な
単位としては、芳香核にアミノ基、チオ−ル基、ヒドロ
キシル基、カルボキシル基などの活性水素を持つ官能基
を有するものが挙げられる。
And the like. Other copolymerizable units include those having a functional group having active hydrogen such as an amino group, a thiol group, a hydroxyl group and a carboxyl group in the aromatic nucleus.

【0020】本発明において用いられるアルカリ金属硫
化物としては、硫化リチウム、硫化ナトリウム、硫化カ
リウム、硫化ルビジウム等及びそれらの混合物が挙げら
れる。これらは水和物、無水物、あるいは水溶液の形で
使用されてもさしつかえない。これらアルカリ金属硫化
物は、アルカリ金属水硫化物とアルカリ金属塩基、また
は硫化水素とアルカリ金属塩基とを反応させることによ
って得られるが、反応系内で調製されても、また予め調
製されたものを用いてもさしつかえない。上記アルカリ
金属硫化物の中でも硫化ナトリウムが特に好ましい。
Examples of the alkali metal sulfide used in the present invention include lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide and the like, and mixtures thereof. They may be used in the form of hydrates, anhydrides or aqueous solutions. These alkali metal sulfides can be obtained by reacting an alkali metal hydrosulfide with an alkali metal base, or hydrogen sulfide with an alkali metal base. Even if they are prepared in the reaction system, or those prepared in advance are used. You can use it. Among the above alkali metal sulfides, sodium sulfide is particularly preferable.

【0021】このアルカリ金属硫化物の添加量は、使用
するPPSに含まれる共有結合性塩素1当量に対して
0.05〜1.0モルが適当であり、好ましくは0.1〜
0.7モル、さらに好ましくは0.2〜0.5モルであ
る。0.05モル未満ではポリマー末端のクロルフェニ
ル基とアルカリ金属硫化物との反応が十分に進まず、溶
融粘度の上昇は殆ど起こらない。一方、1.0モルを越
えると反応開始後ポリマー末端のクロルフェニル基とア
ルカリ金属硫化物との反応が進み、一旦粘度上昇が見ら
れるが、過剰のアルカリ金属硫化物によって重合後期に
ポリマーの切断が起こるためか、粘度の低いポリマーし
か得られず溶融粘度の上昇が達成できない。
The amount of the alkali metal sulfide added is appropriately 0.05 to 1.0 mol, preferably 0.1 to 1.0 mol, relative to 1 equivalent of covalent chlorine contained in the PPS used.
The amount is 0.7 mol, more preferably 0.2 to 0.5 mol. If the amount is less than 0.05 mol, the reaction between the chlorophenyl group at the polymer terminal and the alkali metal sulfide does not proceed sufficiently, and the melt viscosity hardly increases. On the other hand, if the amount exceeds 1.0 mol, the reaction between the chlorophenyl group at the end of the polymer and the alkali metal sulfide will proceed after the start of the reaction, and a viscosity increase will be seen once. Perhaps because of this, only a polymer having a low viscosity can be obtained and the increase in melt viscosity cannot be achieved.

【0022】本発明で使用する有機アミド系溶媒として
は、N−メチルピロリドン、N−エチルピロリドン、
N,N−ジメチルホルムアミド、N,N−ジメチルアセト
アミド、N−メチルカプロラクタム、N,N’−ジメチ
ルプロピレン尿素、テトラメチル尿素、1,3−ジメチ
ルイミダゾリジノン、ヘキサメチル燐酸トリアミド等及
びこれらの混合物が挙げられる。これらのうちではN−
メチルピロリドン及びN−メチルカプロラクタムが化学
的に安定で、高分子量のポリマーが得やすいという観点
から特に好ましい。
Examples of the organic amide solvent used in the present invention include N-methylpyrrolidone, N-ethylpyrrolidone,
N, N-dimethylformamide, N, N-dimethylacetamide, N-methylcaprolactam, N, N′-dimethylpropyleneurea, tetramethylurea, 1,3-dimethylimidazolidinone, hexamethylphosphoric triamide, etc. and mixtures thereof Can be mentioned. Of these, N-
Methylpyrrolidone and N-methylcaprolactam are particularly preferable from the viewpoint of being chemically stable and easily obtaining a high molecular weight polymer.

