JPH08238456A - Gas flow classifying method and gas flow classifying apparatus - Google Patents

Gas flow classifying method and gas flow classifying apparatus

Info

Publication number
JPH08238456A
JPH08238456A JP7044517A JP4451795A JPH08238456A JP H08238456 A JPH08238456 A JP H08238456A JP 7044517 A JP7044517 A JP 7044517A JP 4451795 A JP4451795 A JP 4451795A JP H08238456 A JPH08238456 A JP H08238456A
Authority
JP
Japan
Prior art keywords
classified
raw material
particles
airflow
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7044517A
Other languages
Japanese (ja)
Inventor
Iyuu Yoshimi
偉雄 吉見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP7044517A priority Critical patent/JPH08238456A/en
Publication of JPH08238456A publication Critical patent/JPH08238456A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B7/00Selective separation of solid materials carried by, or dispersed in, gas currents
    • B07B7/08Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force
    • B07B7/086Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by the winding course of the gas stream
    • B07B7/0865Selective separation of solid materials carried by, or dispersed in, gas currents using centrifugal force generated by the winding course of the gas stream using the coanda effect of the moving gas stream

Abstract

PURPOSE: To efficiently carry out gas classification for a raw material to be classified at high precision by selecting and taking particles with a prescribed particle size or higher from the raw material to be classified before the gas flow classification for the raw material. CONSTITUTION: After a raw material 15 to be classified is gathered in a dust collecting apparatus 32, the raw material is supplied to a vibration sieve 40 and particles with a prescribed particle size or higher are removed from the raw material 15 to be classified and the removed particles are sent to a pulverizing apparatus 50 through a pipe 42 and a treatment to make particle size small is carried out. Meanwhile, the raw material 15 which passes the vibration sieve 40 is sent to a pipeline 35 through a hopper 33 and a quantitative feeder 34, and in such a state that the raw material is mixed with compressed air, the raw material 15 is sprayed by a material feed nozzle 16 to a raw material selecting chamber of a gas flow classifier 1 and classified by air current. Particles with smaller particle size than that of particles to become products are collected as a fine powder by a dust collector 36, particles which become products are collected as a middle powder by a dust collector 37, and particles with larger particle size than that of the particles to become products are collected as a rough powder by a dust collector 38.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、種々の粒径の粒子が混
在する被分級原科をコアンダ効果を利用して粒径別に分
級する気流分級方法および気流分級装置に関し、より詳
しくは前記被分級原料を分級する精度を向上させる技術
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air flow classification method and air flow classification device for classifying a raw material to be classified in which particles having various particle sizes are mixed according to the particle size by utilizing the Coanda effect. The present invention relates to a technique for improving the accuracy of classifying a classification material.

【0002】[0002]

【従来の技術】粉砕処理により微粒子化された原材料
は、通常、粗い粒子のものから非常に細かい粒子のもの
まで様々な粒径の粒子が混じりあった状態にある。従っ
て、微粒子化された原材料を工業的に利用する場合に
は、粉砕処理後の原材料にいわゆる分級処理を施して所
望の範囲の粒子径別に分類するようにされている。な
お、ここで言う分級とは、流体中を重力や遠心力または
慣性力で運動する粒子にはその粒子径により沈降速度あ
るいは粒子経路に差ができることを利用して粒子を粒径
の大きさ毎に分別する操作で、例えば、複写機用のトナ
ーのごとき粉体を製造する場合には、種々の粒径の粒子
が混在するトナー原料を気流中に噴射し、コアンダ効果
によって生じる粒径によって異なる飛散降下経路の差を
利用してトナー原料を粒径別に分類する気流分級機が広
く用いられている。
2. Description of the Related Art A raw material which has been made into fine particles by a pulverization process is usually in a state in which particles having various particle sizes are mixed, from coarse particles to very fine particles. Therefore, when the finely divided raw material is industrially used, the raw material after the pulverization treatment is subjected to a so-called classification treatment so that the raw material is classified according to the particle diameter in a desired range. The classification here means that particles moving in a fluid by gravity, centrifugal force, or inertial force can differ in settling velocity or particle path depending on the particle diameter, and therefore the particles are classified according to their size. For example, in the case of producing powder such as toner for a copying machine, the toner raw material mixed with particles of various particle diameters is jetted into the air flow, and it depends on the particle diameter generated by the Coanda effect. Airflow classifiers are widely used that classify toner raw materials by particle size by utilizing the difference in the scattering and descending paths.

【0003】図6は、このような気流分級機の従来例を
模式的に示したものである。この気流分級機1は、第1
および第2の分級エッジ2、3およびコアンダブロック
4および背面ブロック5によって分岐させた3個の分級
用の排気流路7、8、9が室の出口側に開設されるとと
もに、2個の入気流路11、l2が室の入口側に開設さ
れた原料選別室14と、前記入気流路1l、12から各
排気流路7、8、9に向って流れる気流を生じさせる図
示略の気流形成手段(例えば排風機)と、圧縮気体19
(通常は圧縮空気)を利用して前記原料選別室14内に
被分級原料l5を圧送・噴射する原料供給ノズル16と
を備えた構成となっている。
FIG. 6 schematically shows a conventional example of such an air flow classifier. This airflow classifier 1 is the first
Also, three classification exhaust flow paths 7, 8 and 9 branched by the second classification edges 2 and 3 and the Coanda block 4 and the back block 5 are opened on the outlet side of the chamber and two A raw material sorting chamber 14 having air passages 11 and 12 opened on the inlet side of the chamber, and an air flow formation (not shown) for generating air flows from the air inlet passages 11 and 12 toward the exhaust passages 7, 8, and 9. Means (for example, an exhaust fan) and compressed gas 19
A raw material supply nozzle 16 for pumping and injecting the classified raw material 15 is provided in the raw material selection chamber 14 using (usually compressed air).

