JPH08238482A - Electrolytic cell and ion water maker - Google Patents

Electrolytic cell and ion water maker

Info

Publication number
JPH08238482A
JPH08238482A JP7045626A JP4562695A JPH08238482A JP H08238482 A JPH08238482 A JP H08238482A JP 7045626 A JP7045626 A JP 7045626A JP 4562695 A JP4562695 A JP 4562695A JP H08238482 A JPH08238482 A JP H08238482A
Authority
JP
Japan
Prior art keywords
spacer
plate
water
electrode
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7045626A
Other languages
Japanese (ja)
Inventor
Masaharu Kobayashi
雅晴 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7045626A priority Critical patent/JPH08238482A/en
Publication of JPH08238482A publication Critical patent/JPH08238482A/en
Pending legal-status Critical Current

Links

Landscapes

  • Water Treatment By Electricity Or Magnetism (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE: To realize a small-sized thin electrolytic cell by setting a first case having a cup shape and having a raw water supply passage provided to the side surface thereof and a first emitting passage provided to the bottom surface thereof and a second case having a second emitting passage provided to the bottom surface thereof in opposed relationship to cover a laminate and holding the laminate between the bottom surfaces of the first and second cases. CONSTITUTION: A water permeable second plate-shaped electrode 30 having an outer shape almost same to that of a first plate-shaped electrode 29 and a second C-shaped spacer 25 having an outer shape almost same to that of a first C-shaped spacer 24 are successively laminated so that the outer shapes on the one half sides of them arranged to form a laminate. This laminate is covered by mutually opposing a first case 34 having a cup shape and having a raw water supply passage 33 provided to the side surface thereof and a first emitting passage 31 provided to the bottom surface thereof and a second case 35 having a second emitting passage 32 provided to the bottom surface thereof and held between the bottom surfaces of the first and second cases 34, 35. By this constitution, a small-sized and extremely thin electrolytic cell can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水道水、井戸水等の原
水を電気分解して、飲用、医療用として利用するアルカ
リ性イオン水及び化粧水、殺菌洗浄水等として利用する
酸性イオン水を製造する電解槽及びそれを用いたイオン
水生成器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention electrolyzes raw water such as tap water and well water to produce alkaline ionized water for drinking and medical use, and acidic ionized water for use as lotion and sterilizing wash water. And an ionized water generator using the same.

【0002】[0002]

【従来の技術】近年、「健康ブーム」を反映してイオン
水生成器が普及しつつある。このイオン水生成器は電解
槽内で水道水などを電気分解し、陰極側にアルカリ性イ
オン水を生成し陽極側に酸性イオン水を生成するもので
ある。
2. Description of the Related Art In recent years, ion water generators have become widespread, reflecting the "health boom". This ion water generator electrolyzes tap water or the like in an electrolytic cell to generate alkaline ion water on the cathode side and acidic ion water on the anode side.

【0003】そこで従来の連続電解方式のイオン水生成
器及びイオン水生成方法について説明する。図3は従来
のイオン水生成器及びイオン水生成方法を示す概略全体
図である。1は水道水などの原水を供給する原水管2と
接続されたイオン水生成器である。3は内部に活性炭や
中空糸膜などを備えた浄水器、4はミネラル分を原水中
に付与するミネラル添加筒、5は内部に隔膜15で陰極
室10と陽極室12とに分割された電解槽、6は電解槽
5に設けた陰極室10の処理水を吐出する陰極側処理水
吐出路、7は電解槽5に設けた陽極室12の処理水を吐
出する陽極側処理水吐出路、8aは陰極室10に原水を
供給する陰極側給水路、8bは陽極室12に原水を供給
する陽極側給水路、9は陰極室10に設けた陰極板、1
1は陽極室12に設けた陽極板、17は電源部16から
の電力を所定の電圧に調整し、陰極端子13及び陽極端
子14に印加するコントローラである。
Therefore, a conventional continuous electrolysis type ion water generator and an ion water producing method will be described. FIG. 3 is a schematic overall view showing a conventional ion water generator and a conventional ion water generation method. Reference numeral 1 is an ion water generator connected to a raw water pipe 2 for supplying raw water such as tap water. 3 is a water purifier provided with activated carbon or a hollow fiber membrane inside, 4 is a mineral addition cylinder for adding minerals to raw water, 5 is a diaphragm 15 inside and is divided into a cathode chamber 10 and an anode chamber 12 A tank, 6 is a cathode-side treated water discharge passage for discharging treated water in the cathode chamber 10 provided in the electrolytic bath 5, 7 is an anode-side treated water discharge passage for discharging treated water in the anode chamber 12 provided in the electrolytic bath 5, Reference numeral 8a denotes a cathode side water supply passage for supplying raw water to the cathode chamber 10, 8b denotes an anode side water supply passage for supplying raw water to the anode chamber 12, 9 denotes a cathode plate provided in the cathode chamber 10, 1
Reference numeral 1 is an anode plate provided in the anode chamber 12, and 17 is a controller that adjusts the electric power from the power supply unit 16 to a predetermined voltage and applies the electric power to the cathode terminal 13 and the anode terminal 14.

【0004】以上のように構成された従来のイオン水生
成器1について以下その動作を説明する。原水管2より
通水された原水は浄水器3で原水中の残留塩素や一般細
菌などの不純物が取り除かれ、ミネラル添加筒4でミネ
ラル分を原水中に付与せられ電解槽5に通水される。一
方電源部16から供給された電力はコントローラ17で
所定の直流電圧に制御されて陰極板9と陽極板11に給
電される。これにより電解槽内の原水は電気分解され
(化1)に示す反応によって陽極近傍では水素イオン
(H+ )が増加して溶液のpHは低くなり酸性水が生成
し、陰極近傍では水酸イオン(OH- )が増加し溶液の
pHは高くなりアルカリイオン水が生成する。
The operation of the conventional ionized water generator 1 configured as described above will be described below. Impurities such as residual chlorine and general bacteria in the raw water are removed from the raw water passed through the raw water pipe 2 by the water purifier 3, and minerals are added to the raw water by the mineral addition cylinder 4 and then passed through the electrolyzer 5. It On the other hand, the electric power supplied from the power supply unit 16 is controlled to a predetermined DC voltage by the controller 17 and supplied to the cathode plate 9 and the anode plate 11. As a result, the raw water in the electrolytic cell is electrolyzed and the hydrogen ion (H + ) increases near the anode due to the reaction shown in (Chemical formula 1), the pH of the solution decreases, and acidic water is generated, and near the cathode, hydroxide ion (OH -) is pH increased solution alkaline ion water is produced increases.

【0005】[0005]

【化1】 Embedded image

【0006】このようにして陰極室10にはアルカリ性
イオン水が、陽極室12には酸性イオン水が生成され、
通水しながら陰極板9が負電圧になるように電圧を印加
すると陰極側処理水吐出路6よりアルカリ性イオン水
が、陽極側処理水吐出路7より酸性イオン水が連続して
得られる。
In this way, alkaline ionized water is produced in the cathode chamber 10 and acidic ionized water is produced in the anode chamber 12,
When a voltage is applied so that the cathode plate 9 has a negative voltage while water is flowing, alkaline ionized water is continuously obtained from the cathode side treated water discharge passage 6 and acidic ionized water is continuously obtained from the anode side treated water discharge passage 7.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、従来技
術の電解槽及びそれを用いたイオン水生成器は毎分2〜
3リットル程度の流量で連続して電気分解して使用され
ることが多いことから、電解電流として2〜3A程度の
大きな電流が必要であった。さらに使用される原水とし
ては電気伝導率の低い(約100〜200μS/cm程
度)水道水等が一般的であり、この場合には原水抵抗に
よる電圧降下の影響で両電極に実際に印加される電圧
は、電気分解に必要な電圧の何倍もの大きな電圧を必要
としていた。そのため電力を供給する電源トランスも大
容量のトランスが必要となっていた。
However, the electrolytic cell of the prior art and the ion water generator using the electrolytic cell have a rate of 2 to 1 minute.
Since it is often used by electrolyzing continuously at a flow rate of about 3 liters, a large current of about 2 to 3 A was required as the electrolysis current. Further, as the raw water to be used, tap water or the like having a low electric conductivity (about 100 to 200 μS / cm) is generally used, and in this case, it is actually applied to both electrodes due to the voltage drop due to the resistance of the raw water. The voltage required a voltage as large as many times that required for electrolysis. For this reason, a large-capacity transformer is needed as a power supply transformer for supplying electric power.