【0023】有機アミド系溶媒の使用量は、PPSに対
し1.0〜8.0重量比、好ましくは2.0〜6.0重量比
の範囲が適当である。本発明の方法における好適な操作
を例示すると、不活性ガス雰囲気にしたオートクレーブ
の中に有機アミド系溶媒とPPS及び適当量のアルカリ
金属硫化物を仕込み、系を密閉した後、攪拌しながら昇
温し210〜270℃、好ましくは220〜250℃で
0.5〜10時間反応させる。反応温度が210℃より
低いと重合速度が著しく遅くなり、一方、270℃を越
えるとポリマーの分解が急速に進み、重合度の低下を招
きやすい。
The amount of the organic amide solvent used is appropriately in the range of 1.0 to 8.0 weight ratio, preferably 2.0 to 6.0 weight ratio with respect to PPS. Illustrating a suitable operation in the method of the present invention, an organic amide solvent, PPS and an appropriate amount of an alkali metal sulfide are charged into an autoclave in an inert gas atmosphere, the system is closed, and then the temperature is raised with stirring. Then, the reaction is carried out at 210 to 270 ° C, preferably 220 to 250 ° C for 0.5 to 10 hours. If the reaction temperature is lower than 210 ° C, the polymerization rate will be remarkably slowed. On the other hand, if the reaction temperature is higher than 270 ° C, the decomposition of the polymer will proceed rapidly and the degree of polymerization tends to be lowered.

【0024】このようにして得られた反応混合物からの
PPSの回収は、常圧下または減圧下で加熱して溶媒だ
けを留去し、ついで残固形物を水、アセトン、メチルエ
チルケトンあるいはアルコール類などの溶媒で1回また
は2回以上洗浄し、中和、水洗、濾別および乾燥する方
法や、反応終了後の反応混合物に水、アセトン、メチル
エチルケトン、アルコール類、エーテル類を加え、ポリ
マー及び無機塩などの固体状生成物を沈降させ、それを
濾別、洗浄および乾燥する方法等が挙げられる。
The recovery of PPS from the reaction mixture thus obtained is carried out by heating under normal pressure or reduced pressure to distill off only the solvent, and then the residual solid matter is separated into water, acetone, methyl ethyl ketone or alcohols. A method of washing once or twice or more with a solvent, neutralization, washing with water, filtering and drying, or adding water, acetone, methyl ethyl ketone, alcohols and ethers to the reaction mixture after the reaction, polymer and inorganic salt, etc. The method of precipitating the solid product of, and filtering it, washing and drying it.

【0025】以上のようにして得られたPPSは反応前
に比べて溶融粘度及び分子量が著しく増大したPPSで
あり、溶融時においても粘度安定性に優れたポリマーで
ある。
The PPS obtained as described above is a PPS having a significantly increased melt viscosity and molecular weight as compared with that before the reaction, and is a polymer having excellent viscosity stability even when melted.

【0026】本発明の方法によって得られるPPSは、
必要に応じて、空気中または若干の酸化性雰囲気下で1
50℃以上の熱処理を施すことによってさらに溶融粘度
を高くすることもできる。射出成形、押出成形および回
転成形などによって種々の成形物に加工することができ
る。
The PPS obtained by the method of the present invention is
1 in air or in a slightly oxidizing atmosphere, if necessary
The melt viscosity can be further increased by performing heat treatment at 50 ° C. or higher. Various moldings can be processed by injection molding, extrusion molding, rotational molding, and the like.

【0027】本発明によるポリマーは、熱可塑性ポリマ
ーの範疇に入るものであるから熱可塑性樹脂の適用可能
な各種の改質が可能である。例えば、カーボン黒、炭酸
カルシウム粉末、シリカ粉末、酸化チタン粉末などの粉
末状充填剤、または炭素繊維、ガラス繊維、アスベス
ト、ポリアラミド繊維などの繊維状充填剤を充填して使
用することができる。また、ポリマーアロイとしてポリ
カーボネート、ポリフェニレンオキシド、ポリアミド、
ポリアセタール、ポリスルフォン、ポリエ−テルスルフ
ォン、ポリブチレンテレフタレ−ト、ポリエチレンテレ
フタレ−ト、液晶ポリエステル、ポリイミド、ポリスチ
レン、ABS、各種エラストマ−などの合成樹脂の一種
以上を混合して使用することもできる。
Since the polymer according to the present invention falls within the category of thermoplastic polymers, various applicable modifications of thermoplastic resins are possible. For example, a powdery filler such as carbon black, calcium carbonate powder, silica powder or titanium oxide powder, or a fibrous filler such as carbon fiber, glass fiber, asbestos or polyaramid fiber can be filled and used. Further, as a polymer alloy, polycarbonate, polyphenylene oxide, polyamide,
It is also possible to use a mixture of one or more synthetic resins such as polyacetal, polysulfone, polyethersulfone, polybutylene terephthalate, polyethylene terephthalate, liquid crystal polyester, polyimide, polystyrene, ABS and various elastomers. it can.

【0028】また、芳香族ヒドロキシ誘導体等の可塑剤
や離型剤、シラン系 チタネート系のカップリング剤、
滑剤、結晶核剤、防錆剤、難燃剤等を必要に応じて添加
してもよい。
Further, a plasticizer such as an aromatic hydroxy derivative or a releasing agent, a silane-based titanate-based coupling agent,
Lubricants, crystal nucleating agents, rust preventives, flame retardants and the like may be added as necessary.