【0004】ここに、被分級原料15は原料供給ノズル
16に供給されるとともに、該原料供給ノズル16に供
給される圧縮気体流19によって分散させられて、固気
混相流として原料供給ノズル16から原料選別室14内
に噴射される。そして、原料供給ノズル16から原料選
別室14内に噴射された被分級原料15を含む噴流は、
コアンダ効果によりコアンダブロック4に沿って流れ、
被分級原料15に遠心力が働き、被分級原料15内の比
較的粗い粒子はこのコアンダブロック4に沿って流れる
噴流から外に飛び出す。コアンダブロック4に沿って流
れる噴流の外側には、入気流路11、12から各排気流
路7、8、9に向かう気流が流れ、コアンダブロック4
に沿って流れる噴流から外側に向かって飛び出した被分
級原料15内の比較的粗い粒子は、この気流による粒子
毎に異なる飛散経路の差によって所定の粒径範囲毎に該
当の排気流路7、8、9に分別排出されるようになって
いる。
Here, the raw material 15 to be classified is supplied to the raw material supply nozzle 16 and dispersed by the compressed gas flow 19 supplied to the raw material supply nozzle 16 to form a solid-gas mixed phase flow from the raw material supply nozzle 16. It is injected into the raw material sorting chamber 14. The jet flow containing the classified raw material 15 injected from the raw material supply nozzle 16 into the raw material selection chamber 14 is
It flows along the Coanda block 4 by the Coanda effect,
Centrifugal force acts on the material to be classified 15, and the relatively coarse particles in the material 15 to be classified jump out from the jet stream flowing along the Coanda block 4. Outside the jet flow that flows along the Coanda block 4, airflows flowing from the intake air flow paths 11 and 12 to the exhaust flow paths 7, 8 and 9 flow,
The relatively coarse particles in the raw material to be classified 15 that have jumped outward from the jet flow that flows along the exhaust gas flow path 7 corresponding to each predetermined particle size range due to the difference in the scattering paths that are different for each particle due to this air flow. It is designed to be separated and discharged into 8 and 9.

【0005】コアンダ効果が作用する粒子の飛散降下経
路は、粒径が小さく慣性の小さいものほど曲率が大き
く、コアンダブロック4の気流接触面に沿って飛散降下
してコアンダブロック4に最も近い排気流路7に排出さ
れる。これに対して、粒径が大きく慣性の大きいものほ
ど飛散降下経路の曲率が小さく、コアンダブロック4か
ら遠く離れるように飛散降下して、コアンダブロック4
から最も遠い排気流路9に排出される。これにより、前
記排気流路7、8、9は、コアンダブロック4に一番近
い排気流路7が粒径の小さい粒子からなる微粉排出用、
原料供給ノズル16から一番離れた排気流路9が粒径が
大きい粒子からなる粗粉排出用、中間に位置した排気流
路8が中間の粒径を有する中粉排出用とされる。そし
て、各排気流路7、8、9に排出された被分級原料15
は、各排気流路7、8、9に管路21、22、23を介
して接続された図示を省略する集塵機によってそれぞれ
集塵され、もって粉体と空気とに分けられる。
The particle descending path on which the Coanda effect acts has a larger curvature as the particle size is smaller and the inertia is smaller, and scatters and descends along the air flow contact surface of the Coanda block 4 and is closest to the Coanda block 4. It is discharged to the road 7. On the other hand, the larger the particle size and the larger the inertia, the smaller the curvature of the scattering descending path, and the scattering descends further away from the Coanda block 4,
Is discharged to the exhaust flow path 9 furthest from. As a result, the exhaust flow paths 7, 8 and 9 are used for discharging fine powder in which the exhaust flow path 7 closest to the Coanda block 4 is made of particles having a small particle size.
The exhaust passage 9 farthest from the raw material supply nozzle 16 is for discharging coarse powder of particles having a large particle diameter, and the exhaust passage 8 located in the middle is for discharging intermediate powder having an intermediate particle diameter. Then, the classified raw material 15 discharged to each of the exhaust flow paths 7, 8 and 9
Are respectively collected by dust collectors (not shown) connected to the respective exhaust flow paths 7, 8, 9 via the conduits 21, 22, 23, and thus separated into powder and air.

【0006】[0006]

【発明が解決しようとする課題】ところで、被分級原料
を分級する精度を向上させるためには、図7に模式的に
示すように、粒径の大きい粒子ほどコアンダブロック4
からできるだけ遠ざかるように飛散降下させるととも
に、粒径の小さい粒子ほどコアンダブロック4に接近す
るように飛散降下させる必要がある。また、被分級原料
15に含まれる粒子が互いに凝集することなく、一つ一
つの粒子が確実に分散した状態で原料供給ノズル16か
ら原料選別室14中に噴射されることが必要である。そ
こで、被分級原料15を原料供給ノズル16から原料選
別室14中に噴射する圧縮空気流19の噴出速度を高め
ることにより、圧縮空気流19中に生じる剪断力を高
め、被分級原料15の分散性を高める必要がある。
By the way, in order to improve the accuracy of classifying the material to be classified, as shown schematically in FIG. 7, the larger the particle size, the larger the Coanda block 4 is.
It is necessary to make the particles fall as far away as possible from the above, and to make the particles having a smaller particle diameter fly closer to the Coanda block 4. Further, it is necessary that the particles contained in the raw material 15 to be classified do not agglomerate with each other, and that the particles are reliably dispersed and injected from the raw material supply nozzle 16 into the raw material selection chamber 14. Therefore, by increasing the ejection speed of the compressed air flow 19 for injecting the classified raw material 15 from the raw material supply nozzle 16 into the raw material selection chamber 14, the shearing force generated in the compressed air flow 19 is increased and the classified raw material 15 is dispersed. It is necessary to improve sex.

【0007】しかしながら、被分級原料15を原料供給
ノズル16から原料選別室14中に噴射する圧縮空気流
19の噴出速度を高めると、図7に示すように、被分級
原料15中に含まれる粒径の大きい粒子や大きい粒子と
類似の挙動を示す凝集塊のなかには背面ブロック5に衝
突し、跳ね返って中粉排出用の排気流路8や微粉排出用
の排気流路7中に入り込んでしまうものがある。このた
め、例えば排気流路8に連通する管路22を介して取り
出した中粉を製品とする場合には、製品中に所定の粒径
範囲から逸脱する粒径の大きい粒子や凝集塊が混入する
ことなって、製品の粒度品質が損なわれてしまう。
However, when the jetting speed of the compressed air stream 19 for injecting the classified material 15 from the material supply nozzle 16 into the material selection chamber 14 is increased, the particles contained in the classified material 15 as shown in FIG. Some large particles or agglomerates that behave similarly to large particles collide with the back block 5 and bounce off to enter the exhaust passage 8 for discharging medium powder and the exhaust passage 7 for discharging fine powder. There is. Therefore, for example, when the intermediate powder taken out through the conduit 22 communicating with the exhaust passage 8 is used as a product, particles or large agglomerates having a large particle diameter deviating from a predetermined particle diameter range are mixed in the product. As a result, the grain quality of the product is impaired.