【0008】そこで電解電圧を低くするために、電極触
媒、電極および隔膜の形状あるいは隔膜の開孔率等の改
善や、電極間距離を短くし原水抵抗を小さくして電解電
圧を低減する方法が採られてきた。本発明は、前記従来
の問題点を解決するもので、電極間距離を短くして電気
分解に必要な電解電圧を低くし、陰極室側の残留塩素濃
度を低く抑えて飲用に適したイオン水を生成することが
でき、小型で組立が容易な電解槽及びイオン水生成器を
提供することを目的とする。
Therefore, in order to lower the electrolysis voltage, there is a method of improving the shape of the electrode catalyst, the electrode and the diaphragm, the porosity of the diaphragm, or the like, or reducing the distance between the electrodes to reduce the raw water resistance to reduce the electrolysis voltage. It has been taken. The present invention solves the above-mentioned conventional problems by shortening the distance between the electrodes to lower the electrolytic voltage required for electrolysis, and suppressing the residual chlorine concentration on the cathode chamber side to be low, making it suitable for drinking ionic water. It is an object of the present invention to provide an electrolytic cell and an ionized water generator that can produce water and are small in size and easy to assemble.

【0009】[0009]

【課題を解決するための手段】上記目的を達成するため
に本発明の電解槽は、短い筒状の枠からなる第1スペー
サと、第1スペーサとは一半側の外形形状が略同一であ
って他の一半側にかけての長手方向長さが第1スペーサ
より短い外形形状を有し且つ周囲に外縁が形成された水
透過性の第1板状電極と、第1板状電極とは一半側の外
形形状が略同一のC字状枠であって他の一半側にかけて
の長手方向長さが第1スペーサより短い第1C字状スペ
ーサと、第1C字状スペーサとは一半側の外形形状が略
同一であって他の一半側にかけての長手方向長さが第1
板状電極と略同一の外形形状を有した隔膜と、第1C字
状スペーサと略同一の外形形状を有した第2C字状スペ
ーサと、第1板状電極と略同一の外形形状を有した水透
過性の第2板状電極、及び第1スペーサと略同一の外形
形状を有した第2スペーサをそれぞれ一半側の外形を揃
えて順に積層して積層体を形成し、カップ形状を有し側
面に原水供給路及び底面に第1吐出路を設けた第1のケ
ースと、少なくとも底面を有し底面に第2吐出路を設け
た第2のケースを互いに対向させて積層体を覆うととも
に、第1のケースと第2のケースのそれぞれの底面で積
層体を挟持したことを特徴とする。
In order to achieve the above object, in the electrolytic cell of the present invention, the outer shape of the first spacer, which is a short cylindrical frame, is substantially the same on the half side. The first plate-shaped electrode and the water-permeable first plate-shaped electrode having an outer shape whose longitudinal length toward the other half side is shorter than that of the first spacer and whose outer edge is formed around the first spacer The first C-shaped spacer and the first C-shaped spacer have a substantially C-shaped frame having substantially the same outer shape and a longitudinal length extending to the other half side is shorter than that of the first spacer. They are substantially the same, and the length in the longitudinal direction toward the other half side is the first
A diaphragm having substantially the same outer shape as the plate electrode, a second C-shaped spacer having substantially the same outer shape as the first C-shaped spacer, and substantially the same outer shape as the first plate electrode. A water-permeable second plate-shaped electrode and a second spacer having a substantially same outer shape as the first spacer are sequentially laminated with the outer shapes on one half side aligned to form a laminated body, which has a cup shape. The first case having the raw water supply passage on the side surface and the first discharge passage on the bottom surface and the second case having at least the bottom surface and the second discharge passage on the bottom surface are opposed to each other to cover the laminated body, It is characterized in that the laminated body is sandwiched between the respective bottom surfaces of the first case and the second case.

【0010】また、隔膜が陽イオン交換膜からなること
が望ましい。また、第1板状電極と第2板状電極のいず
れもが多孔質材料から構成されていることが好ましい。
Further, it is desirable that the diaphragm is a cation exchange membrane. Further, it is preferable that both the first plate-shaped electrode and the second plate-shaped electrode are made of a porous material.

【0011】本発明のイオン水生成器は、浄水器と、請
求項1〜3記載の電解槽を備えたことを特徴とする。
The ion water generator of the present invention comprises a water purifier and the electrolytic cell according to any one of claims 1 to 3.

【0012】[0012]

【作用】本発明の電解槽は、短い筒状の枠からなる第1
スペーサと、第1スペーサとは一半側の外形形状が略同
一であって他の一半側にかけての長手方向長さが第1ス
ペーサより短い外形形状を有し且つ周囲に外縁が形成さ
れた水透過性の第1板状電極と、第1板状電極とは一半
側の外形形状が略同一のC字状枠であって他の一半側に
かけての長手方向長さが第1スペーサより短い脚が延び
た第1C字状スペーサと、第1C字状スペーサとは一半
側の外形形状が略同一であって他の一半側にかけての長
手方向長さが第1板状電極と略同一の外形形状を有した
隔膜と、第1C字状スペーサと略同一の外形形状を有し
た第2C字状スペーサと、第1板状電極と略同一の外形
形状を有した水透過性の第2板状電極、及び第1スペー
サと略同一の外形形状を有した第2スペーサをそれぞれ
一半側の外形を揃えて順に積層して積層体を形成し、カ
ップ形状を有し側面に原水供給路及び底面に第1吐出路
を設けた第1のケースと、少なくとも底面を有し底面に
第2吐出路を設けた第2のケースを互いに対向させて積
層体を覆うとともに、第1のケースと第2のケースのそ
れぞれの底面で積層体を挟持しているから、小型で非常
に薄い電解槽を実現でき、その寸法管理が簡単で、組立
が非常に容易であり、陰極室側で発生したガスと陽極室
側で発生したガスがそれぞれの吐出路からイオン水と共
に速やかに吐出され、電極及び隔膜の表面に滞留して付
着するのを防ぐことができる。
The electrolytic cell of the present invention has a first cylindrical frame.
The outer shape of the spacer and the first spacer are substantially the same on one half side, and the length in the longitudinal direction to the other half side is shorter than that of the first spacer, and an outer edge is formed on the periphery of the spacer. Of the flexible first plate-shaped electrode and the first plate-shaped electrode are C-shaped frames whose half-sides have substantially the same outer shape, and have legs whose longitudinal length extending to the other half-side is shorter than that of the first spacer. The extended first C-shaped spacers and the first C-shaped spacers have substantially the same outer shape on one half side, and the length in the longitudinal direction to the other half side is substantially the same as the first plate electrode. A diaphragm having the same, a second C-shaped spacer having substantially the same outer shape as the first C-shaped spacer, and a water-permeable second plate-shaped electrode having substantially the same outer shape as the first plate-shaped electrode, And the second spacers having substantially the same outer shape as the first spacers have the outer shapes on the half side aligned. A first case having a cup shape and having a raw water supply passage on the side surface and a first discharge passage on the bottom surface, and a second discharge passage on the bottom surface having at least the bottom surface. Since the second case is opposed to each other to cover the laminated body, and the laminated body is sandwiched between the bottom surfaces of the first case and the second case, a small and extremely thin electrolytic cell can be realized. Its dimensional control is simple and it is very easy to assemble, and the gas generated on the cathode chamber side and the gas generated on the anode chamber side are quickly discharged together with the ionized water from the respective discharge passages, and then on the surface of the electrode and the diaphragm. It is possible to prevent stagnation and adhesion.