【0029】本発明の方法で得られたPPSは、単独ま
たは前述の充填剤や添加剤と配合されて射出成形や押出
成形により、各種成形品、フィルム、シート、パイプ、
繊維等に加工できる。
The PPS obtained by the method of the present invention may be used alone or in combination with the above-mentioned fillers and additives by injection molding or extrusion molding to obtain various molded products, films, sheets, pipes,
Can be processed into fibers, etc.

【0030】[0030]

【実施例】以下に本発明を実施例により具体的に説明す
るが、本発明はこれら実施例にのみ限定されるものでは
ない。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

【0031】〈物性評価〉 (1)PPSの共有結合性塩素の含量 全塩素含量からイオン性塩素含量を差し引いた値で算出
した。全塩素含量は、約20mgの試料を酸素フラスコ
燃焼法により灰化した後、炭酸ナトリウム吸収液に吸収
させ、この液に含まれる塩素イオンをイオンクロマト分
析によって測定した。また、イオン性塩素含量は、約2
gの試料をビフェニル30mlに加熱溶解させた後冷却
し、これに希硫酸を加えた溶液を硝酸銀溶液で電位差滴
定し、イオン性塩素のみを定量した。
<Evaluation of Physical Properties> (1) Content of Covalent Chlorine of PPS It was calculated by subtracting ionic chlorine content from total chlorine content. The total chlorine content was determined by ashing a sample of about 20 mg by an oxygen flask combustion method, absorbing it in a sodium carbonate absorption liquid, and measuring the chlorine ions contained in this liquid by ion chromatography analysis. The ionic chlorine content is about 2
The sample of g was dissolved in 30 ml of biphenyl by heating and then cooled, and a solution of diluted sulfuric acid added thereto was subjected to potentiometric titration with a silver nitrate solution to quantify only ionic chlorine.

【0032】(2)PPSの溶融粘度 島津製高化式フローテスターを用いて316℃、5分予
備加熱、10kg荷重、ノズル孔径0.5mm、長さ1.
0mmの条件で測定した。
(2) Melt viscosity of PPS Using a Shimadzu high-performance flow tester, preheating at 316 ° C. for 5 minutes, 10 kg load, nozzle hole diameter 0.5 mm, length 1.
It was measured under the condition of 0 mm.

【0033】(3)溶融粘度安定性 316℃で20分予備加熱すること以外は上記の溶融粘
度と同様にして測定し、予備加熱5分に対する20分で
の溶融粘度の比で表した。
(3) Melt Viscosity Stability It was measured in the same manner as the above melt viscosity except that it was preheated at 316 ° C. for 20 minutes, and expressed as the ratio of the melt viscosity at 20 minutes to 5 minutes of preheating.

【0034】(4)PPSの発生ガス量 乾燥試料0.1gをバイアル瓶に入れ密閉した状態で3
30℃で10分加熱した後、密閉状態で冷却し、これに
アセトン1mlを加えた液の上澄み液5μlをキャピラ
リカラム型ガスクロマト分析計に注入し、発生ガス成分
の全てのピークの面積値の和をガス発生量として表し
た。
(4) Amount of evolved gas of PPS 0.1 g of dried sample was placed in a vial and sealed in a sealed state.
After heating at 30 ° C. for 10 minutes, the mixture was cooled in a sealed state, and 5 μl of the supernatant obtained by adding 1 ml of acetone to this was injected into a capillary column type gas chromatographic analyzer to measure the area values of all peaks of the generated gas components. The sum was expressed as the amount of gas generated.

【0035】(5)分子量 1−クロロナフタレンを移動層としたゲルパーミュエー
ションクロマトグラフィー(センシュー科学製SSC−
7000)を用い、210℃で測定した保持時間を標準
ポリスチレンを用い分子量換算し、さらにユニバーサル
キャリブレーション法で補正したピークトップ分子量で
ある。
(5) Molecular weight Gel permeation chromatography using 1-chloronaphthalene as a moving layer (SSC-produced by Senshu Kagaku Co., Ltd.)
7,000), the retention time measured at 210 ° C. was converted to a molecular weight using standard polystyrene, and the peak top molecular weight was corrected by the universal calibration method.