【0008】また、図8に模式的に示すように、被分級
原料15中に含まれる粒子の粒径範囲が製品とする粒子
の粒径範囲よりも遥かに広い場合は、製品とする粒子は
図8中にハッチングを付して示す狭い領域を飛散降下す
ることとなって、第1および第2の分級エッジ2・3の
間隔を狭く設定しなければならず、製品の粒子を収集す
る効率が大きく低下してしまう。また、被分級原料15
中に、製品とする粒子の粒径範囲よりも大きい粒径を有
する粒子が多く含まれている場合には、製品とする粒子
の原料選別室14内における飛散降下が妨害されて所定
の排気流路8に入り込むことができず、気流の乱れ等の
原因により、気流分級の精度が低下してしまう。また、
分級領域における中粉や細粉の偏向においては、図10
に示すように、比較的粒径の大きい粗粉Lに対して、こ
の粗粉Lよりも粒径の小さい中粉Mや微粉Sが衝突する
ことによってこの中粉Mや微粉Sのそのあるべき飛散経
路が阻害される。この結果、中粉側に細粉が混入したり
或は粗粉側に中粉や微粉が混入する等の分級精度の低下
の問題もあった。なお、図中の矢印は各粒子の飛散方向
を示している。
Further, as shown schematically in FIG. 8, when the particle size range of the particles contained in the material to be classified 15 is much wider than the particle size range of the product particles, the product particles are Since the narrow area shown by hatching in FIG. 8 is scattered and descended, the interval between the first and second classification edges 2 and 3 must be set narrow, and the efficiency of collecting product particles is improved. Is greatly reduced. In addition, the material to be classified 15
When a large number of particles having a particle size larger than the particle size range of the particles to be the product are contained, the scattering and falling of the particles to be the product in the raw material sorting chamber 14 are obstructed, and a predetermined exhaust flow is generated. The airflow cannot be entered into the passage 8, and the accuracy of the airflow classification is deteriorated due to the turbulence of the airflow. Also,
In the deflection of the medium powder and the fine powder in the classification area, FIG.
As shown in FIG. 3, the coarse powder L having a relatively large particle diameter collides with the medium powder M or the fine powder S having a smaller particle diameter than the coarse powder L, so that the medium powder M or the fine powder S should have the desired shape. Dispersion route is obstructed. As a result, there is a problem that the classification accuracy is deteriorated, for example, fine powder is mixed in the medium powder side or medium powder or fine powder is mixed in the coarse powder side. The arrows in the figure indicate the scattering direction of each particle.

【0009】さらに、被分級原料15中に含まれる粒子
の粒径範囲が、製品とする粒子の粒径範囲よりも大きい
側に偏っている場合は、製品とする粒子はコアンダブロ
ック4に接近して飛散降下するので、図8に示すよう
に、第1および第2の分級エッジ2・3を、その先端が
コアンダブロック4に接近するように傾斜させなければ
ならない。この場合、第1および第2の分級エッジ2・
3は、図9に示すように原料選別室14中を流れる気流
に対して傾斜して伸びることとなるので、分級エッジ2
・3の上流側の側面に粒子が衝突して側面が摩耗したり
粒子が付着したりする。さらには、分級エッジ2・3の
下流側に渦流が発生するので、凝集力の大きい原料の場
合には2次凝集塊が生じ、製品の粒度品質を低下させて
しまう。
When the particle size range of the particles contained in the material to be classified 15 is larger than the particle size range of the product particles, the product particles approach the Coanda block 4. As shown in FIG. 8, the first and second classification edges 2.3 must be inclined so that their tips approach the Coanda block 4, as shown in FIG. In this case, the first and second classification edges 2
As shown in FIG. 9, the material No. 3 extends obliquely with respect to the air flow flowing in the raw material sorting chamber 14, so that the classification edge 2
Particles collide with the upstream side surface of 3 and the side surface is worn or particles are attached. Furthermore, since a vortex flow is generated on the downstream side of the classification edges 2 and 3, in the case of a raw material having a large cohesive force, secondary cohesive lumps are generated and the particle size quality of the product is deteriorated.

【0010】そこで、本発明の目的は上記の問題点を解
消することに係り、製品とする粒子の粒径よりも大きい
粒径を有する粒子が被分級原料15中に多く含まれる場
合においても、製品とする粒子が原料選別室内を広い範
囲にわたって飛散降下できるようにし、もって被分級原
料を効率よくかつ高い精度で気流分級することができる
気流分級方法および気流分級装置を提供することにあ
る。
Therefore, an object of the present invention is to solve the above problems, and even when the classified raw material 15 contains many particles having a particle size larger than the particle size of the product particles, An object of the present invention is to provide an airflow classifying method and an airflow classifying apparatus which enable particles as products to be scattered and dropped in a wide range in a raw material selection chamber, and thereby efficiently classify raw materials to be classified with airflow with high accuracy.

【0011】[0011]

【課題を解決するための手段】本発明の上記目的は、被
分級原料を含む気流をコアンダブロックの湾曲して延び
る気流接触面に沿って噴出させ、前記被分級原料中に含
まれる粒子にコアンダ効果を作用させて前記粒子をその
粒径の大きさに応じて分類する気流分級方法において、
前記被分級原料を気流分級する前に、前記被分級原料か
ら所定の粒径より大きい粒径を有する粒子を選別して取
り出すことを特徴とする気流分級方法により達成するこ
とができる。
The above object of the present invention is to eject an air stream containing a raw material to be classified along a curved and extending air flow contact surface of a Coanda block so that the particles contained in the raw material to be classified have a coanda content. In the air flow classification method of classifying the particles according to the size of the particle size by operating the effect,
This can be achieved by an air stream classification method characterized in that particles having a particle size larger than a predetermined particle size are selected and taken out from the material to be classified before the air classification of the material to be classified.