【0013】また、隔膜が陽イオン交換膜からなるか
ら、陽極室で発生した塩素ガスの陰極室への流入を防止
できる。
Further, since the diaphragm is made of a cation exchange membrane, it is possible to prevent chlorine gas generated in the anode chamber from flowing into the cathode chamber.

【0014】また、第1板状電極と第2板状電極のいず
れもが多孔質材料から構成されているから、それぞれの
電極と隔膜の間に発生したガスを電極の孔を通して速や
かにそれぞれの吐出路に移送することができる。
Further, since both the first plate-shaped electrode and the second plate-shaped electrode are made of a porous material, the gas generated between the respective electrodes and the diaphragm is promptly passed through the holes of the respective electrodes. It can be transferred to the discharge path.

【0015】本発明のイオン水生成器は、浄水器の外
に、前記の電解槽を備えているから、小型のイオン水生
成器を提供することができる。
Since the ion water generator of the present invention is provided with the above-mentioned electrolytic cell in addition to the water purifier, it is possible to provide a small ion water generator.

【0016】[0016]

【実施例】以下、本発明の一実施例の電解槽について図
面に基づいて詳細に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An electrolytic cell according to an embodiment of the present invention will be described in detail below with reference to the drawings.

【0017】図1は本発明の一実施例における電解槽の
部分拡大斜視図である。図2は本発明の一実施例におけ
る電解槽の斜視断面図である。図1及び図2において、
20は第1スペーサ、21は第2スペーサ、22は第1
板状電極29の周囲に形成した外縁、23は第2板状電
極30の周囲に形成した外縁、24は第1C字状スペー
サ、25は第2C字状スペーサ、26は隔膜、27、2
8は入力端子、31は第1吐出路、32は第2吐出路、
33は原水供給路、34は第1のケース、35はカップ
形状の第2のケース、36は止め具である。第1スペー
サ20及び第2スペーサ21は短い筒状の枠からなり、
その材質は絶縁性と耐水性を備えている樹脂等が好まし
い。この実施例では矩形の枠となっている。第1板状電
極29の周囲に形成した外縁22及び第2板状電極30
の周囲に形成した外縁23は、それぞれの板状電極の厚
み1.5mm程度と同程度の厚みを有しているのが適当
で、板状電極を保護すると同時に板状電極側面からの水
の流出を防ぎ、容易に固定できるようにするものであ
る。その材質は絶縁性と耐水性を備えている樹脂などが
望ましい。第1板状電極29及び第2板状電極30は一
半側の外形形状がそれぞれ隣接する第1スペーサ20及
び第2スペーサ21と略同一であって他の一半側にかけ
ての長手方向長さが第1スペーサ20及び第2スペーサ
21より短い外形形状を有している。この実施例では長
手方向長さが第1スペーサ20及び第2スペーサ21よ
り短い矩形である。このことから第2スペーサ21は、
その外側がカップ形状の第2のケース35の内壁に密接
するので電解水の流路が形成され電解水は矢印eで示し
た方向に移送される。第1スペーサ20も同様に第1の
ケース34の内壁に密接するので電解水の流路が形成さ
れ電解水は矢印bで示した方向に移送される。このそれ
ぞれの板状電極には周囲の外縁を貫通して入力端子27
及び28が設けられ、制御部(図示せず)で所定の電圧
に制御された電力が給電される。入力端子27に正電圧
を、入力端子28に負電圧を印加すると第1板状電極2
9は陽電極となり、第2板状電極30は陰電極となる。
FIG. 1 is a partially enlarged perspective view of an electrolytic cell in one embodiment of the present invention. FIG. 2 is a perspective sectional view of an electrolytic cell according to an embodiment of the present invention. 1 and 2,
20 is a first spacer, 21 is a second spacer, 22 is a first spacer
An outer edge formed around the plate electrode 29, 23 an outer edge formed around the second plate electrode 30, 24 a first C-shaped spacer, 25 a second C-shaped spacer, 26 a diaphragm, 27, 2
8 is an input terminal, 31 is a first discharge passage, 32 is a second discharge passage,
33 is a raw water supply channel, 34 is a first case, 35 is a cup-shaped second case, and 36 is a stopper. The first spacer 20 and the second spacer 21 are made of short cylindrical frames,
The material is preferably a resin having insulation and water resistance. In this embodiment, it is a rectangular frame. The outer edge 22 and the second plate electrode 30 formed around the first plate electrode 29.
It is appropriate that the outer edge 23 formed on the periphery of the plate has a thickness similar to the thickness of each plate electrode of about 1.5 mm, and protects the plate electrode and at the same time protects the water from the side surface of the plate electrode. It prevents spillage and allows for easy fixation. The material is preferably a resin having insulation and water resistance. The first plate-shaped electrode 29 and the second plate-shaped electrode 30 have substantially the same external shape on one half side as the first spacer 20 and the second spacer 21 which are adjacent to each other, and have a longitudinal length extending to the other half side. The outer shape is shorter than that of the first spacer 20 and the second spacer 21. In this embodiment, the longitudinal length is a rectangle shorter than the first spacer 20 and the second spacer 21. Therefore, the second spacer 21
Since the outer side thereof is in close contact with the inner wall of the cup-shaped second case 35, a flow path of electrolyzed water is formed and the electrolyzed water is transferred in the direction indicated by arrow e. Similarly, since the first spacer 20 also closely contacts the inner wall of the first case 34, a flow path of electrolyzed water is formed and the electrolyzed water is transferred in the direction indicated by the arrow b. Each of the plate-shaped electrodes penetrates the outer edge of the periphery to input terminals 27.
And 28 are provided, and power controlled to a predetermined voltage by a control unit (not shown) is supplied. When a positive voltage is applied to the input terminal 27 and a negative voltage is applied to the input terminal 28, the first plate electrode 2
9 serves as a positive electrode, and the second plate-shaped electrode 30 serves as a negative electrode.