【0036】[参考例1]本発明の実施例及び比較例で
使用したPPSの製造方法を示す。20リットル容量の
チタン製オートクレーブに、硫化ナトリウム2.7水塩
(Na2S60.8重量%)2568g(20.0モル)
と、N−メチルピロリドン(NMP)5832gを仕込
み、窒素気流下攪拌しながら202℃まで昇温して水5
18gを含む留出液を留去した。反応系を180℃まで
冷却し、p−ジクロロベンゼン2940g(20.0モ
ル)とNMP2808gを仕込み、系を密閉した。これ
を30分かけて220℃まで昇温し、220℃で3時間
重合し、さらに250℃で2時間重合した。重合後、系
を室温まで冷却し取り出したスラリーに水10.8リッ
トルを加え、常法によりろ過、固液分離し、さらにこの
ケーキを10.8リットルの水で2回、次いで4リット
ルのアセトンで洗浄、ろ過した後90℃で5時間真空乾
燥した。
[Reference Example 1] A method for producing the PPS used in Examples and Comparative Examples of the present invention will be described. In a titanium autoclave with a capacity of 20 liters, 2,568 g (20.0 mol) of 2.7 hydrate of sodium sulfide (60.8 wt% of Na 2 S) was added.
And N-methylpyrrolidone (NMP) 5832 g were charged, and the temperature was raised to 202 ° C. with stirring under a nitrogen stream and water 5
The distillate containing 18 g was distilled off. The reaction system was cooled to 180 ° C., 2940 g (20.0 mol) of p-dichlorobenzene and 2808 g of NMP were charged, and the system was sealed. This was heated to 220 ° C over 30 minutes, polymerized at 220 ° C for 3 hours, and further polymerized at 250 ° C for 2 hours. After the polymerization, the system was cooled to room temperature, and 10.8 liter of water was added to the taken out slurry, followed by filtration and solid-liquid separation by a conventional method, and this cake was washed twice with 10.8 liter of water and then with 4 liter of acetone. After washing with water, filtration, and vacuum drying at 90 ° C. for 5 hours.

【0037】得られたPPSの溶融粘度は210ポイズ
で、分子量は17800であった。また溶融粘度安定性
は1.00で溶融時の粘度変化は見られなかった。この
ポリマーの共有結合性塩素含量は0.09ミリ当量/g
で、発生ガス量は4.8×10 6ピーク面積であった。
The melt viscosity of the obtained PPS is 210 poise.
And the molecular weight was 17,800. Also melt viscosity stability
Was 1.00, and no change in viscosity was observed during melting. this
Covalent chlorine content of polymer is 0.09 meq / g
And the amount of generated gas is 4.8 x 10 6It was the peak area.

【0038】[実施例1]1リットル容量のチタン製オ
ートクレーブに、参考例1で製造した溶融粘度210ポ
イズ、共有結合性塩素0.09ミリ当量/gのPPS1
29.6g(1.2ユニットモル)とN−メチルピロリド
ン(NMP)389g、及び硫化ナトリウム(Na2
2.7H2O)0.52g(4.1ミリモル)を仕込み、系
内を窒素雰囲気下にした後密閉し、攪拌しながら30分
かけて230℃まで昇温し、この温度で3時間反応を行
った。反応終了後、オートクレーブを室温まで冷却し、
内容物を3リットルの水に投入し、そのスラリーを濾別
した。さらにこのケーキを3リットルの水で2回、2リ
ットルのアセトンで1回洗浄した後、真空乾燥機で90
℃で5時間減圧乾燥した。
[Example 1] PPS1 having a melt viscosity of 210 poise and a covalent chlorine of 0.09 meq / g prepared in Reference Example 1 was placed in a titanium autoclave having a volume of 1 liter.
29.6 g (1.2 unit mol) and N-methylpyrrolidone (NMP) 389 g, and sodium sulfide (Na 2 S)
2.7H 2 O) (0.52 g, 4.1 mmol) was charged, the system was placed in a nitrogen atmosphere and then sealed, the temperature was raised to 230 ° C. over 30 minutes while stirring, and the reaction was carried out at this temperature for 3 hours. I went. After completion of the reaction, cool the autoclave to room temperature,
The contents were poured into 3 liters of water and the slurry was filtered off. Further, this cake was washed twice with 3 liters of water and once with 2 liters of acetone, and then washed with a vacuum drier 90%.
It was dried under reduced pressure at 5 ° C for 5 hours.

【0039】生成ポリマーの収量は128.3g(回収
収率99.0%)で、その溶融粘度は750ポイズで、
元のPPSに比べ3.5倍に増粘した。分子量は264
00であり、元のPPSに比べ著しく高分子量化したも
のであった。また、このポリマーは溶融粘度安定性が
0.99で、溶融時の粘度変化が殆ど見られず粘度安定
性に優れており、さらに発生ガス量が3.5×106ピー
ク面積で、溶融時の発生ガスが極めて少ない高純度のポ
リマーであった。
The yield of the produced polymer was 128.3 g (recovery yield 99.0%), and the melt viscosity was 750 poise.
Thickened 3.5 times compared to the original PPS. The molecular weight is 264
The value was 00, which was significantly higher in molecular weight than the original PPS. Further, this polymer has a melt viscosity stability of 0.99, shows almost no change in viscosity during melting, and has excellent viscosity stability. Furthermore, the generated gas amount is 3.5 × 10 6 peak area, It was a high-purity polymer that generated very little gas.