【0012】また、本発明の上記目的は、原料選別室
と、前記原料選別室に連通する入気流路および複数に分
岐させた排気流路と、前記原料選別室内に突出する湾曲
した気流接触面を有するコアンダブロックと、前記気流
接触面に沿って前記原料選別室内に噴出される圧縮気体
の流れに被分級原料を乗せた気流を形成する原料供給ノ
ズルとを有する気流分級機を備えた気流分級装置におい
て、前記被分級原料を気流分級する前に、前記被分級原
料から所定の粒径より大きい粒径を有する粒子を選別し
て取り出す選別手段を備えることを特徴とする気流分級
装置によって達成することができる。
Further, the above object of the present invention is to provide a raw material sorting chamber, an inlet air passage communicating with the raw material sorting chamber and a plurality of branched exhaust passages, and a curved air flow contact surface protruding into the raw material sorting chamber. An air flow classifier equipped with an air flow classifier having a Coanda block having an air flow contact surface and a raw material supply nozzle for forming an air flow in which a raw material to be classified is placed on a flow of a compressed gas ejected into the raw material selection chamber along the air flow contact surface. In the apparatus, it is achieved by an air stream classifying device characterized by comprising a selecting means for selecting and extracting particles having a particle size larger than a predetermined particle size from the material to be classified before air classifying the material to be classified. be able to.

【0013】[0013]

【作用】本発明の気流分級方法および気流分級装置にお
いては、所定の粒径よりも大きい粒径を有する粒子(凝
集塊を含む)をあらかじめ被分級原料中から取り除いた
後に被分級原料を気流分級するので、製品とする粒子を
気流分級装置の原料選別室中で広い範囲にわたって安定
して飛散降下させることができる。これにより、分級エ
ッジの間隔を広げることができるので、被分級原料を効
率よくかつ高い精度で気流分級することができる。
In the airflow classification method and the airflow classification apparatus of the present invention, particles (including agglomerates) having a particle diameter larger than a predetermined particle diameter are removed from the material to be classified in advance, and then the material to be classified is subjected to airflow classification. Therefore, the particles to be the product can be stably scattered and lowered over a wide range in the raw material sorting chamber of the air stream classifier. As a result, the spacing between the classification edges can be widened, so that the material to be classified can be efficiently and highly accurately classified by air flow.

【0014】[0014]

【実施例】本発明に係る気流分級方法および気流分級装
置の1実施例を、以下に図面に基づいて詳細に説明す
る。ここで、図1は本発明に係る実施例1の気流分級装
置の全体構成を模式的に示す図面、図2は図1に示す気
流分級装置の作動を説明するブロック図、図3は図1に
示す気流分級装置における気流分級機の作動を模式的に
示す図面、図4は本発明に係る実施例2の気流分級装置
の全体構成を模式的に示す図面、図5は図4に示す気流
分級装置の作動を説明するブロック図である。なお、以
下の説明においては、従来の気流分級機と同一の部分に
は同一の符号を用いてその説明を省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of an airflow classifying method and an airflow classifying apparatus according to the present invention will be described in detail below with reference to the drawings. Here, FIG. 1 is a drawing schematically showing the overall configuration of an airflow classifying device according to a first embodiment of the present invention, FIG. 2 is a block diagram explaining the operation of the airflow classifying device shown in FIG. 1, and FIG. 5 is a drawing schematically showing the operation of the airflow classifier in the airflow classifying apparatus shown in FIG. 4, FIG. 4 is a drawing schematically showing the overall configuration of the airflow classifying apparatus of Example 2 according to the present invention, and FIG. 5 is an airflow shown in FIG. It is a block diagram explaining operation of a classification device. In the following description, the same parts as those of the conventional airflow classifier are designated by the same reference numerals and the description thereof will be omitted.

【0015】図1に示すように、本実施例の気流分級装
置100は、管路31を介して供給される被分級原料1
5を集塵する集塵機32と、この集塵機32と気流分級
機1に被分級原料を供給するホッパ33との間に介装さ
れている選別手段としての振動ふるい40と、気流分級
機1と、気流分級機1によって気流分級された粒子をそ
れぞれ集塵する集塵機36・37・38とを備えてい
る。
As shown in FIG. 1, the airflow classifying apparatus 100 of the present embodiment includes a raw material 1 to be classified 1 supplied through a pipe 31.
5, a dust collector 32 for collecting the dust 5, a vibrating sieve 40 as a selecting means interposed between the dust collector 32 and the hopper 33 for supplying the classified material to the air stream classifier 1, and the air stream classifier 1, Dust collectors 36, 37, 38 for collecting the particles classified by the air flow classifier 1 are provided.

【0016】前記振動ふるい40は、被分級原料15中
に含まれる所定の粒径よりも大きい粒径を有する粒子を
取り除くもので、例えばオープンパス型の電磁スクリー
ン(新東工業製ソニクリーン)等を好適に用いることが
できる。そして、この振動ふるい40におけるカットポ
イントを適宜設定することにより、被分級原料15中か
ら所定の粒径よりも大きい粒径を有する粒子を選別して
取り除くことができる。取り除かれた粒子は管路42を
介して粉砕機50に送られ、その粒径を小さくする処理
が施される。これに対して、カットポイントとして設定
された粒径よりも小さい粒径を有する粒子は、振動ふる
い40を通過してホッパ33に供給される。
The vibrating screen 40 removes particles having a particle size larger than a predetermined particle size contained in the material 15 to be classified, for example, an open path type electromagnetic screen (Soniclean manufactured by Shinto Kogyo Co., Ltd.) or the like. Can be preferably used. Then, by appropriately setting the cut point in the vibrating screen 40, particles having a particle size larger than a predetermined particle size can be selected and removed from the classified raw material 15. The removed particles are sent to the crusher 50 through the pipe 42 and subjected to a treatment for reducing the particle size. On the other hand, particles having a particle size smaller than the particle size set as the cut point pass through the vibrating sieve 40 and are supplied to the hopper 33.

