JPH08238546A - Continuous casting method - Google Patents
Continuous casting methodInfo
- Publication number
- JPH08238546A JPH08238546A JP4213695A JP4213695A JPH08238546A JP H08238546 A JPH08238546 A JP H08238546A JP 4213695 A JP4213695 A JP 4213695A JP 4213695 A JP4213695 A JP 4213695A JP H08238546 A JPH08238546 A JP H08238546A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- nozzle
- blowing
- molten steel
- immersion nozzle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Continuous Casting (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、鋼の連続鋳造方法に関
するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a continuous steel casting method.
【0002】[0002]
【従来の技術】現在、連続鋳造においては、溶鋼を酸化
させることなくタンディッシュから連鋳モールド内に供
給するために、浸漬ノズルが利用されている。浸漬ノズ
ルの材質としては、Al2 O3 及びCを主体とし、これ
に20wt%程度のSiO2 を含有するものが主流となっ
ている。このような浸漬ノズルでは、鋳造時間の経過と
ともに鋼中析出物のアルミナ及び地金がノズル内壁に付
着し、激しい場合にはノズル閉塞を引き起こし鋳造を停
止する場合もあった。また、ノズル閉塞は鋳型内の溶鋼
流動を乱す原因にもなるため、パウダー巻き込みによる
介在物欠陥を増加させる。2. Description of the Related Art At present, in continuous casting, an immersion nozzle is used to supply molten steel from a tundish into a continuous casting mold without oxidizing it. As a material for the immersion nozzle, a material mainly composed of Al 2 O 3 and C and containing about 20 wt% of SiO 2 is mainly used. In such a dipping nozzle, the deposit of alumina and steel in steel adheres to the inner wall of the nozzle as the casting time elapses, and in severe cases, nozzle clogging may occur and casting may be stopped. Further, the nozzle clogging also disturbs the flow of molten steel in the mold, thus increasing inclusion defects due to powder entrainment.
【0003】この問題を解決する手段の1つとして、例
えば、特公昭58−3467号公報に示されるように、
浸漬ノズル内孔と同心円となる多孔質の筒状耐火物(内
孔体)を浸漬ノズル本体に内挿し、この多孔質耐火物内
壁からArその他の不活性ガスを吹き込むことが知られ
ている。このガス吹き込みは、ノズル内壁と溶鋼との接
触面積を減少させ、さらに溶鋼を撹拌すること、あるい
は付着物をガス気泡により強制的に剥離させることによ
りノズル内壁面へのアルミナ介在物の付着成長を防止す
る効果がある。As one of means for solving this problem, for example, as shown in Japanese Patent Publication No. 58-3467,
It is known that a porous tubular refractory (inner body) concentric with the inner hole of the immersion nozzle is inserted into the main body of the immersion nozzle, and Ar or another inert gas is blown from the inner wall of the porous refractory. This gas blowing reduces the contact area between the inner wall of the nozzle and the molten steel, further stirs the molten steel, or forcibly separates the deposit by gas bubbles, so that the growth of alumina inclusions on the inner wall of the nozzle grows. It has the effect of preventing.
【0004】また、別の手段として、例えば特開昭64
−40154号公報に記載されているように、ZrO2
−CaO−C質材料からなるノズルの使用が試みられて
いる。このZrO2 −CaO−C質材料をノズル内壁に
用いることで、耐火物中CaOと溶鋼中Al2 O3 とを
反応させカルシウムアルミネートの低融物を生成させ
る。この低融物を溶鋼流により洗い流し、微少な溶損を
与えることにより付着を防止するものである。Further, as another means, for example, JP-A-64
As disclosed in Japanese Patent Publication No.-40154, ZrO 2
Attempts have been made to use nozzles made from -CaO-C based materials. By using this ZrO 2 —CaO—C-based material for the inner wall of the nozzle, CaO in the refractory and Al 2 O 3 in the molten steel are reacted with each other to form a low melt of calcium aluminate. This low melt is washed away with a molten steel flow to give a slight melting loss to prevent the adhesion.