【0018】第1C字状スペーサ24及び第2C字状ス
ペーサ25はそれぞれ第1板状電極29及び第2板状電
極30とは一半側の外形形状が略同一であって、他の一
半側にかけての長手方向長さが第1スペーサ20及び第
2スペーサ21より短い脚が延びたC字状枠から構成さ
れており、この実施例では矩形の下端が解放されたコの
字状態に設けられている。この第1C字状スペーサ24
及び第2C字状スペーサ25は第1板状電極29及び第
2板状電極30と隔膜26がそれぞれ直接接触して隔膜
26が電気的に破壊されるのを防ぎ、同時に2つの板状
電極と隔膜26の間に電解水の流路を形成するものであ
る。第1C字状スペーサ24及び第2C字状スペーサ2
5の厚みは0.1mm程度が適当で、その材質は絶縁性
を有し強度の高い樹脂等が望ましい。隔膜26は第1C
字状スペーサ24と第2C字状スペーサ25とは一半側
の外形形状が略同一であって他の一半側にかけての長手
方向長さが第1板状電極29と第2板状電極30と略同
一の外形形状を有した陽イオン交換膜からなり、その厚
みは0.5mm程度が適当である。なお、隔膜26の長
手方向長さを第1板状電極29と第2板状電極30より
長くしてもよい。この実施例では隔膜26と第1板状電
極29と第2板状電極30は略同一形状の矩形となって
いる。この陽イオン交換膜は電気分解によって生じる陽
イオンのみを選択的に透過させるもので、ここでは陽極
室で発生する塩素イオンが陰極室に透過するのを防ぎ、
アルカリ性イオン水中に遊離塩素として混入するのを防
ぐものである。このようにして第1スペーサ20と第1
板状電極29と第1C字状スペーサ24と隔膜26と第
2C字状スペーサ25と第2板状電極30及び第2スペ
ーサ21とをそれぞれ一半側の外形を揃えて、順に密接
させて積層して積層体を形成する。
The first C-shaped spacer 24 and the second C-shaped spacer 25 have substantially the same outer shape on one half side as the first plate electrode 29 and the second plate electrode 30, respectively, and extend to the other half side. Is composed of a C-shaped frame with legs extending in the longitudinal direction shorter than the first spacer 20 and the second spacer 21, and in this embodiment, the lower end of the rectangle is provided in an open U-shape. There is. This first C-shaped spacer 24
The second C-shaped spacer 25 prevents the first plate electrode 29, the second plate electrode 30 and the diaphragm 26 from being in direct contact with each other and electrically damaging the diaphragm 26. A flow path for electrolyzed water is formed between the diaphragms 26. First C-shaped spacer 24 and second C-shaped spacer 2
The thickness of 5 is preferably about 0.1 mm, and the material thereof is preferably a resin having insulation and high strength. The diaphragm 26 is the first C
The V-shaped spacer 24 and the second C-shaped spacer 25 have substantially the same outer shape on one half side, and the longitudinal lengths extending to the other half side are substantially the same as the first plate electrode 29 and the second plate electrode 30. It is composed of cation exchange membranes having the same outer shape, and the thickness thereof is preferably about 0.5 mm. The longitudinal length of the diaphragm 26 may be longer than that of the first plate electrode 29 and the second plate electrode 30. In this embodiment, the diaphragm 26, the first plate-shaped electrode 29, and the second plate-shaped electrode 30 are rectangular with substantially the same shape. This cation exchange membrane selectively permeates only cations generated by electrolysis, and here prevents chlorine ions generated in the anode chamber from permeating into the cathode chamber,
It is to prevent the mixture as free chlorine in alkaline ionized water. In this way, the first spacer 20 and the first spacer 20
The plate-shaped electrode 29, the first C-shaped spacer 24, the diaphragm 26, the second C-shaped spacer 25, the second plate-shaped electrode 30 and the second spacer 21 are laminated such that their outer shapes on one half side are aligned and closely contacted in order. To form a laminate.

【0019】次にカップ形状を有し側面に原水供給路3
3及び底面に第1吐出路31を設けた第1のケース34
と、第2吐出路32を設けた第2のケース35を互いに
対向させて上記積層体を覆い、第1のケース34と第2
のケース35のそれぞれの底面で、上記積層体の第1ス
ペーサ20と第2スペーサ21の側面を挟持して止め具
36で固定する。このようにしてし第1板状電極29側
及び第2板状電極30側にそれぞれ電解室が形成され
る。このとき第1スペーサ20と第2スペーサ21の厚
みは数10mm程度あればよく、第1C字状スペーサ2
4と第2C字状スペーサ25の厚みに比べ厚くすること
で、第1及び第2C字状スペーサ24、25の枠内を移
送する電解水の流路抵抗を第1及び第2スペーサ20、
21の枠内を移送する電解水の流路抵抗より大きくする
ことができる。そして第1吐出路31と第2吐出路32
から吐出するイオン水のイオン濃度を制御するときに
は、第1スペーサ20と第2スペーサ21の厚みを変え
ることにより流路抵抗を変化させることで任意に制御す
ることができる。ここで入力端子27に正電圧を、入力
端子28に負電圧を印加すると第1板状電極29側は陽
極室に、第2板状電極30側は陰極室とすることができ
る。第1スペーサ20と第1C字状スペーサ24と、第
2スペーサ21と第2C字状スペーサ25は、それぞれ
厚みを調整することによって、アルカリ性イオン水の水
量と酸性イオン水の水量の割合を変えることができる。
Next, the raw water supply passage 3 has a cup shape and is provided on the side surface.
3 and the first case 34 having the first discharge passage 31 on the bottom surface
And the second case 35 provided with the second discharge passage 32 are opposed to each other to cover the above-mentioned laminated body, and the first case 34 and the second case
The side surfaces of the first spacer 20 and the second spacer 21 of the laminated body are sandwiched between the bottom surfaces of the cases 35 and fixed by the stoppers 36. In this way, electrolytic chambers are formed on the first plate electrode 29 side and the second plate electrode 30 side, respectively. At this time, the thickness of the first spacer 20 and the second spacer 21 may be about several tens of millimeters, and the first C-shaped spacer 2
4 and the thickness of the second C-shaped spacer 25, the flow resistance of the electrolyzed water transferred in the frame of the first and second C-shaped spacers 24, 25 is increased by the first and second spacers 20,
It can be made larger than the flow path resistance of the electrolyzed water transferred in the frame 21. Then, the first discharge passage 31 and the second discharge passage 32
When controlling the ion concentration of the ionized water discharged from, the flow path resistance can be arbitrarily changed by changing the thickness of the first spacer 20 and the second spacer 21. When a positive voltage is applied to the input terminal 27 and a negative voltage is applied to the input terminal 28, the first plate electrode 29 side can be an anode chamber and the second plate electrode 30 side can be a cathode chamber. The first spacer 20 and the first C-shaped spacer 24, and the second spacer 21 and the second C-shaped spacer 25 are adjusted in thickness to change the ratio of the amount of alkaline ionized water to the amount of acidic ionized water. You can

【0020】このようにして2つの板状電極の電極間距
離を大幅に短縮して電解電圧の上昇を最小限に抑えると
ともに、電解槽の容積を小型にでき、隔膜の損傷や破壊
を防止して隔膜の寿命を延ばすことができる。しかもこ
の電極間距離の寸法管理は非常に難しいが、本実施例に
よれば流路の確保とともに非常に簡単に寸法管理を行う
ことができる。
In this way, the distance between the two plate-shaped electrodes can be greatly shortened to minimize the rise of the electrolysis voltage, and the volume of the electrolytic cell can be reduced to prevent the membrane from being damaged or destroyed. The life of the diaphragm can be extended. Moreover, it is very difficult to control the dimension of the inter-electrode distance, but according to the present embodiment, the dimension can be controlled very easily while securing the flow path.