【0017】次に、本実施例1の気流分級装置100の
作動について、図1および図2を参照して説明する。ま
ず、被分級原料15は管路31を介して集塵機32に集
められた後、振動ふるい40に供給される。そして、所
定の粒径よりも大きい粒径を有する粒子は振動ふるい4
0により被分級原料15中から取り除かれ、管路42を
介して粉砕機50に送られて粒径を小さくする処理が施
される。一方、振動ふるい40を通過した被分級原料1
5は管路41を介してホッパ33に送られて貯留され、
定量フィーダ34により単位時間当たり一定量ずつ管路
35に送り出される。そして管路35内に供給される圧
縮空気19と混ぜ合わされた状態で、原料供給ノズル1
6により気流分級機1の原料選別室14内に噴出させら
れる。そして、被分級原料15は気流分級機1により気
流分級され、製品とする粒子よりも小さい粒径を有する
粒子は微粉として集塵機36に、製品とする粒子は中粉
として集塵機37に、製品とする粒子よりも大きい粒径
を有する粒子は粗粉として集塵機38にそれぞれ集塵さ
れる。
Next, the operation of the airflow classification device 100 of the first embodiment will be described with reference to FIGS. 1 and 2. First, the classified material 15 is collected in the dust collector 32 via the pipe 31, and then supplied to the vibrating screen 40. Then, particles having a particle size larger than a predetermined particle size are vibrated with a sieve 4.
0 is removed from the raw material 15 to be classified and is sent to the crusher 50 via the pipe 42 to be subjected to a treatment for reducing the particle size. On the other hand, the material 1 to be classified which has passed through the vibrating sieve 40
5 is sent to the hopper 33 via the pipe line 41 and stored therein,
The fixed amount is sent to the pipe 35 by a fixed amount per unit time. Then, the raw material supply nozzle 1 is mixed with the compressed air 19 supplied into the pipe 35.
6 is jetted into the raw material sorting chamber 14 of the airflow classifier 1. Then, the classified raw material 15 is subjected to air flow classification by the air flow classifier 1, and particles having a particle size smaller than that of the product particles are made into the dust collector 36 as fine powder, and the product particles are made into the dust collector 37 as the intermediate powder. Particles having a larger particle size than the particles are collected by the dust collector 38 as coarse powder.

【0018】集塵機38に集塵された粗粉は管路39を
介して粉砕機50に送られ、振動ふるい40により被分
級原料中から取り除かれた粒子とともに粉砕されて、そ
の粒径を小さくする処理が施される。そして、管路51
を介して粉砕機50から取り出された後、新しく供給さ
れる被分級原料15と一体となって集塵機32に供給さ
れる。
The coarse powder collected by the dust collector 38 is sent to the crusher 50 via the pipe 39, and is crushed by the vibrating sieve 40 together with the particles removed from the material to be classified to reduce its particle size. Processing is performed. And the conduit 51
After being taken out of the crusher 50 via the crusher, it is supplied to the dust collector 32 together with the newly supplied classified material 15.

【0019】この時、原料供給ノズル16により気流分
級機1の原料選別室14内に噴出される被分級原料15
には、所定の粒径よりも大きい粒径を有する粒子が含ま
れていない。したがって、粒径の大きい粒子が背面ブロ
ック5に衝突して跳ね返り、中粉用の排気流路8中に飛
び込むことが無いから、製品として取り出される中粉の
粒度品質が損なわれることが無い。
At this time, the raw material to be classified 15 which is jetted from the raw material supply nozzle 16 into the raw material sorting chamber 14 of the air stream classifier 1
Does not include particles having a particle size larger than a predetermined particle size. Therefore, particles having a large particle size do not collide with the rear surface block 5 and bounce back, and do not jump into the exhaust passage 8 for the intermediate powder, so that the particle size quality of the intermediate powder taken out as a product is not impaired.

【0020】また、図3に示すように、所定の粒径より
も大きい粒径を有する粒子を取り除いた被分級原料15
中に含まれる、最も粒径の大きい粒子が背面ブロック5
に最も接近して飛散降下するように原料供給ノズル16
から被分級原料15を噴出する速度を調節することによ
り、目的とする粒径範囲にある粒子が原料選別室14内
を飛散降下する幅を広くすることができる。これによ
り、第1および第2の分級エッジ2・3の間隔を広げる
ことができるので、被分級原料15を分級する精度を向
上させることができて、製品とする中粉の粒度品質を向
上させることができる。
Further, as shown in FIG. 3, the material to be classified 15 from which particles having a particle diameter larger than a predetermined particle diameter have been removed.
The largest particle contained in the back block 5
The material supply nozzle 16 so that it comes closest to
By adjusting the ejection speed of the classified material 15 from the above, the width in which the particles in the target particle size range scatter and descend in the material selection chamber 14 can be widened. As a result, the interval between the first and second classification edges 2 and 3 can be widened, so that the accuracy of classifying the material 15 to be classified can be improved, and the particle size quality of the intermediate powder as a product can be improved. be able to.

【0021】さらに、分級エッジ2・3の傾きを、気流
が流れる方向に対して平行に伸びるように設定すること
ができるので、分級エッジ2・3の下流側に渦流が発生
することを防止することができる。これにより気流の乱
れによる製品の粒度品質の低下を防止することができ
る。また、分級エッジ2・3の上流側側面が粒子が衝突
して摩耗が生じたり、粒子が付着したりすることを防止
することができるので、気流分級を長時間にわたって安
定して行うことができる。
Furthermore, since the inclination of the classification edges 2.3 can be set so as to extend in parallel to the direction of the air flow, eddy currents are prevented from being generated on the downstream side of the classification edges 2.3. be able to. As a result, it is possible to prevent deterioration of the particle size quality of the product due to turbulence of the air flow. Further, it is possible to prevent particles from colliding with each other on the upstream side surfaces of the classification edges 2 and 3 to cause abrasion or particles to adhere, so that the airflow classification can be stably performed for a long time. .