【0005】[0005]
【発明が解決しようとする課題】しかしながら、ノズル
内壁へのアルミナの付着を確実に防止するためには溶鋼
中に多量のArガスを吹き込む必要があり、この場合吹
き込まれたAr気泡は完全に浮上せず、モールド内で凝
固界面に捕捉され、熱間圧延、冷間圧延後に発生する気
泡系欠陥の原因となる。これに対し、浸漬ノズル内壁か
らのガス吹き込みを効果的に実施するための各種方法が
提案されているが、気泡系欠陥が発生しない程度までAr
流量を低減し、その上でアルミナの付着を確実に防止で
きる技術は開発されていない。However, in order to reliably prevent the adhesion of alumina to the inner wall of the nozzle, it is necessary to blow a large amount of Ar gas into the molten steel. In this case, the Ar bubbles blown completely rise. Instead, they are trapped at the solidification interface in the mold and cause bubble-type defects that occur after hot rolling and cold rolling. On the other hand, various methods have been proposed for effectively injecting gas from the inner wall of the immersion nozzle, but Ar to the extent that bubble-type defects do not occur is proposed.
No technique has been developed that can reduce the flow rate and reliably prevent the adhesion of alumina on the flow rate.
【0006】一方、Arガス吹き込みを実施せず、ノズ
ル閉塞を防止するためにZrO2 −CaO−C材質のノ
ズルが使用されているが、鋳造時間が長いか、或は溶鋼
清浄性が低下する場合には、ノズル内壁に付着したアル
ミナを低融点化するのに十分なCaOを供給できなくな
り、鋳造後半でノズル閉塞が発生する。このため、Zr
O2 −CaO−C質ノズルも確実な閉塞防止対策になっ
ていないのが現状である。On the other hand, a nozzle made of ZrO 2 --CaO--C material is used to prevent nozzle clogging without blowing Ar gas, but the casting time is long or the cleanliness of molten steel deteriorates. In this case, it becomes impossible to supply sufficient CaO for lowering the melting point of alumina adhering to the inner wall of the nozzle, and nozzle clogging occurs in the latter half of casting. Therefore, Zr
At present, the O 2 -CaO-C quality nozzle also does not have a reliable blocking prevention measure.
【0007】さらに、ZrO2 −CaO−C質ノズルは
一度ノズル内壁に付着堆積した介在物を溶鋼流により洗
い流すため、鋳型内に粗大な介在物が流入し、鋳片品質
を低下させるといった問題も生じる。Further, in the ZrO 2 -CaO-C quality nozzle, since inclusions once attached and deposited on the inner wall of the nozzle are washed away by the molten steel flow, there is a problem that coarse inclusions flow into the mold and deteriorate the quality of the slab. Occurs.
【0008】これらの問題点を鑑み、本発明は、ノズル
閉塞を防止した上で、常に安定して介在物欠陥のない加
工用鋼板素材を鋳造できる連続鋳造方法を提供すること
を目的とするものである。In view of these problems, it is an object of the present invention to provide a continuous casting method capable of casting a steel sheet material for working which is always stable and has no inclusion defects while preventing nozzle clogging. Is.
【0009】[0009]
【課題を解決するための手段】すなわち、本発明は、鋼
の連続鋳造において、不活性ガス中に還元ガスとしてH
2 ガス及び/又はCOガスを総量で0.1%以上1.0
%未満含有させた混合ガスを溶鋼供給用ノズル内に連続
的又は断続的に供給することを特徴とする連続鋳造方法
である。That is, according to the present invention, in continuous casting of steel, H is used as a reducing gas in an inert gas.
Total amount of 2 gases and / or CO gas is 0.1% or more 1.0
The continuous casting method is characterized in that a mixed gas containing less than 1% is continuously or intermittently supplied into the molten steel supply nozzle.
【0010】[0010]
【作用】浸漬ノズルの付着防止技術を確立するために
は、まずノズル内壁へのアルミナ付着機構を明らかにす
る必要がある。本発明者らは、実機鋳造後の浸漬ノズル
を詳細に調査した結果、図1に示すようにノズル内壁に
付着したAl2 O3 はFeOをバインダーとして付着・
凝集していることを知見した。溶鋼中にAlが存在する
場合、溶鋼が酸素ポテンシャルの高いガス、例えば空気
と接触すると、平衡論的にはAlが優先的に酸化され、
Al2 O3 を生成する。しかし、ガス・メタル界面で局
所的にAl濃度が低下する場合があり、一部Feが酸化
されFeOを生成することは十分考えられる。In order to establish the technique of preventing the adhesion of the immersion nozzle, it is first necessary to clarify the mechanism of alumina adhesion to the inner wall of the nozzle. As a result of a detailed investigation of the immersion nozzle after casting using an actual machine, the inventors found that Al 2 O 3 attached to the inner wall of the nozzle was attached using FeO as a binder as shown in FIG.