【0021】ここで第1板状電極29及び第2板状電極
30について説明する。この2つの板状電極は水透過性
であって、電解槽の下部から供給される原水の流入方向
に対して略直角の方向に複数個の孔を備えているのが適
当である。メッシュ、多孔質材料もしくは樹脂を成形し
てハニカム状にしたもの等が適当である。これによって
電極内部にイオン水の流路を形成することができ、第1
C字状スペーサ24と第1板状電極29及び第2C字状
スペーサ25と第2板状電極30の間で生成されたイオ
ン水は板状電極内部の流路を移送されそれぞれの吐出路
から吐出される。この板状電極内部を移送されるイオン
水の流速は大きく、隔膜26の表面や電極近傍に発生
し、その後凝集して付着した水素や酸素等のガスの気泡
流れにのせて除去して吐出することができる。このよう
にして第1及び第2板状電極29、30表面に付着する
ガスによって有効電極面積が減少するのを防ぎ、ガスが
電解槽内部に滞留して電気抵抗を増加させたり電流経路
を遮断したりするのを抑えることができ、これによって
電解電圧の上昇を防ぐと同時に初期の電解性能を長期に
亘って維持することができる。そして第1及び第2板状
電極29、30と原水との接触面積が大きくできること
から、より効果的に原水を電気分解しイオン水を生成す
ることができる。この実施例では第1及び第2板状電極
29、30は、チタン基体に白金が2μmの厚みで電気
メッキで被覆されたチタン製エキスパンドメタル(板厚
0.5mm、線幅0.5mm、単位開口面積1.95m
2 )を用いている。ここで白金をメッキするのは板状
電極の導電性を良くして金属の溶出を抑え押さえ電極の
耐食性を向上させるためである。したがって白金に代え
て白金族等の貴金属を使用するのも適当である。エキス
パンドメタルの板厚,線幅,単位開口面積によって電極
のターフェル係数が異なるため、電極の電解特性が変化
する。このため電解槽の容積、原水の流量、生成するイ
オン水のpH濃度などによって適当なエキスパンドメタ
ルを使用することが望ましい。一方エキスパンドメタル
の平面精度によって互いの板状電極間距離が変動した
り、隔膜を損傷したりするのでこの平面精度は±0.0
5mmとしている。エキスパンドメタルはレーザーカッ
ターで切断し、その一端に入力端子27及び28を形成
するチタン棒(30mm×0.5mmφ)を後述するよ
うに後から溶接して取り付け、第1及び第2板状電極2
9、30としている。図2に示すように、本実施例の電
解槽は、第1のケース34と第2のケース35を互いに
対向させて上記積層体を覆い、第1のケース34と第2
のケース35のそれぞれを止め具36で挟持したもので
ある。この第1及び第2のケース34、35とも防水性
を有する樹脂等で形成するのが適当で、同時に電気的絶
縁性を有する材料であるのが望ましい。これによって第
1及び第2板状電極に印加される電解電圧の漏電を防ぐ
のである。ところで、第1のケース34には、入力端子
27及び28のそれぞれの位置に貫通孔が設けられてい
る。上記積層体を第1のケース34と第2のケース35
で挟持固定した後、外方からチタン棒を溶接することで
入力端子27及び28を形成している。しかし予め入力
端子27及び28を第1及び第2の板状電極29、30
に取り付けておくのも可能である。このときは第1のケ
ース34の貫通孔にこれら入力端子27及び28が挿入
できるように、第1のケース34に溝や余裕をもたせる
ことが必要である。また第1のケース34と第2のケー
ス35の嵌合部にパッキング等を介して止め具36で締
め付け防水性を有する電解槽を形成する。本実施例の電
解槽は、第1スペーサ20、第1板状電極29、第1C
字状スペーサ24、隔膜26、第2C字状スペーサ2
5、第2板状電極30、第2スペーサ21を順に積層し
て、第1のケース34と第2のケース35とにより両側
から挟持して固定するだけであるので、組立がきわめて
容易である。そして電解槽の幅を数10mm、長手方向
長さを100mm前後の大きさにすることができ、小
型、薄型の電解槽を実現できる。
Here, the first plate electrode 29 and the second plate electrode 30 will be described. The two plate-shaped electrodes are water-permeable, and are suitably provided with a plurality of holes in a direction substantially perpendicular to the inflow direction of raw water supplied from the lower part of the electrolytic cell. A mesh, a porous material or a resin formed into a honeycomb shape is suitable. As a result, a flow path of ion water can be formed inside the electrode.
The ionic water generated between the C-shaped spacer 24 and the first plate-shaped electrode 29 and between the second C-shaped spacer 25 and the second plate-shaped electrode 30 is transferred through the flow path inside the plate-shaped electrode and from each discharge path. Is ejected. The flow velocity of the ionized water transferred inside the plate-like electrode is high, and the ionized water is generated on the surface of the diaphragm 26 or in the vicinity of the electrode, and then is condensed and attached to the gas bubbles such as hydrogen and oxygen to be removed and discharged. be able to. In this way, the effective electrode area is prevented from decreasing due to the gas adhering to the surfaces of the first and second plate-shaped electrodes 29 and 30, and the gas stays inside the electrolytic cell to increase the electric resistance and interrupt the current path. Therefore, it is possible to prevent the rise of the electrolysis voltage, and at the same time, to maintain the initial electrolysis performance for a long period of time. Since the contact area between the first and second plate electrodes 29, 30 and the raw water can be increased, the raw water can be electrolyzed more effectively to generate ionic water. In this embodiment, the first and second plate-shaped electrodes 29 and 30 are made of titanium expanded metal (plate thickness 0.5 mm, line width 0.5 mm, unit, unit of which is obtained by coating a titanium substrate with platinum to a thickness of 2 μm by electroplating. Opening area 1.95m
m 2 ) is used. The reason for plating platinum here is to improve the conductivity of the plate-like electrode and suppress the elution of metal to improve the corrosion resistance of the electrode. Therefore, it is also appropriate to use a noble metal such as platinum group in place of platinum. Since the Tafel coefficient of the electrode varies depending on the plate thickness, line width, and unit opening area of the expanded metal, the electrolytic characteristics of the electrode change. Therefore, it is desirable to use an appropriate expanded metal depending on the volume of the electrolytic cell, the flow rate of the raw water, the pH concentration of the generated ion water, and the like. On the other hand, the flatness of the expanded metal causes the distance between the plate-like electrodes to fluctuate and the diaphragm to be damaged.
It is set to 5 mm. The expanded metal is cut with a laser cutter, and a titanium rod (30 mm × 0.5 mmφ) forming the input terminals 27 and 28 is attached to one end of the expanded metal by welding it later, as described later.
It is 9 and 30. As shown in FIG. 2, in the electrolytic cell of the present embodiment, the first case 34 and the second case 35 are opposed to each other to cover the above-mentioned laminated body, and the first case 34 and the second case
Each of the cases 35 is clamped by a stopper 36. It is suitable that both the first and second cases 34 and 35 are formed of a resin having a waterproof property, and at the same time, a material having an electrical insulating property is desirable. This prevents leakage of the electrolytic voltage applied to the first and second plate electrodes. By the way, through holes are provided in the first case 34 at the respective positions of the input terminals 27 and 28. The laminated body is provided with a first case 34 and a second case 35.
After being sandwiched and fixed by, the input terminals 27 and 28 are formed by welding a titanium rod from the outside. However, the input terminals 27 and 28 are previously connected to the first and second plate-like electrodes 29, 30.
It is also possible to attach it to. At this time, it is necessary to provide the first case 34 with a groove and a margin so that the input terminals 27 and 28 can be inserted into the through holes of the first case 34. In addition, an electrolytic cell having waterproofness is formed at the fitting portion of the first case 34 and the second case 35 with a stopper 36 via packing or the like. The electrolytic cell of this embodiment includes a first spacer 20, a first plate-shaped electrode 29, and a first C
V-shaped spacer 24, diaphragm 26, second C-shaped spacer 2
5, the second plate electrode 30, and the second spacer 21 are laminated in this order, and the first case 34 and the second case 35 are simply sandwiched and fixed from both sides, so that the assembly is extremely easy. . The width of the electrolytic cell can be set to several tens of millimeters and the length in the longitudinal direction can be set to about 100 mm, so that a small and thin electrolytic cell can be realized.