【0022】実施例2 次に、本発明に係る実施例2の気流分級装置および気流
分級方法を、図4および図5を参照して説明する。前述
した実施例1の気流分級装置100に用いられている振
動ふるい40は、長時間の使用によりスクリーンがしだ
いに目詰まりし、被分級原料15から取り除かれる粒子
の粒径がしだいに小さくなるとともに、振動ふるい40
を通過してホッパ33に供給される被分級原料15の量
が減少してしまう。
Second Embodiment Next, an airflow classifying apparatus and an airflow classifying method according to a second embodiment of the present invention will be described with reference to FIGS. 4 and 5. In the vibrating sieve 40 used in the airflow classification device 100 of the above-described Example 1, the screen gradually becomes clogged due to long-term use, and the particle size of the particles removed from the material to be classified 15 becomes gradually smaller. , Vibrating sieve 40
The amount of the classified raw material 15 that passes through the hopper and is supplied to the hopper 33 decreases.

【0023】そこで、図4に示すように本実施例2の気
流分級装置200においては、実施例1の気流分級装置
100に、振動ふるい40をバイパスする管路60と、
開度センサ付の管路切り換え用のダンパ61とが新たに
追加されている。振動ふるい40からホッパ33への被
分級原料15の単位時間当たりの供給量が、規定の値よ
りも低下したことが図示されないセンサにより検知され
た場合、やはり図示されない制御装置がダンパ61を操
作して集塵機32から供給される被分級原料15を管路
60を介して直接ホッパ33に供給し、ホッパ33への
被分級原料15の単位時間当たりの供給量を一定に保
つ。そして、ダンパ61の開度が規定の値を超えた場合
には、振動ふるい40のスクリーンが目詰まりしたこと
を知らせる警報が発せられる。したがって、本実施例2
の気流分級装置によれば、振動ふるい40のスクリーン
が目詰まりした場合にも、気流分級機1に供給されるも
被分級原料15の量が急激に減少することが無いから、
気流分級処理を安定的に行うことができる。
Therefore, as shown in FIG. 4, in the airflow classifying device 200 of the second embodiment, the airflow classifying device 100 of the first embodiment is provided with a pipe line 60 that bypasses the vibrating sieve 40.
A damper 61 for switching the pipeline with an opening sensor is newly added. When the sensor (not shown) detects that the supply amount of the classified material 15 from the vibrating sieve 40 to the hopper 33 per unit time is lower than the specified value, the controller (not shown) also operates the damper 61. The classified raw material 15 supplied from the dust collector 32 is directly supplied to the hopper 33 through the pipe 60, and the amount of the classified raw material 15 supplied to the hopper 33 per unit time is kept constant. Then, when the opening degree of the damper 61 exceeds a specified value, an alarm is issued to notify that the screen of the vibrating screen 40 is clogged. Therefore, the second embodiment
According to the airflow classifying device of No. 3, even if the screen of the vibrating sieve 40 is clogged, the amount of the classified material 15 supplied to the airflow classifier 1 does not decrease sharply.
The airflow classification process can be performed stably.

【0024】なお、本発明の気流分級方法および気流分
級装置は、上述した実施例によって限定されるものでは
なく、本発明の主旨に基づいて種々の変更が可能である
ことは言うまでもない。例えば、上述した実施例1およ
び実施例2においては、所定の粒径よりも大きい粒径を
有する粒子を被分級原料中15から選別する選別手段と
して振動ふるいを用いているが、この振動ふるいに換え
て気流分級機あるいはサイクロンを選別手段として用い
ることもできる。
The airflow classifying method and the airflow classifying apparatus of the present invention are not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made based on the gist of the present invention. For example, in Example 1 and Example 2 described above, a vibrating sieve is used as a selecting means for selecting particles having a particle size larger than a predetermined particle size from the classified material 15 in the vibrating screen. Instead, an air stream classifier or a cyclone can be used as the sorting means.

【0025】また、本願発明の出願人が先に発明した
「気流分級装置」(特公平5−41317号公報及び特
公平5−73476号公報参照)の明細書に記載されて
いるような気流分級機に、気流分級された粒子をサンプ
リングするサンプリング手段と、サンプリングされた粒
子の粒径を測定する粒径測定手段と、気流分級された被
分級原料の重量を測定する重量測定手段と、前記粒径測
定手段および前記重量測定手段から得られた情報に基づ
いて前記選別手段の作動を制御する制御手段とを追加す
る。そして、前記制御手段により、例えば振動ふるいに
設けたカットポイントの異なる複数のフィルターを切り
換えたり、選別手段としての気流分級機の分級エッジの
角度を操作したりすることにより、気流分級機に供給さ
れる被分級原料に含まれる粒子の粒径の最大値を制御す
ることが可能となる。これにより、気流分級装置の運転
を自動化することができるばかりでなく、被分級原料を
気流分級する精度をより一層向上させることが可能とな
る。
Further, the air flow classification as described in the specification of the "air flow classification device" (see Japanese Patent Publication No. 5-41317 and Japanese Patent Publication No. 5-73476) previously invented by the applicant of the present invention. In the machine, sampling means for sampling the air-flow classified particles, particle size measuring means for measuring the particle size of the sampled particles, weight measuring means for measuring the weight of the air-flow classified raw material, and the particles Control means for controlling the operation of the sorting means based on the information obtained from the diameter measuring means and the weight measuring means are added. Then, by the control means, for example, by switching a plurality of filters having different cut points provided in the vibrating sieve, or by operating the angle of the classification edge of the airflow classifier as the selection means, it is supplied to the airflow classifier. It becomes possible to control the maximum value of the particle size of the particles contained in the classified material. As a result, not only can the operation of the airflow classification device be automated, but the accuracy of airflow classification of the material to be classified can be further improved.