It was found that they were aggregated. When Al is present in the molten steel, when the molten steel comes into contact with a gas having a high oxygen potential, for example, air, Al is preferentially oxidized in the equilibrium,
Generates Al 2 O 3 . However, the Al concentration may be locally reduced at the gas-metal interface, and it is fully conceivable that some Fe will be oxidized to produce FeO.
【0011】本発明者等は、高周波溶解炉において空気
によるAlキルド溶鋼の酸化実験を行った結果、ガス・
メタル界面には溶鋼中にAlが存在しているにも関わら
ずAl2 O3 だけでなくFeOも存在することを確認し
た。したがって、空気酸化等により生成したFeOをバ
インダーとして、溶鋼中Al2 O3 が浸漬ノズル内壁に
付着したことは明らかである。The present inventors have conducted an oxidation test of Al killed molten steel with air in a high frequency melting furnace, and
It was confirmed that not only Al 2 O 3 but also FeO were present at the metal interface, even though Al was present in the molten steel. Therefore, it is clear that Al 2 O 3 in the molten steel adhered to the inner wall of the immersion nozzle using FeO generated by air oxidation or the like as a binder.
【0012】以上の結果から、本発明者等は浸漬ノズル
内壁へのアルミナ付着防止を検討し、不活性ガスと還元
ガス(H2 ガス、COガス)との混合ガスを浸漬ノズル
内に吹き込み、アルミナ付着を防止する方法を発明し
た。すなわち、浸漬ノズル内に不活性ガスと還元ガスと
の混合ガスを吹き込むことにより、不活性ガスには従来
と同様の付着防止効果(ノズル内壁と溶鋼との接触面積
を減少させる効果、溶鋼の撹拌または付着物をガス気泡
により強制的に剥離させる効果)を、還元ガスにはバイ
ンダーのFeOを(1)式、(2)式により還元し、付
着アルミナの粒子間結合を分断させる効果を持たせた。
これにより、従来の不活性ガス吹き込みに比べて効率的
にアルミナ付着を防止できる。 FeO+CO=Fe+CO2 ‥‥‥(1) FeO+H2 =Fe+H2 O ‥‥‥(2)From the above results, the inventors of the present invention examined prevention of alumina adhesion to the inner wall of the immersion nozzle, blow a mixed gas of an inert gas and a reducing gas (H 2 gas, CO gas) into the immersion nozzle, We invented a method to prevent alumina adhesion. That is, by blowing a mixed gas of an inert gas and a reducing gas into the immersion nozzle, the inert gas has the same anti-adhesion effect as before (effect of reducing the contact area between the nozzle inner wall and the molten steel, stirring of the molten steel). (Or the effect of forcibly exfoliating the adhered matter by gas bubbles), the reducing gas has the effect of reducing the binder FeO according to the formulas (1) and (2), and breaking the inter-particle bond of the adhered alumina. It was
This makes it possible to prevent alumina from adhering more efficiently as compared with the conventional inert gas blowing. FeO + CO = Fe + CO 2 (1) FeO + H 2 = Fe + H 2 O (2)
【0013】還元ガスとしてCOガスを用いた場合、
(1)式により生成したCO2 により溶鋼中Alの再酸
化が起ること、同時に溶鋼中C濃度も増大することが考
えられる。従来、不活性ガスの吹き込み流量は20リッ
トル/min程度であり、これを全量COガスで吹き込み溶
鋼中に全て吸収されるとしても、鋳造量が4t/minでC
濃度は2.7ppm 程度、全酸素濃度は3.6ppm 程度増
加するだけである。また、還元ガスとしてH2 ガスを用
いた場合には、溶鋼中H濃度も増大することが考えられ
る。この場合も、20リットル/minのH2 ガス吹き込み
により全量溶鋼中に吸収されるとしても、鋳造量4t/m
inでH濃度は0.45ppm 程度増加するだけで材質低下
の問題は生じない。When CO gas is used as the reducing gas,
It is considered that CO 2 generated by the equation (1) causes reoxidation of Al in molten steel and at the same time increases the C concentration in molten steel. Conventionally, the flow rate of the inert gas blown is about 20 liters / min, and even if the total amount of CO gas is blown into the molten steel to be absorbed, the casting rate is 4 t / min.