【0040】[実施例2]反応温度220℃で3時間保
持した以外は、実施例1と同様にして反応及び処理を行
った結果、得られたPPSの溶融粘度は530ポイズ
で、分子量は24000であり、元のPPSに比べ高分
子量化したものであった。また、溶融粘度安定性が1.
00、発生ガス量が2.5×106ピーク面積で粘度安定
性が良好で、かつ発生ガスの少ないポリマーであった。
Example 2 As a result of carrying out the reaction and treatment in the same manner as in Example 1 except that the reaction temperature was maintained at 220 ° C. for 3 hours, the resulting PPS had a melt viscosity of 530 poise and a molecular weight of 24,000. Which was higher in molecular weight than the original PPS. Also, melt viscosity stability is 1.
00, the amount of generated gas was 2.5 × 10 6 peak area, the viscosity stability was good, and the generated gas was small.

【0041】[比較例1]1リットル容量のチタン製オ
ートクレーブに、参考例1で製造した溶融粘度210ポ
イズ、共有結合性塩素0.09ミリ当量/gのPPS1
29.6g(1.2ユニットモル)とN−メチルピロリド
ン(NMP)389g、及び硫化ナトリウム(Na2
2.7H2O)3.04g(24.0ミリモル)を仕込み、
系内を窒素雰囲気下にした後密閉し、攪拌しながら30
分かけて180℃まで昇温し、この温度で3時間反応を
行った。反応終了後、オートクレーブを室温まで冷却
し、内容物を2リットルの水に投入しそのスラリーを濾
別した。さらにこのケーキを0.1N希塩酸1リット
ル、次いで2リットルの純水で2回、2リットルのアセ
トンで1回洗浄した後、真空乾燥機で30℃で8時間減
圧乾燥した。
Comparative Example 1 PPS1 having a melt viscosity of 210 poise and covalent chlorine of 0.09 meq / g prepared in Reference Example 1 was placed in a titanium autoclave having a capacity of 1 liter.
29.6 g (1.2 unit mol) and N-methylpyrrolidone (NMP) 389 g, and sodium sulfide (Na 2 S)
2.7H 2 O) (3.04 g, 24.0 mmol) was added,
The system is placed under a nitrogen atmosphere, then sealed, and stirred for 30
The temperature was raised to 180 ° C over a period of time, and the reaction was carried out at this temperature for 3 hours. After completion of the reaction, the autoclave was cooled to room temperature, the contents were put into 2 liters of water, and the slurry was filtered. Further, the cake was washed twice with 1 liter of 0.1N dilute hydrochloric acid and then with 2 liters of pure water once with 2 liters of acetone, and then dried under reduced pressure at 30 ° C. for 8 hours in a vacuum dryer.

【0042】生成ポリマーの収量は127.1g(回収
収率98.1%)で、その溶融粘度は480ポイズであ
った。このポリマーは元のPPSに比べ見かけ上約2.
3倍増粘していたが、分子量は16800であり、元の
PPSに比べ逆に若干低下したものであった。即ち、本
比較例の方法によって分子量的に増大したPPSを得る
ことはできなかった。また、溶融粘度安定性が0.70
で極めて悪く、さらに発生ガス量が14.0×106ピー
ク面積で極めて多いものであった。
The yield of the produced polymer was 127.1 g (collection yield 98.1%), and the melt viscosity was 480 poise. This polymer is about 2. apparently compared to the original PPS.
Although the viscosity was tripled, the molecular weight was 16,800, which was a little lower than the original PPS. That is, it was not possible to obtain PPS having an increased molecular weight by the method of this comparative example. The melt viscosity stability is 0.70.
Was extremely bad, and the generated gas amount was extremely large at 14.0 × 10 6 peak area.

【0043】[比較例2]アルカリ金属硫化物としてN
2S 2.7H2Oを36.0ミリモル仕込み、反応温度
220℃で3時間保持した以外は、実施例1と同様にし
て反応及び処理を行った結果、得られたPPSの溶融粘
度は26ポイズで、分子量は10600であり、明らか
に分子量の低下が起こっていた。また、溶融粘度安定性
が0.55、発生ガス量が18.5×106ピーク面積で
粘度安定性が悪く、かつ発生ガスが極めて多いものであ
った。
[Comparative Example 2] N as an alkali metal sulfide
As a result of carrying out the reaction and treatment in the same manner as in Example 1 except that 36.0 mmol of a 2 S 2.7H 2 O was charged and the reaction temperature was maintained at 220 ° C. for 3 hours, the melt viscosity of the obtained PPS was At 26 poises, the molecular weight was 10600, clearly indicating a decrease in molecular weight. Further, the melt viscosity stability was 0.55, the generated gas amount was 18.5 × 10 6 peak area, the viscosity stability was poor, and the generated gas was extremely large.