【0026】[0026]

【発明の効果】以上説明したように、本発明の気流分級
方法および気流分級装置においては、所定の粒径よりも
大きい粒径を有する粒子及び凝集塊をあらかじめ被分級
原料から取り除いた後に被分級原料を気流分級するの
で、被分級原料に含まれる種々の粒径を有する粒子の
内、製品とする粒径の粒子を気流分級装置の原料選別室
中で広い範囲にわたって飛散降下させることができる。
これにより、分級エッジの間隔を広く配することができ
るので、被分級原料を効率よくかつ高い精度で気流分級
することができる。また、分級エッジの傾きを、気流の
流れに沿って配することができ、分級エッジ付近での気
流の乱れを防止することができるので、製品の粒度品質
が低下することを防止することができる。さらに、分級
エッジの上流側の側面に粒子が衝突して分級エッジに摩
耗が生じたり、粒子が付着したりすることを防止するこ
とができるので、気流分級を長時間にわたって安定して
行うことができる。したがって、本発明によれば、被分
級原料を効率よくかつ高い精度で気流分級することがで
きる気流分級方法および気流分級装置を提供することが
できる。
As described above, in the airflow classification method and airflow classification apparatus of the present invention, particles and agglomerates having a particle size larger than a predetermined particle size are removed from the material to be classified in advance and then classified. Since the raw material is classified by air flow, among the particles having various particle sizes contained in the material to be classified, particles having a particle size to be a product can be scattered and dropped over a wide range in the raw material selection chamber of the air flow classification device.
As a result, the spacing between the classification edges can be widened, so that the material to be classified can be efficiently and highly accurately classified by air flow. Further, since the inclination of the classification edge can be arranged along the flow of the air flow, and the turbulence of the air flow near the classification edge can be prevented, it is possible to prevent the particle size quality of the product from being deteriorated. . Furthermore, it is possible to prevent particles from colliding with the upstream side surface of the classification edge and causing abrasion to the classification edge, or to prevent the particles from adhering, so that airflow classification can be performed stably for a long time. it can. Therefore, according to the present invention, it is possible to provide an airflow classifying method and an airflow classifying apparatus capable of efficiently classifying a material to be classified by airflow with high accuracy.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る実施例1の気流分級装置の全体構
成を模式的に示す図面である。
FIG. 1 is a drawing schematically showing an overall configuration of an airflow classification device according to a first embodiment of the present invention.

【図2】図1に示す気流分級装置の作動を説明するブロ
ック図である。
FIG. 2 is a block diagram illustrating an operation of the airflow classification device shown in FIG.

【図3】図1に示す気流分級装置における気流分級機の
作動を模式的に示す説明図である。
FIG. 3 is an explanatory view schematically showing the operation of an airflow classifier in the airflow classifier shown in FIG.

【図4】本発明に係る実施例2の気流分級装置の全体構
成を模式的に示す図面である。
FIG. 4 is a drawing schematically showing the overall configuration of an airflow classification device of Example 2 according to the present invention.

【図5】図4に示す気流分級装置の作動を説明するブロ
ック図である。
5 is a block diagram illustrating an operation of the airflow classifier shown in FIG.

【図6】気流分流機の縦断面図である。FIG. 6 is a vertical sectional view of an airflow distributor.

【図7】図6に示す気流分級機の問題点を模式的に示す
要部拡大図である。
FIG. 7 is an enlarged view of a main part schematically showing the problem of the airflow classifier shown in FIG.

【図8】図6に示す気流分級機の作動を模式的に示す説
明図である。
FIG. 8 is an explanatory view schematically showing the operation of the airflow classifier shown in FIG.

【図9】図6に示す気流分級機の作動を説明するブロッ
ク図である。
9 is a block diagram illustrating the operation of the airflow classifier shown in FIG.

【図10】中粉ならびに細粉の偏向を粗粉が防害する状
態を示した模式図である。
FIG. 10 is a schematic diagram showing a state where coarse powder prevents deflection of medium powder and fine powder.

【符号の説明】[Explanation of symbols]

1 気流分級機 2、3 分級エッジ 4 コアンダブロック 5 背面ブロック 7、8、9 排気流路 11、12 入気流路 14 原料選別室 15 被分級原料 16 原料供給ノズル 19 圧縮空気流 21、22、23、24 管路 32、36、37、38 集塵機 33 ホッパ 34 定量フィーダ 40 振動ふるい(選別手段) 50 粉砕機 100 実施例1の気流分級装置 200 実施例2の気流分級装置 DESCRIPTION OF SYMBOLS 1 Air flow classifier 2, 3 classification edge 4 Coanda block 5 Back block 7, 8, 9 Exhaust flow path 11, 12 Inlet air flow path 14 Raw material selection chamber 15 Classified raw material 16 Raw material supply nozzle 19 Compressed air flow 21, 22, 23 , 24 Pipe lines 32, 36, 37, 38 Dust collector 33 Hopper 34 Quantitative feeder 40 Vibrating sieve (sorting means) 50 Crusher 100 Airflow classifier of Example 1 200 Airflow classifier of Example 2