The concentration only increases by about 2.7 ppm and the total oxygen concentration increases by about 3.6 ppm. Further, when H 2 gas is used as the reducing gas, it is considered that the H concentration in the molten steel also increases. Even in this case, even if the entire amount is absorbed in the molten steel by injecting H 2 gas at 20 liter / min, the casting amount is 4 t / m
In the H concentration, the problem of material deterioration does not occur only by increasing by about 0.45 ppm.
【0014】本発明のアルミナ付着防止効果は極めて高
いため、不活性ガスと還元ガスの混合ガスは鋳造中に連
続的に吹き込む必要はなく、湯面変動や浸漬ノズル開度
等の情報から付着進行時に短時間吹き込むだけでもアル
ミナ付着に十分効果を有する。さらに、アルミナ付着が
激しい場合でも、還元ガス濃度は1.0%未満で十分効
果を発揮するため、本発明は溶鋼汚染の問題もなく極め
て有効な方法となる。Since the effect of preventing the adhesion of alumina of the present invention is extremely high, it is not necessary to continuously blow a mixed gas of an inert gas and a reducing gas during casting, and the progress of the adhesion can be promoted based on the information such as the molten metal level change and the immersion nozzle opening degree. Sometimes just blowing for a short time has a sufficient effect on the adhesion of alumina. Further, even when the alumina is heavily adhered, the reducing gas concentration of less than 1.0% exerts a sufficient effect. Therefore, the present invention is an extremely effective method without the problem of molten steel contamination.
【0015】本発明における吹き込みガス中のH2 ガス
及び/又はCOガスの総量は0.1%以上1.0%未満
にする必要がある。これは、還元ガス濃度が0.1%未
満になると従来の不活性ガス吹き込みによるノズル付着
防止効果と同等の効果しか得られないためで、反対に
1.0%以上になると還元ガスがバインダーFeOを分
解するだけでなく、ガス吹き込み用耐火物中のSiO2
等に代表される低級酸化物を還元し、耐火物の耐蝕性を
低下させるためである。In the present invention, the total amount of H 2 gas and / or CO gas in the blown gas must be 0.1% or more and less than 1.0%. This is because when the reducing gas concentration is less than 0.1%, only the same effect as the nozzle adhesion prevention effect by the conventional inert gas blowing can be obtained. On the contrary, when the reducing gas concentration is 1.0% or more, the reducing gas becomes binder FeO. SiO 2 in refractory for gas blowing as well as decomposing
This is to reduce the low-grade oxides represented by, etc. to reduce the corrosion resistance of the refractory.
【0016】また、不活性ガスと還元ガスの混合ガスは
タンディッシュ上ノズル、浸漬ノズル内孔体、スライデ
ィングノズル等から吹き込めば良く、ノズル形状を変更
する必要もない。最適な吹き込みガス流量、還元ガス濃
度及び吹き込み時間は鋳造条件や吹き込み位置により異
るため、ノズル開度、湯面変動、偏流等の指標を基に最
適な吹き込み条件を設定すれば良い。The mixed gas of the inert gas and the reducing gas may be blown from the tundish upper nozzle, the immersion nozzle inner hole body, the sliding nozzle, etc., and the nozzle shape need not be changed. The optimum blowing gas flow rate, reducing gas concentration, and blowing time differ depending on the casting conditions and the blowing position. Therefore, the optimum blowing conditions may be set based on indexes such as the nozzle opening degree, molten metal level fluctuation, and drift.
【0017】[0017]
【実施例】以下に、実施例及び比較例を挙げて、本発明
について説明する。EXAMPLES The present invention will be described below with reference to Examples and Comparative Examples.