【0044】[比較例3]アルカリ金属硫化物としてN
2S 2.7H2Oを0.2ミリモル仕込むこと以外は、
実施例1と同様にして反応及び処理を行った。結果を第
1表に示す。硫化ナトリウムの添加量が少なすぎ、殆ど
溶融粘度上昇が見られなかった。
[Comparative Example 3] N as an alkali metal sulfide
a 2 S 2.7H 2 O was added in an amount of 0.2 mmol except that
Reaction and treatment were carried out in the same manner as in Example 1. The results are shown in Table 1. The amount of sodium sulfide added was too small, and almost no increase in melt viscosity was observed.

【0045】[比較例4]アルカリ金属硫化物としてN
2S 2.7H2Oを15.0ミリモル仕込むこと以外
は、実施例1と同様にして反応及び処理を行った。結果
を第1表に示す。硫化ナトリウムの添加量が塩素含量に
対して多すぎると、溶融粘度の著しい低下が見られた。
また溶融粘度安定性が極めて悪く、かつ発生ガス量が著
しく多く、成形上好ましくないポリマーであった。
[Comparative Example 4] N as an alkali metal sulfide
The reaction and treatment were carried out in the same manner as in Example 1 except that 15.0 mmol of a 2 S 2.7H 2 O was charged. The results are shown in Table 1. When the amount of sodium sulfide added was too large with respect to the chlorine content, the melt viscosity was significantly reduced.
Further, the melt viscosity stability was extremely poor, and the amount of generated gas was remarkably large.

【0046】[実施例3〜7]実施例1と同様の方法
で、第2表に示されるPPS、アルカリ金属硫化物及び
N−メチルピロリドンを所定量仕込み、所定温度・時間
にて反応及び処理を行った。その結果を第2表に示す。
[Examples 3 to 7] In the same manner as in Example 1, a predetermined amount of PPS, alkali metal sulfide and N-methylpyrrolidone shown in Table 2 were charged, and reaction and treatment were performed at a predetermined temperature and time. I went. Table 2 shows the results.

【0047】[実施例8〜10]実施例1と同様の方法
で、第3表に示されるPPS、アルカリ金属硫化物及び
N−メチルピロリドンを所定量仕込み、所定温度・時間
にて反応及び処理を行った。その結果を第3表に示す。
[Examples 8 to 10] In the same manner as in Example 1, PPS, alkali metal sulfide and N-methylpyrrolidone shown in Table 3 were charged in predetermined amounts, and reacted and treated at predetermined temperature / time. I went. The results are shown in Table 3.

【0048】[実施例11]p−ジクロロベンゼンを3
410g(23.2モル)仕込むこと以外は、参考例1
と同様にして重合及び後処理を行った。得られたPPS
を用い、実施例1と同様の方法で、第3表に示されるP
PS、アルカリ金属硫化物及びN−メチルピロリドンを
所定量仕込み、所定温度・時間にて反応及び処理を行っ
た。その結果を第3表に示す。
[Example 11] p-dichlorobenzene was added to 3
Reference Example 1 except that 410 g (23.2 mol) was charged.
Polymerization and post-treatment were carried out in the same manner as in. The obtained PPS
In the same manner as in Example 1, using P shown in Table 3
A predetermined amount of PS, an alkali metal sulfide and N-methylpyrrolidone were charged, and the reaction and treatment were performed at a predetermined temperature and time. The results are shown in Table 3.

【0049】[実施例12]酢酸リチウム1320gを
硫化ナトリウムと同時に仕込み、220℃で6時間重合
させること以外は、参考例1と同様にして重合を行っ
た。重合後、冷却して取り出したスラリーを濾過し、さ
らに固形分をNMP4リットル及びイソプロピルアルコ
ール4リットルで洗浄したこと以外は、参考例1と同様
の後処理を行った。得られたPPSを用い、実施例1と
同様の方法で、第3表に示されるPPS、アルカリ金属
硫化物及びN−メチルピロリドンを所定量仕込み、所定
温度・時間にて反応及び処理を行った。その結果を第3
表に示す。
Example 12 Polymerization was carried out in the same manner as in Reference Example 1 except that 1320 g of lithium acetate was charged at the same time as sodium sulfide and the polymerization was carried out at 220 ° C. for 6 hours. After the polymerization, the slurry taken out after cooling was filtered, and the same post-treatment as in Reference Example 1 was performed except that the solid content was washed with 4 liters of NMP and 4 liters of isopropyl alcohol. Using the obtained PPS, in the same manner as in Example 1, PPS, an alkali metal sulfide and N-methylpyrrolidone shown in Table 3 were charged in predetermined amounts, and reacted and treated at a predetermined temperature / time. . The result is the third
Shown in the table.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【表2】 [Table 2]

【0052】[0052]

【表3】 [Table 3]

【0053】[0053]