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】被分級原料を含む気流をコアンダブロック
の湾曲して延びる気流接触面に沿って噴出させ、前記被
分級原料中に含まれる粒子にコアンダ効果を作用させて
前記粒子をその粒径の大きさに応じて分類する気流分級
方法において、 前記被分級原料を気流分級する前に、前記被分級原料か
ら所定の粒径より大きい粒径を有する粒子を選別して取
り出すことを特徴とする気流分級方法。
1. An air stream containing a raw material to be classified is jetted out along a curved air flow contact surface of a Coanda block, and the particles contained in the raw material to be classified are subjected to a Coanda effect so that the particle diameter of the particles is increased. In the airflow classification method of classifying according to the size of, before the airflow classification of the material to be classified, characterized in that the particles having a particle size larger than a predetermined particle size is selected and taken out from the material to be classified Airflow classification method.
【請求項2】前記被分級原料から前記選別により取り出
した粒子をさらに小さくする処理を施した後に前記被分
級原料中に戻して気流分級することを特徴とする請求項
1に記載の気流分級方法。
2. The air stream classification method according to claim 1, wherein the particles extracted from the material to be classified by the screening are subjected to a treatment to further reduce the size thereof, and then the particles are returned into the material to be classified for air stream classification. .
【請求項3】原料選別室と、前記原料選別室に連通する
入気流路および複数に分岐させた排気流路と、前記原料
選別室内に突出する湾曲した気流接触面を有するコアン
ダブロックと、前記気流接触面に沿って前記原料選別室
内に噴出される圧縮気体の流れに被分級原料を乗せた気
流を形成する原料供給ノズルとを有する気流分級機を備
えた気流分級装置において、前記被分級原料を気流分級
する前に、前記被分級原料から所定の粒径より大きい粒
径を有する粒子を選別して取り出す選別手段を備えるこ
とを特徴とする気流分級装置。
3. A raw material sorting chamber, an inlet air flow passage communicating with the raw material sorting chamber and an exhaust flow passage branched into a plurality, a Coanda block having a curved air flow contact surface protruding into the raw material sorting chamber, An air flow classifier equipped with an air flow classifier having a raw material supply nozzle that forms an air flow in which a raw material to be classified is placed on a flow of a compressed gas ejected along the air flow contact surface into the raw material selection chamber, An airflow classifying device comprising a selecting means for selecting and extracting particles having a particle size larger than a predetermined particle size from the raw material to be classified before the airflow classification.
【請求項4】前記選別手段により取り出された粒子の粒
径を小さくする処理を施す手段と、粒径を小さくされた
粒子を前記被分級原料中に戻す移送手段とを備えること
を特徴とする請求項3に記載の気流分級装置。
4. A means for carrying out a treatment for reducing the particle diameter of the particles taken out by the selecting means, and a transfer means for returning the particles having the reduced particle diameter into the material to be classified. The airflow classification device according to claim 3.
【請求項5】前記選別手段が振動ふるいであることを特
徴とする請求項3に記載の気流分級装置。
5. The airflow classifying apparatus according to claim 3, wherein the sorting means is a vibrating screen.
【請求項6】前記振動ふるいを迂回して前記被分級原料
を前記気流分級機に供給するバイパス供給手段を備える
ことを特徴とする請求項5に記載の気流分級装置。
6. The airflow classifying apparatus according to claim 5, further comprising a bypass supply means for bypassing the vibrating screen and supplying the material to be classified to the airflow classifier.
【請求項7】前記振動ふるいに供給される被分級原料を
前記バイパス供給手段側に切り換える切り換え手段と、
前記振動ふるいを通過する被分級原料の重量を測定する
測定手段と、この測定手段から得られる情報に基づいて
前記切り換え手段を制御する制御手段とを備えることを
特徴とする請求項6に記載の気流分級装置。
7. Switching means for switching the material to be classified supplied to the vibrating screen to the bypass supply means side,
The measuring means for measuring the weight of the raw material to be classified passing through the vibrating screen, and the control means for controlling the switching means based on the information obtained from the measuring means. Airflow classifier.
【請求項8】前記選別手段が気流分級機であることを特
徴とする請求項3に記載の気流分級装置。
8. The airflow classifying apparatus according to claim 3, wherein the sorting means is an airflow classifier.
【請求項9】前記気流分級機により気流分級された粒子
をサンプリングするサンプリング手段と、サンプリング
された粒子の粒径を測定する粒径測定手段と、気流分級
された被分級原料の重量を測定する重量測定手段と、前
記粒径測定手段および前記重量測定手段から得られた情
報に基づいて、前記選別手段の作動を制御する制御手段
とを備えることを特徴とする請求項3に記載の気流分級
装置。
9. A sampling means for sampling the particles classified by the airflow classifier, a particle size measuring means for measuring the particle size of the sampled particles, and a weight of the classified material classified by the airflow. The air flow classification according to claim 3, further comprising: a weight measuring unit; and a control unit that controls the operation of the sorting unit based on the information obtained from the particle size measuring unit and the weight measuring unit. apparatus.
JP7044517A 1995-03-03 1995-03-03 Gas flow classifying method and gas flow classifying apparatus Pending JPH08238456A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7044517A JPH08238456A (en) 1995-03-03 1995-03-03 Gas flow classifying method and gas flow classifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7044517A JPH08238456A (en) 1995-03-03 1995-03-03 Gas flow classifying method and gas flow classifying apparatus

Publications (1)

Publication Number Publication Date
JPH08238456A true JPH08238456A (en) 1996-09-17

Family

ID=12693746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7044517A Pending JPH08238456A (en) 1995-03-03 1995-03-03 Gas flow classifying method and gas flow classifying apparatus

Country Status (1)

Country Link
JP (1) JPH08238456A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254938A (en) * 2008-04-14 2009-11-05 Nippon Shokubai Co Ltd Method of classifying particle and particle obtained by this method
CN112718272A (en) * 2020-12-30 2021-04-30 江苏科创金属新材料有限公司 Zinc powder grading system device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009254938A (en) * 2008-04-14 2009-11-05 Nippon Shokubai Co Ltd Method of classifying particle and particle obtained by this method
CN112718272A (en) * 2020-12-30 2021-04-30 江苏科创金属新材料有限公司 Zinc powder grading system device
CN112718272B (en) * 2020-12-30 2023-09-19 江苏科创金属新材料有限公司 Grading system device of zinc powder

Similar Documents

Publication Publication Date Title
KR0135061B1 (en) Gas stream classifier, gas stream classifying method, toner production process and apparatus
CA1250815A (en) Particle classifier
US20080272031A1 (en) Screening/dedusting apparatus
WO1988000861A1 (en) Separation of mixtures in a wind tunnel
US20040035763A1 (en) Apparatus for sorting wood chips in separate fractions
US4778061A (en) Air classifier apparatus
US3972808A (en) Pneumatic classifier with particle removal system
CN111774305B (en) Vibration screen lower half concentrated wind power powder selecting machine
JPH08238456A (en) Gas flow classifying method and gas flow classifying apparatus
JP2727245B2 (en) Airflow classifier and airflow classification method
JPH06230606A (en) Production of toner and producing equipment system used therefor
US4759840A (en) Particle classifier
JP3679163B2 (en) Airflow classifier
JP3089243B1 (en) Cement clinker grinding equipment
JP3176779B2 (en) Airflow classifier and airflow classification method
JP2000042494A (en) Air-current classification
JP3510346B2 (en) Airflow classification method, airflow classifier, and classifier equipped with the classifier
JPH0574681U (en) Multi-stage classifier
JP2715325B2 (en) Airflow classifier and airflow classification method
JP3347551B2 (en) Airflow classifier and method for producing toner
AU592010B2 (en) Separation of mixtures in a wind tunnel
JPH08276159A (en) Classifying method and apparatus based on air current
JPH0760195A (en) Pneumatic classifier and pneumatic classifying method
JPH08206605A (en) Air classifying device
JP3311318B2 (en) Sieve device with airflow classification function

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040310