【0022】以上のように構成された電解槽について、
以下その動作を図1及び図2に基づいて説明する。原水
供給路33から供給された原水は矢印aに示したように
移送され、矢印b及びeで示した第1スペーサ20及
び、第2スペーサ21の枠内のそれぞれに形成され流路
と、矢印c及びdで示した第1C字状スペーサ24及び
第2C字状スペーサ25の枠内のそれぞれに形成された
流路とに分流される。このとき第1板状電極29には正
電圧が印加され陽電極に、第2板状電極30には負電圧
が印加されて陰電極を形成している。矢印bの流路を移
送する原水は陽電極で電気分解され酸性イオン水となり
矢印fの流路から、矢印cの流路を移送する原水は同様
に電気分解され酸性イオン水となって、第1板状電極2
9に設けた複数の孔をそれぞれ通過し(矢印gは流路の
一例)、第2吐出路32を経て矢印kの流路から吐出す
る。矢印eの流路を移送する原水は陰電極で電気分解さ
れアルカリ性イオン水となり矢印hの流路から、矢印d
の流路を移送する原水は同様に電気分解されアルカリ性
イオン水となって、第2板状電極30に設けた複数の孔
をそれぞれ通過し(矢印iは流路の一例)、第1吐出路
31を経て矢印lの流路から吐出する。一方陽極室に生
成する塩素イオン等の陰イオンは陽イオン交換膜で形成
された隔膜26を透過することがないので、2つの板状
電極の電極間距離が1mm以下にもかかわらず陰極室で
生成するアルカリ性イオン水の残留塩素濃度を抑えるこ
とができる。
Regarding the electrolytic cell constructed as described above,
The operation will be described below with reference to FIGS. 1 and 2. Raw water supplied from the raw water supply path 33 is transferred as shown by an arrow a, and a flow path is formed in each of the frames of the first spacer 20 and the second spacer 21 shown by arrows b and e, and an arrow. The flow is divided into the flow paths formed in the frames of the first C-shaped spacer 24 and the second C-shaped spacer 25 shown by c and d, respectively. At this time, a positive voltage is applied to the first plate electrode 29 to form a positive electrode, and a negative voltage is applied to the second plate electrode 30 to form a negative electrode. The raw water transferred through the flow path of arrow b is electrolyzed at the positive electrode to become acidic ionized water, and the raw water transferred through the flow path of arrow c is similarly electrolyzed to acidic ionized water. 1 plate electrode 2
The gas passes through a plurality of holes provided in 9 (arrow g is an example of the flow path), and is discharged from the flow path of the arrow k through the second discharge path 32. The raw water transferred through the flow path indicated by arrow e is electrolyzed by the negative electrode to become alkaline ionized water, and from the flow path indicated by arrow h to the arrow d.
Similarly, the raw water transferred through the channel is electrolyzed into alkaline ionized water, passes through each of the plurality of holes provided in the second plate electrode 30 (arrow i is an example of the channel), and the first discharge channel is formed. It discharges from the flow path of the arrow l via 31. On the other hand, since anions such as chlorine ions generated in the anode chamber do not pass through the diaphragm 26 formed of the cation exchange membrane, in the cathode chamber even if the distance between the two plate electrodes is 1 mm or less. The residual chlorine concentration of the generated alkaline ionized water can be suppressed.

【0023】ここで電解中に発生し第1及び第2板状電
極29、30や隔膜26の周辺や表面に凝集して付着し
たガスの気泡は流れる水によって除去され、イオン水に
溶存して電解槽系外に放出される。矢印c及びdの流路
を移送するイオン水の流速は充分早いことから、第1及
び第2板状電極29、30に設けた複数の孔の内部や隔
膜26の表面に凝集して付着したガスを効果的に除去
し、イオン水に溶存して電解槽系外に放出することがで
きる。
Here, gas bubbles generated during the electrolysis and aggregating and adhering to the periphery and the surface of the first and second plate electrodes 29, 30 and the diaphragm 26 are removed by flowing water and dissolved in ionic water. It is discharged outside the electrolytic cell system. Since the flow velocity of the ion water transferred through the flow paths indicated by arrows c and d is sufficiently high, the ion water is aggregated and adhered inside the plurality of holes provided in the first and second plate electrodes 29 and 30 and on the surface of the diaphragm 26. The gas can be effectively removed, dissolved in ionized water, and discharged outside the electrolytic cell system.

【0024】つぎに本実施例の電解槽の特性について説
明する。この電解槽に毎分2.5Lの水道水を原水とし
て陰極室及び陽極室に4:1の比率で供給し、温度25
℃、電流密度5A/dm2 で電気分解したところ、原水
のpHが7.5のとき陰極室ではpHが10.9のアル
カリ性イオン水が、陽極室ではpHが2.9の酸性イオ
ン水が得られた。このときの電解電圧は約4.4Vで下
記の式から計算したエネルギー効率は約4.6%であっ
た。
Next, the characteristics of the electrolytic cell of this embodiment will be described. 2.5 L / min of tap water was supplied as raw water to the electrolytic chamber at a ratio of 4: 1 to the cathode chamber and the anode chamber at a temperature of 25
When electrolyzed at a temperature of 5 ° C. and a current density of 5 A / dm 2 , alkaline ionized water having a pH of 10.9 in the cathode chamber and acidic ionized water having a pH of 2.9 in the cathode chamber when the pH of the raw water was 7.5. Was obtained. The electrolysis voltage at this time was about 4.4 V, and the energy efficiency calculated from the following formula was about 4.6%.

【0025】 エネルギー効率=Vt/V×電流効率 電流効率=Wt×Q0 /Q×100 Vt:当該電気化学反応の理論分解電圧 V:当該電気化学反応操作に投入した電解電圧 Wt:製造量 Q0 :理論通電量 Q:実際通電量 またアルカリ性イオン水の残留塩素濃度は0.1mg/
L以下であった。水道水中の塩素濃度は0.4mg/L
であるから無視できるような濃度である。
Energy efficiency = Vt / V × current efficiency Current efficiency = Wt × Q 0 / Q × 100 Vt: theoretical decomposition voltage of the electrochemical reaction V: electrolysis voltage applied to the electrochemical reaction operation Wt: production amount Q 0 : theoretical energization amount Q: actual energization amount The residual chlorine concentration of alkaline ionized water is 0.1 mg /
It was below L. Chlorine concentration in tap water is 0.4 mg / L
Therefore, the concentration is negligible.

【0026】上記実施例と同じ条件で従来例(電極間距
離は約5mm)に示した電解槽を用いて同じ水道水を電
気分解したところ、必要な電解電圧は約13Vでエネル
ギー効率は約1.5%で、生成したアルカリ性イオン水
の残留塩素濃度は0.1mg/L以下であった。このよ
うに本実施例による電解槽によれば従来例に比べて、エ
ネルギー効率は約3倍と大きく改善され必要電解電圧が
約1/3の大きさでよく、さらに生成したアルカリ性イ
オン水の残留塩素濃度は電極間距離の大きい従来例と同
じ程度である。このように電極間距離を短くした電解槽
を用いて小型化した本実施例のイオン水生成器は、エネ
ルギー効率が大きく、必要電解電圧を低くして改善さ
れ、アルカリ性イオン水の残留塩素濃度も高くなること
がなく安全な引用水を供給することができる。
When the same tap water was electrolyzed using the electrolytic cell shown in the conventional example (distance between electrodes is about 5 mm) under the same conditions as in the above example, the required electrolysis voltage was about 13 V and the energy efficiency was about 1. At 0.5%, the residual chlorine concentration of the produced alkaline ionized water was 0.1 mg / L or less. As described above, according to the electrolytic cell of the present embodiment, the energy efficiency is greatly improved to about 3 times that of the conventional example, the required electrolysis voltage may be about 1/3, and the generated alkaline ionized water remains. The chlorine concentration is about the same as in the conventional example in which the distance between the electrodes is large. The ion water generator of this embodiment, which is miniaturized by using the electrolytic cell having a short distance between the electrodes, has a large energy efficiency and is improved by reducing the required electrolysis voltage, and the residual chlorine concentration of alkaline ionized water is also improved. It is possible to supply safe quoted water without increasing the price.

【0027】つぎに本実施例の複数の孔を有する第1及
び第2板状電極29、30に代えて孔のない緻密な白金
被覆チタン製電極を用い、上記実施例と同一の条件で水
道水を電気分解したところ、陰極室ではpH10.3の
アルカリ性イオン水が、陽極室ではpHが3.4の酸性
イオン水が得られたが、必要電解電圧は本実施例の4.
4Vに比べ12.5Vと高く、したがってエネルギー効
率は約1.3%と低かった。このことから電極は有効電
極面積を大きくできる多孔質の板状電極であることが適
当である。
Next, in place of the first and second plate-like electrodes 29 and 30 having a plurality of holes of the present embodiment, a dense platinum-coated titanium electrode having no holes was used, and the tap water was supplied under the same conditions as in the above embodiment. When the water was electrolyzed, alkaline ionized water having a pH of 10.3 was obtained in the cathode chamber and acidic ionized water having a pH of 3.4 was obtained in the anode chamber, but the required electrolysis voltage was 4.
It was as high as 12.5V as compared with 4V, and therefore the energy efficiency was low at about 1.3%. From this, it is appropriate that the electrode is a porous plate-like electrode that can increase the effective electrode area.