【0018】[0018]
【表1】 [Table 1]
【0019】[0019]
【表2】 [Table 2]
【0020】図2に示した形状のガス吹き込み型浸漬ノ
ズルを用いて、Tiを0.08wt%含有する炭素濃度3
0ppm の極低炭素鋼を400分間鋳造した。浸漬ノズル
の通過溶鋼量は4t/minで、鋳造中はガス導入管3から
浸漬ノズル内孔体1を通して表1及び表2の吹き込み条
件でガスを吹き込んだ。なお、吹き込み方法が断続的と
は、湯面変動やノズル開度からノズル詰まりが進行した
と判断される時だけ、表1の吹き込み条件でガスを吹き
込んだことを示す。Using a gas injection type immersion nozzle having the shape shown in FIG. 2, a carbon concentration of 3 containing 0.08 wt% of Ti is 3
0 ppm ultra low carbon steel was cast for 400 minutes. The amount of molten steel passing through the immersion nozzle was 4 t / min, and gas was blown from the gas introduction pipe 3 through the immersion nozzle inner hole body 1 under the conditions of blowing in Tables 1 and 2 during casting. The intermittent blowing method means that the gas was blown under the blowing conditions shown in Table 1 only when it was determined that nozzle clogging had progressed based on the fluctuation of the molten metal surface and the nozzle opening.
【0021】本発明の実施例及び比較例とも鋳造寸法は
厚み245mm×幅1500mmで、8500mm長さに切断
して1コイル単位とした。このスラブを常法により熱間
圧延、冷間圧延し、最終的に厚み0.7mm×幅1500
mmコイルの冷延鋼板とした。鋳片品質については、冷間
圧延後の検査ラインで目視観察を行い、1コイル当りに
発生する気泡系欠陥の発生個数を評価した。また、浸漬
ノズルの詰まり状況は、鋳造後にノズルを回収し吐出孔
2直上の内壁に付着したアルミナの付着厚みで評価し
た。In both the examples and comparative examples of the present invention, the casting dimensions were 245 mm in thickness and 1500 mm in width, and cut into lengths of 8500 mm to make one coil unit. This slab is hot-rolled and cold-rolled by a conventional method, and finally has a thickness of 0.7 mm and a width of 1500.
mm cold rolled steel sheet. Regarding the slab quality, visual inspection was performed on an inspection line after cold rolling, and the number of bubble-type defects generated per coil was evaluated. The clogging condition of the immersion nozzle was evaluated by the thickness of the alumina deposited on the inner wall immediately above the discharge hole 2 after the nozzle was recovered after casting.
【0022】表1に示す如く、実施例は不活性ガス中に
還元ガスとしてH2 ガス及び/又はCOガスを総量で
0.1%以上1.0%未満含有させた混合ガスを浸漬ノ
ズル内に連続的又は断続的に供給したことにより、ノズ
ル詰まりを確実に防止できた。その結果、湯面変動は抑
制され、パウダー巻き込みに起因する介在物欠陥は全く
発生しなかった。さらに、溶鋼中のC及びH濃度上昇量
と全酸素濃度上昇量は1ppm 以下で、溶鋼汚染も全くな
かった。As shown in Table 1, in the examples, a mixed gas containing H 2 gas and / or CO gas as a reducing gas in an inert gas in a total amount of 0.1% or more and less than 1.0% was used in the dipping nozzle. Nozzle clogging could be reliably prevented by continuously or intermittently supplying to the nozzle. As a result, fluctuations in the molten metal surface were suppressed, and no inclusion defects due to powder entrainment occurred. Furthermore, the amount of increase in C and H concentrations and the amount of increase in total oxygen concentration in the molten steel were 1 ppm or less, and there was no molten steel contamination at all.
【0023】これに対し、表2に示す如く、比較例1、
比較例2及び比較例3は吹き込みガス中のH2 ガス及び
/又はCOガスの総量が0.1%未満であったため、十
分なアルミナ付着防止効果が得られなかった。そのた
め、湯面変動が大きくなり、パウダー巻き込みによる介
在物欠陥が多発した。比較例4と比較例5は吹き込みガ
ス中のH2 ガス及び/又はCOガスの総量が1.0%以
上であったため、浸漬ノズル内孔体の耐蝕性が低下し、
内孔体中への溶鋼の浸透が起こり鋳造を停止した。On the other hand, as shown in Table 2, Comparative Example 1,
In Comparative Examples 2 and 3, the total amount of H 2 gas and / or CO gas in the blown gas was less than 0.1%, and therefore a sufficient alumina adhesion preventing effect was not obtained. Therefore, the fluctuation of the molten metal surface became large, and inclusion defects due to the inclusion of powder occurred frequently. In Comparative Example 4 and Comparative Example 5, since the total amount of H 2 gas and / or CO gas in the blown gas was 1.0% or more, the corrosion resistance of the submerged nozzle inner hole was lowered,
Molten steel was infiltrated into the inner hole and casting was stopped.