【発明の効果】本発明の方法により、反応前に比べて溶
融粘度が著しく増大し、かつ溶融時においても粘度安定
性に優れたPPSが簡便な手法で得ることができる。こ
の方法によって得られる高分子量のPPSは、単独また
は各種充填剤等と配合されて射出成形や押出成形によ
り、各種成形品、フィルム、シート、パイプ、繊維等に
加工することが可能である。
According to the method of the present invention, PPS having a significantly increased melt viscosity as compared with that before reaction and having excellent viscosity stability even during melting can be obtained by a simple method. The high molecular weight PPS obtained by this method can be processed into various molded products, films, sheets, pipes, fibers and the like by injection molding or extrusion molding alone or in combination with various fillers.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一般式[−φ−S−](但し、−φ−は
p−フェニレン基を示す。)で示される繰り返し単位を
主な構成成分とし、316℃での溶融粘度が10ポイズ
以上である末端に共有結合性塩素を含むポリフェニレン
スルフィド(a)と、このポリマーに含まれる共有結合
性塩素1当量に対し0.05〜1.0モルのアルカリ金属
硫化物(b)を有機アミド系溶媒中で反応させ、元のポ
リマーに比べ溶融粘度の大きいポリマーを得ることを特
徴とするポリフェニレンスルフィドの製造方法。
1. A melt viscosity at 316 ° C. is 10 poises, containing a repeating unit represented by the general formula [-φ-S-] (where -φ- represents a p-phenylene group) as a main constituent. The polyphenylene sulfide (a) containing covalent chlorine at the terminal and the alkali sulfide (b) in an amount of 0.05 to 1.0 mol per 1 equivalent of covalent chlorine contained in the polymer are added to the organic amide. A method for producing polyphenylene sulfide, which comprises reacting in a system solvent to obtain a polymer having a higher melt viscosity than the original polymer.
【請求項2】 ポリフェニレンスルフィドに含まれる共
有結合性塩素1当量に対し0.1〜0.7モルのアルカリ
金属硫化物を有機アミド溶媒中で反応させる請求項1記
載の方法。
2. The method according to claim 1, wherein 0.1 to 0.7 mol of an alkali metal sulfide is reacted in an organic amide solvent with respect to 1 equivalent of covalent chlorine contained in polyphenylene sulfide.
【請求項3】 ポリフェニレンスルフィドに含まれる共
有結合性塩素1当量に対し0.2〜0.5モルのアルカリ
金属硫化物を有機アミド溶媒中で反応させる請求項1記
載の方法。
3. The method according to claim 1, wherein 0.2 to 0.5 mol of an alkali metal sulfide is reacted in an organic amide solvent with respect to 1 equivalent of covalent chlorine contained in polyphenylene sulfide.
【請求項4】 有機アミド系溶媒中、210〜270℃
の範囲で反応させる請求項1記載の方法。
4. In an organic amide solvent, 210 to 270 ° C.
The method according to claim 1, wherein the reaction is carried out within the range.
JP7041754A 1995-03-01 1995-03-01 Production of polyphenylene sulfide Pending JPH08239474A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7041754A JPH08239474A (en) 1995-03-01 1995-03-01 Production of polyphenylene sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7041754A JPH08239474A (en) 1995-03-01 1995-03-01 Production of polyphenylene sulfide

Publications (1)

Publication Number Publication Date
JPH08239474A true JPH08239474A (en) 1996-09-17

Family

ID=12617217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7041754A Pending JPH08239474A (en) 1995-03-01 1995-03-01 Production of polyphenylene sulfide

Country Status (1)

Country Link
JP (1) JPH08239474A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501661A (en) * 2006-08-24 2010-01-21 エスケー ケミカルズ カンパニー リミテッド Process for producing poly (arylene sulfide)
US9388283B2 (en) 2013-09-25 2016-07-12 Ticona Llc Method of polyarylene sulfide crystallization
US9403948B2 (en) 2013-09-25 2016-08-02 Ticona Llc Salt byproduct separation during formation of polyarylene sulfide
US9562139B2 (en) 2013-09-25 2017-02-07 Ticona Llc Process for forming low halogen content polyarylene sulfides
US9587074B2 (en) 2013-09-25 2017-03-07 Ticona Llc Multi-stage process for forming polyarylene sulfides
US9604156B2 (en) 2013-09-25 2017-03-28 Ticona Llc Method and system for separation of a polymer from multiple compounds
US9617387B2 (en) 2013-09-25 2017-04-11 Ticona Llc Scrubbing process for polyarylene sulfide formation
US9809681B2 (en) 2015-02-19 2017-11-07 Ticona Llc Method for forming a low viscosity polyarylene sulfide
US9815942B2 (en) 2015-03-25 2017-11-14 Ticona Llc Technique for forming a high melt viscosity polyarylene sulfide
US9988494B2 (en) 2015-02-19 2018-06-05 Ticona Llc Method for forming a high molecular weight polyarylene sulfide
US10106654B2 (en) 2015-02-19 2018-10-23 Ticona Llc Method of polyarylene sulfide precipitation
US11319441B2 (en) 2019-12-20 2022-05-03 Ticona Llc Method for forming a polyarylene sulfide
US11407861B2 (en) 2019-06-28 2022-08-09 Ticona Llc Method for forming a polyarylene sulfide
US12018129B2 (en) 2021-09-08 2024-06-25 Ticona Llc Extraction technique for recovering an organic solvent from a polyarylene sulfide waste sludge
US12024596B2 (en) 2021-09-08 2024-07-02 Ticona Llc Anti-solvent technique for recovering an organic solvent from a polyarylene sulfide waste sludge