【0028】さらに本実施例の隔膜26に使用した陽イ
オン交換膜に換えてイオン透過性膜(商品名ユミフロン
#MF250)を用い、上記実施例と同一の条件で水道
水を電気分解したところ、陰極室ではpH9.9のアル
カリ性イオン水が、陽極室ではpH3.4の酸性イオン
水が得られたが、必要電解電圧は約4.6Vでエネルギ
ー効率は約3.6%と本実施例と同等であるが、アルカ
リ性イオン水の残留塩素濃度は5.2mg/Lと約50
倍の濃度にまで達している。このことから本実施例に用
いる隔膜26は陽イオン交換膜であることが望ましい。
Further, the cation exchange membrane used in the diaphragm 26 of the present example was replaced with an ion permeable membrane (trade name: Yumiflon # MF250), and tap water was electrolyzed under the same conditions as in the above example. Although alkaline ionized water having a pH of 9.9 was obtained in the cathode chamber and acidic ionized water having a pH of 3.4 was obtained in the anode chamber, the required electrolysis voltage was about 4.6 V and the energy efficiency was about 3.6%. Although it is equivalent, the residual chlorine concentration of alkaline ionized water is 5.2 mg / L, which is about 50.
The concentration has doubled. Therefore, the diaphragm 26 used in this embodiment is preferably a cation exchange membrane.

【0029】続いて本発明の他の実施例であるイオン水
生成器について説明する。図3の従来イオン水生成器と
電解槽5の周りを除いて同一であり、詳細な説明は図3
の説明に譲り省略する。原水管2から送られた原水は浄
水器3、ミネラル添加筒4を経て、電解槽5に送られ
る。電解槽5は図1、図2に示すものであり、生成され
たイオン水は陰極側処理水吐出路6と陰極側処理水吐出
路7から吐出される。この電解槽の説明は上記実施例の
説明に譲る。このように本実施例のイオン水生成器は電
気分解に必要な電解電圧を低くし、陰極室側の残留塩素
濃度を低く抑えて飲用に適したイオン水を生成すること
ができ、小型で軽量のイオン水生成器を提供するを得る
ことができる。
Next, an ionized water generator which is another embodiment of the present invention will be described. The conventional ionized water generator of FIG. 3 and the electrolytic cell 5 are the same except for the surroundings.
The description is omitted here. The raw water sent from the raw water pipe 2 is sent to the electrolytic cell 5 through the water purifier 3 and the mineral addition cylinder 4. The electrolytic bath 5 is as shown in FIGS. 1 and 2, and the generated ion water is discharged from the cathode side treated water discharge passage 6 and the cathode side treated water discharge passage 7. The description of this electrolytic cell will be omitted from the description of the above embodiment. As described above, the ion water generator of the present embodiment can reduce the electrolysis voltage required for electrolysis and suppress the residual chlorine concentration on the cathode chamber side to generate ion water suitable for drinking, which is small and lightweight. It is possible to obtain an ion water generator.

【0030】[0030]

【発明の効果】以上の実施例から明らかなように本発明
によれば、短い筒状の枠からなる第1スペーサと、第1
スペーサとは一半側の外形形状が略同一であって他の一
半側にかけての長手方向長さが第1スペーサより短い外
形形状を有し且つ周囲に外縁が形成された水透過性の第
1板状電極と、第1板状電極とは一半側の外形形状が略
同一のC字状枠であって他の一半側にかけての長手方向
長さが第1スペーサより短い脚が延びた第1C字状スペ
ーサと、第1C字状スペーサとは一半側の外形形状が略
同一であって他の一半側にかけての長手方向長さが第1
板状電極と略同一の外形形状を有した隔膜と、第1C字
状スペーサと略同一の外形形状を有した第2C字状スペ
ーサと、第1板状電極と略同一の外形形状を有した水透
過性の第2板状電極、及び第1スペーサと略同一の外形
形状を有した第2スペーサをそれぞれ一半側の外形を揃
えて順に積層して積層体を形成し、カップ形状を有し側
面に原水供給路及び底面に第1吐出路を設けた第1のケ
ースと、少なくとも底面を有し底面に第2吐出路を設け
た第2のケースを互いに対向させて積層体を覆うととも
に、第1のケースと第2のケースのそれぞれの底面で積
層体を挟持しているから、電極間距離を短くして電解槽
を小型にし、エネルギー効率を高め電解電圧を低く抑え
ることができる。また挟持するだけであるから組立が容
易であり、積層することで流路を構成するとともに寸法
管理を確実に行うことができる。
As is apparent from the above embodiments, according to the present invention, the first spacer having a short cylindrical frame and the first spacer are provided.
A water-permeable first plate that has an outer shape on one half side that is substantially the same as that of the spacer, and has a length on the other half side that is shorter than the first spacer in the longitudinal direction, and has an outer edge formed around the outer shape. -Shaped electrode and first plate-shaped electrode are C-shaped frames whose outer shapes on one half side are substantially the same, and a first C-shape in which a leg whose longitudinal length to the other half side is shorter than the first spacer extends -Shaped spacers and the first C-shaped spacers have substantially the same outer shape on one half side and have a first longitudinal length extending to the other half side.
A diaphragm having substantially the same outer shape as the plate electrode, a second C-shaped spacer having substantially the same outer shape as the first C-shaped spacer, and substantially the same outer shape as the first plate electrode. A water-permeable second plate-shaped electrode and a second spacer having a substantially same outer shape as the first spacer are sequentially laminated with the outer shapes on one half side aligned to form a laminated body, which has a cup shape. The first case having the raw water supply passage on the side surface and the first discharge passage on the bottom surface and the second case having at least the bottom surface and the second discharge passage on the bottom surface are opposed to each other to cover the laminated body, Since the laminated body is sandwiched between the bottom surfaces of the first case and the second case, the distance between the electrodes can be shortened, the electrolytic cell can be downsized, the energy efficiency can be increased, and the electrolysis voltage can be suppressed low. Further, since they are only sandwiched, they can be easily assembled, and by stacking them, a flow path can be formed and dimensional control can be surely performed.

【0031】また、隔膜が陽イオン交換膜からなるか
ら、陰極室で生成するイオン水の残留塩素濃度の増加を
抑えることができる。
Further, since the diaphragm is made of a cation exchange membrane, it is possible to suppress an increase in the residual chlorine concentration of ionized water generated in the cathode chamber.

【0032】また、第1板状電極と第2板状電極のいず
れもが多孔質材料から構成されているから、有効電極面
積を大きくしてエネルギー効率を高めることができる。
Further, since both the first plate-shaped electrode and the second plate-shaped electrode are made of a porous material, it is possible to increase the effective electrode area and improve the energy efficiency.

【0033】また、浄水器の外に、前記の電解槽を備え
ているから、小型で組立が容易で寿命が長く、安全な飲
用のイオン水を生成するイオン水生成器を得ることがで
きる。
Further, since the electrolytic cell is provided in addition to the water purifier, it is possible to obtain an ion water generator which is small in size, easy to assemble, has a long service life, and produces safe ion water for drinking.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における電解槽の部分拡大斜
視図
FIG. 1 is a partially enlarged perspective view of an electrolytic cell according to an embodiment of the present invention.

【図2】本発明の一実施例における電解槽の斜視断面図FIG. 2 is a perspective sectional view of an electrolytic cell according to an embodiment of the present invention.