【0024】[0024]
【発明の効果】以上に説明したように、本発明によりノ
ズル閉塞を確実に防止できるため、鋳片の品質向上と安
定化を実現でき、歩留りも格段に良くなる。また、ノズ
ル閉塞に起因する種々の非定常作業を省略することがで
き、操業性も良好となる。As described above, since the nozzle clogging can be reliably prevented by the present invention, the quality and stability of the slab can be realized and the yield can be remarkably improved. Further, various unsteady operations due to nozzle clogging can be omitted, and operability becomes good.
【図1】アルミナの付着状態を示す図である。FIG. 1 is a diagram showing an adhered state of alumina.
【図2】浸漬ノズルの形状を示す図である。FIG. 2 is a diagram showing a shape of an immersion nozzle.
1…内孔体 2…吐出孔 3…吹き込みガス導入管 1 ... Inner hole body 2 ... Discharge hole 3 ... Blow-in gas introduction pipe
Claims (1)
還元ガスとしてH2ガス及び/又はCOガスを総量で
0.1%以上1.0%未満含有させた混合ガスを溶鋼供
給用ノズル内に連続的又は断続的に供給することを特徴
とする連続鋳造方法。1. A nozzle for supplying molten steel containing a mixed gas containing H 2 gas and / or CO gas as a reducing gas in a total amount of 0.1% or more and less than 1.0% in a continuous casting of steel in continuous casting of steel. A continuous casting method, characterized by continuously or intermittently supplying the inside.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4213695A JPH08238546A (en) | 1995-03-01 | 1995-03-01 | Continuous casting method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4213695A JPH08238546A (en) | 1995-03-01 | 1995-03-01 | Continuous casting method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08238546A true JPH08238546A (en) | 1996-09-17 |
Family
ID=12627535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4213695A Withdrawn JPH08238546A (en) | 1995-03-01 | 1995-03-01 | Continuous casting method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08238546A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101379167B1 (en) * | 2012-03-12 | 2014-03-28 | 주식회사 포스코 | Submerged entry nozzle and method of continuous casting using the same |
-
1995
- 1995-03-01 JP JP4213695A patent/JPH08238546A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101379167B1 (en) * | 2012-03-12 | 2014-03-28 | 주식회사 포스코 | Submerged entry nozzle and method of continuous casting using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5102683B2 (en) | Continuous casting method of molten steel containing rare earth elements | |
JPH08238546A (en) | Continuous casting method | |
JP3294940B2 (en) | Continuous casting method | |
JP2991881B2 (en) | Immersion nozzle for continuous casting | |
JP3383116B2 (en) | How to prevent clogging of continuous casting nozzle | |
JP3505389B2 (en) | Steel for strip, Si-killed steel, and production method by continuous casting | |
JP2718608B2 (en) | Steel continuous casting method | |
JP2891757B2 (en) | Immersion nozzle | |
JP3519213B2 (en) | Top nozzle and stopper head for continuous casting | |
JPH0751819A (en) | Immersion nozzle for continuous casting | |
JPH0833961A (en) | Continuous casting method | |
JP4409167B2 (en) | Continuous casting method | |
JP2000042698A (en) | Method for continuously casting silicon killed steel billet | |
JP4218391B2 (en) | Continuous casting method for molten steel | |
JP2003010949A (en) | Nozzle for continuous casting and continuous casting method using the same | |
JP3389368B2 (en) | Nozzle blockage prevention method for Al-less Ti deoxidized steel | |
JP3502758B2 (en) | Steel for strips and its production method by continuous casting | |
JP3525891B2 (en) | Continuous casting method of small section high Cr steel | |
JP2024042561A (en) | Steel continuous casting method | |
JPH02247052A (en) | Method for continuously casting cast slab for steel strip | |
JP3412955B2 (en) | Continuous casting method | |
JPH09141406A (en) | Cleaning method for nozzle for continuous casting | |
JP2002239692A (en) | Method for continuously casting small cross section aluminum-killed steel cast slab | |
JP2002096145A (en) | Continuous casting nozzle and method for continuous casting of steel using it | |
JP2002011554A (en) | Method for preventing clogging of nozzle for continuous casting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020507 |