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010501661A (en) * 2006-08-24 2010-01-21 エスケー ケミカルズ カンパニー リミテッド Process for producing poly (arylene sulfide)
US9868824B2 (en) 2013-09-25 2018-01-16 Ticona Llc Method of polyarylene sulfide crystallization
US9388283B2 (en) 2013-09-25 2016-07-12 Ticona Llc Method of polyarylene sulfide crystallization
US9403948B2 (en) 2013-09-25 2016-08-02 Ticona Llc Salt byproduct separation during formation of polyarylene sulfide
US9562139B2 (en) 2013-09-25 2017-02-07 Ticona Llc Process for forming low halogen content polyarylene sulfides
US9587074B2 (en) 2013-09-25 2017-03-07 Ticona Llc Multi-stage process for forming polyarylene sulfides
US9604156B2 (en) 2013-09-25 2017-03-28 Ticona Llc Method and system for separation of a polymer from multiple compounds
US9617387B2 (en) 2013-09-25 2017-04-11 Ticona Llc Scrubbing process for polyarylene sulfide formation
US9938379B2 (en) 2013-09-25 2018-04-10 Ticona Llc Salt byproduct separation during formation of polyarylene sulfide
US10106654B2 (en) 2015-02-19 2018-10-23 Ticona Llc Method of polyarylene sulfide precipitation
US9988494B2 (en) 2015-02-19 2018-06-05 Ticona Llc Method for forming a high molecular weight polyarylene sulfide
US9809681B2 (en) 2015-02-19 2017-11-07 Ticona Llc Method for forming a low viscosity polyarylene sulfide
US10882959B2 (en) 2015-02-19 2021-01-05 Ticona Llc Method of polyarylene sulfide precipitation
US9815942B2 (en) 2015-03-25 2017-11-14 Ticona Llc Technique for forming a high melt viscosity polyarylene sulfide
US11407861B2 (en) 2019-06-28 2022-08-09 Ticona Llc Method for forming a polyarylene sulfide
US11319441B2 (en) 2019-12-20 2022-05-03 Ticona Llc Method for forming a polyarylene sulfide
US12018129B2 (en) 2021-09-08 2024-06-25 Ticona Llc Extraction technique for recovering an organic solvent from a polyarylene sulfide waste sludge
US12024596B2 (en) 2021-09-08 2024-07-02 Ticona Llc Anti-solvent technique for recovering an organic solvent from a polyarylene sulfide waste sludge

Similar Documents

Publication Publication Date Title
JP4310279B2 (en) Method for producing polyarylene sulfide, method for washing, and method for purifying organic solvent used for washing
EP2055732B1 (en) Method for producing polyarylene sulfide resin
JP4777610B2 (en) Polyarylene sulfide and method for producing the same
JP5012131B2 (en) Method for producing polyarylene sulfide resin
JPH08239474A (en) Production of polyphenylene sulfide
US7834133B2 (en) Production process of poly(arylene sulfide)
JP4388479B2 (en) Process for producing polyarylene sulfide
JP4994997B2 (en) Process for producing polyarylene sulfide
JPH04145127A (en) Production of polyarylene sulfide
JP3637543B2 (en) Process for producing polyarylene sulfide polymer
JP2001040090A (en) Polyarylene sulfide, its production and polyarylene sulfide composition
JPS6333775B2 (en)
WO2006068159A1 (en) Branched polyarylene sulfide resin, process for producing the same, and use thereof as polymeric modifier
JP3879196B2 (en) Method for purifying polyarylene sulfide
JPH03215526A (en) Production of polyarylene sulfide
JPH08170016A (en) Polyarylene sulfide resin composition
JP2002201275A (en) Process for preparing polyarylene sulfide
JPH0853621A (en) Polyphenylene sulfide resin and molded product thereof
JP2005041922A (en) Method for producing polyarylene sulfide resin
JPH05105757A (en) Production of polyarylene sulfide containing amino group
JP2001279097A (en) Polyarylene sulfide composition
JP2859276B2 (en) Method for producing polyphenylene sulfide
JPS62106929A (en) Polyphenylene sulfide and its production
JP3074188B2 (en) Method for producing polyarylene thioether copolymer
JPS62138528A (en) Production of polyphenylene sulfide