【図3】従来のイオン水生成器及びイオン水生成方法を
示す概略全体図
FIG. 3 is a schematic overall view showing a conventional ion water generator and a conventional ion water generation method.

【符号の説明】[Explanation of symbols]

1 イオン水生成器 2 原水管 3 浄水器 4 ミネラル添加筒 5 電解槽 6 陰極側処理水吐出路 7 陽極側処理水吐出路 8a 陰極側給水路 8b 陽極側給水路 9 陰極板 10 陰極室 11 陽極板 12 陽極室 13 陰極端子 14 陽極端子 15 隔膜 20 第1スペーサ 21 第2スペーサ 22、23 外縁 24 第1C字状スペーサ 25 第2C字状スペーサ 26 隔膜 27、28 入力端子 29 第1板状電極 30 第2板状電極 31 第1吐出路 32 第2吐出路 33 原水供給路 34 第1のケース 35 第2のケース 36 止め具 1 Ionized water generator 2 Raw water pipe 3 Water purifier 4 Mineral addition cylinder 5 Electrolyzer 6 Cathode side treated water discharge passage 7 Anode side treated water discharge passage 8a Cathode side water supply passage 8b Anode side water supply passage 9 Cathode plate 10 Cathode chamber 11 Anode Plate 12 anode chamber 13 cathode terminal 14 anode terminal 15 diaphragm 20 first spacer 21 second spacer 22, 23 outer edge 24 first C-shaped spacer 25 second C-shaped spacer 26 diaphragm 27, 28 input terminal 29 first plate-shaped electrode 30 2nd plate-shaped electrode 31 1st discharge path 32 2nd discharge path 33 Raw water supply path 34 1st case 35 2nd case 36 Stopper

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】短い筒状の枠からなる第1スペーサと、前
記第1スペーサとは一半側の外形形状が略同一であって
他の一半側にかけての長手方向長さが前記第1スペーサ
より短い外形形状を有し且つ周囲に外縁が形成された水
透過性の第1板状電極と、前記第1板状電極とは一半側
の外形形状が略同一のC字状枠であって他の一半側にか
けての長手方向長さが前記第1スペーサより短い第1C
字状スペーサと、前記第1C字状スペーサとは一半側の
外形形状が略同一であって他の一半側にかけての長手方
向長さが前記第1板状電極と略同一の外形形状を有した
隔膜と、前記第1C字状スペーサと略同一の外形形状を
有した第2C字状スペーサと、前記第1板状電極と略同
一の外形形状を有した水透過性の第2板状電極、及び前
記第1スペーサと略同一の外形形状を有した第2スペー
サをそれぞれ前記一半側の外形を揃えて順に積層して積
層体を形成し、カップ形状を有し側面に原水供給路及び
底面に第1吐出路を設けた第1のケースと、少なくとも
底面を有し前記底面に第2吐出路を設けた第2のケース
を互いに対向させて前記積層体を覆うとともに、前記第
1のケースと前記第2のケースのそれぞれの前記底面で
前記積層体を挟持したことを特徴とする電解槽。
1. A first spacer comprising a short tubular frame and the first spacer have substantially the same outer shape on one half side, and have a longitudinal length extending to the other half side from the first spacer. A water-permeable first plate-like electrode having a short outer shape and an outer edge formed around the water-permeable first plate-like electrode is a C-shaped frame whose outer shape on one half side is substantially the same. The first C having a length in the longitudinal direction extending to one half side of the first C is shorter than that of the first spacer.
The V-shaped spacer and the first C-shaped spacer have substantially the same outer shape on one half side, and the longitudinal length extending to the other half side is substantially the same as the first plate electrode. A diaphragm, a second C-shaped spacer having substantially the same outer shape as the first C-shaped spacer, and a water-permeable second plate-shaped electrode having substantially the same outer shape as the first plate-shaped electrode, And second spacers having substantially the same outer shape as the first spacers are sequentially laminated with the outer shapes on the one half side aligned to form a laminated body, which has a cup shape and has a raw water supply path on the side surface and a bottom surface. A first case provided with a first discharge passage and a second case having at least a bottom surface and provided with a second discharge passage on the bottom surface are opposed to each other to cover the laminated body, and the first case is provided. Clamping the laminate on the bottom surface of each of the second cases Electrolyzer, characterized in that the.
【請求項2】前記隔膜が陽イオン交換膜からなることを
特徴とする請求項1記載の電解槽。
2. The electrolytic cell according to claim 1, wherein the diaphragm is a cation exchange membrane.
【請求項3】前記第1板状電極と前記第2板状電極のい
ずれもが多孔質材料から構成されていることを特徴とす
る請求項1または2記載の電解槽。
3. The electrolytic cell according to claim 1, wherein both the first plate-shaped electrode and the second plate-shaped electrode are made of a porous material.
【請求項4】浄水器と、請求項1〜3のいずれかに記載
の電解槽を備えたことを特徴とするイオン水生成器。
4. An ion water generator comprising a water purifier and the electrolytic cell according to claim 1.
JP7045626A 1995-03-06 1995-03-06 Electrolytic cell and ion water maker Pending JPH08238482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7045626A JPH08238482A (en) 1995-03-06 1995-03-06 Electrolytic cell and ion water maker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7045626A JPH08238482A (en) 1995-03-06 1995-03-06 Electrolytic cell and ion water maker

Publications (1)

Publication Number Publication Date
JPH08238482A true JPH08238482A (en) 1996-09-17

Family

ID=12724588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7045626A Pending JPH08238482A (en) 1995-03-06 1995-03-06 Electrolytic cell and ion water maker

Country Status (1)

Country Link
JP (1) JPH08238482A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067336A (en) * 2010-09-21 2012-04-05 Masaaki Arai Apparatus for manufacturing electrolytic water, and method for manufacturing the electrolytic water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012067336A (en) * 2010-09-21 2012-04-05 Masaaki Arai Apparatus for manufacturing electrolytic water, and method for manufacturing the electrolytic water

Similar Documents

Publication Publication Date Title
JP3349710B2 (en) Electrolyzer and electrolyzed water generator
KR100479644B1 (en) Electrolysis apparatus and electrolyzed water generator, oxygen dissolved water purifier and ionizer using thereof
MXPA03007923A (en) Method and apparatus for producing negative and positive oxidative reductive potential (orp) water.
JP3007137B2 (en) Electrolytic ozone generation method and apparatus
JPH11104648A (en) Seawater electrolyzing apparatus
CN103951020A (en) Health water dispenser
JP4751994B1 (en) Electrolyzed water production apparatus having a diaphragm electrolytic cell and a non-diaphragm electrolytic cell
KR102168258B1 (en) Membrane electrode assembly and electrolyzed water production device using the same
CN203833687U (en) Healthy water dispenser
JP5282201B2 (en) Electrolyzed water generator
JP2005144240A (en) Electrolytic cell and electrolytic water generator
KR20050020298A (en) making apparatus of electrolysis water
KR20020072193A (en) Water electrolysis cell and electrolysis system using it
JPH08238482A (en) Electrolytic cell and ion water maker
JP2002273428A (en) Electrolytic water generator
JP3677078B2 (en) Method and apparatus for producing hydrogen peroxide water
JP3550858B2 (en) Electrolysis device and ion water generator
JPS5848686A (en) Cation exchange membrane for electrolyzing aqueous solution of alkali chloride
JP3568290B2 (en) Electrolyzed water generator
JP3645636B2 (en) 3-chamber electrolytic cell
KR101211614B1 (en) Neutral Reduced Water Generation System Using Hydrogen Permeation Electrode
KR200283468Y1 (en) Water electrolysis cell and electrolysis system using it
JPH11221566A (en) Production of electrolytic water
JP2605642B2 (en) Electrolytic ionic water generating apparatus and electrolytic ionic water generating method
JP3498378B2 (en) Ion water generator