JPH08237963A - Controller and control method for power converter - Google Patents

Controller and control method for power converter

Info

Publication number
JPH08237963A
JPH08237963A JP7059974A JP5997495A JPH08237963A JP H08237963 A JPH08237963 A JP H08237963A JP 7059974 A JP7059974 A JP 7059974A JP 5997495 A JP5997495 A JP 5997495A JP H08237963 A JPH08237963 A JP H08237963A
Authority
JP
Japan
Prior art keywords
voltage
power
power converter
control
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7059974A
Other languages
Japanese (ja)
Other versions
JP3314260B2 (en
Inventor
Noboru Azusazawa
昇 梓沢
Masahiro Tobiyo
飛世  正博
Kiyotaka Kobayashi
清隆 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP05997495A priority Critical patent/JP3314260B2/en
Publication of JPH08237963A publication Critical patent/JPH08237963A/en
Application granted granted Critical
Publication of JP3314260B2 publication Critical patent/JP3314260B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Inverter Devices (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE: To suppress the increase of DC voltage by switching the function of a second power converter for converting the power required for the speed control and torque control of a load to the function for controlling the DC voltage upon occurrence of abnormality in a first power converter for converting AC voltage to DC voltage. CONSTITUTION: The inventive controller is different from a conventional one in that the DC voltage from a voltage detector 10 is fed to the controller (CD) 9A for normal system A and the controller CD9B for stand-by system B and when the power converter(PC) 2 side is abnormal, an abnormality signal is transmitted from a diagnostic section 28 to the controllers CD9A, CD9B for both systems. Similarly to a conventional controller, the CD9A (or CD9B) normally receives a speed signal and a current signal from a speed detector 6 and a current detector 7B and controls a PC4 of speed control function. Upon occurrence of an abnormal signal on the PC2 side, a diagnostic section 28 transmits an abnormality signal to the CD9A (or 9B). The CD9A (or 9B) makes a switching from speed control function to DC voltage control function and controls the PC4 to suppress the increase of DC voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、自己消弧素子を用いた
交流−直流−交流の電力変換を行なう電力変換装置の制
御方法および装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control method and an apparatus for a power conversion device which performs AC-DC-AC power conversion using a self-extinguishing element.

【0002】[0002]

【従来の技術】従来の自己消弧素子を用いた電力変換装
置(PWMGTO変換装置)は、図4に示すように、電
源1、第1のPWM電力変換器2、平滑コンデンサ3、
第2のPWM電力変換器4、誘導電動機5、速度検出用
エンコーダ6、電流検出器7、第1の電力変換器の制御
装置8、2重系のうちの常用A系8A、待機B系8B、
第2の電力変換器の制御装置9、2重系のうちのそれぞ
れ常用A系9−1Aと待機B系9−1B、直流電圧検出
器10、第1の電力変換器のA系、B系の切替部26、
第2の電力変換器のA系、B系の切替部27、制御装置
常用A系8A、待機B系8Bの異常を判定する診断部2
8、制御装置常用A系9−1A、待機B系9−1Bの異
常を判定する診断部29から構成される。この電力変換
装置において、第1の電力変換器と第2の電力変換器
は、公知例(日立評論VOL75、NO6、1993−
6、PP31〜34)にあるように、第1の電力変換器
側で電源側の力率を制御するとともに直流電圧を一定に
制御して、第2の電力変換器側で電動機の電流、発生ト
ルク及び速度制御を行なっている。すなわち、図4のよ
うに、第2の電力変換器の制御装置9(9−1Aまたは
9−1B)により制御されて第2の電力変換器4で変換
される電力(電動機の速度制御に必要な電力)PIある
いはPI’に応じて、等しい電力PO(=PI)あるいは
O’(=PI’)を第1の電力変換器の制御装置8(8
−1Aまたは8−1B)により制御される第1の電力変
換器2で電力変換する制御方法を用いている。ここで、
I、POは誘導電動機5から電源1に回生する電力、P
I’、PO’は電源1から誘導電動機5に供給する電力を
示す。しかし、この従来の制御方法では、図5に示すよ
うに、運転中の制御装置8Aが異常となると、第1
の電力変換器4の電力変換を一時停止(PO=0)し、
その間に第2の電力変換器4からの電力PIが変換さ
れ続け、平滑コンデンサ3が過充電され、過電圧となる
という問題がある。そのため、第2の電力変換器4を一
時停止し、待機中の制御装置8Bに切替後、再始動する
方法が採られている。このように、従来の制御方法は、
異常発生時に、両方の電力変換器を一時停止させること
になる。ところで、両方の電力変換器が一時停止する
と、直流電圧は両変換器の制御できない整流作用による
電圧となること、および第2の電力変換器4より制御し
ている誘導電動機の励磁成分電流(無効電力成分)も停
止されるため、電動機の磁束確立がくずれることにな
る。そのため、従来の制御方法では、制御切替後の再始
動時、直流電圧の確立および電動機の磁束確立の始動前
操作に時間を要するという欠点があった。
2. Description of the Related Art A conventional power converter using a self-extinguishing element (PWM GTO converter) has a power supply 1, a first PWM power converter 2, a smoothing capacitor 3, as shown in FIG.
The second PWM power converter 4, the induction motor 5, the speed detection encoder 6, the current detector 7, the controller 8 for the first power converter 8, the normal A system 8A of the dual systems, the standby B system 8B. ,
Control device 9 of the second power converter, normal A system 9-1A and standby B system 9-1B of the dual system, DC voltage detector 10, and A system and B system of the first power converter Switching unit 26,
Diagnosis unit 2 for determining an abnormality of the A system and B system switching unit 27 of the second power converter, the control device regular A system 8A, and the standby B system 8B
8, a control unit regular A system 9-1A, and a standby B system 9-1B for diagnosing an abnormality. In this power conversion device, the first power converter and the second power converter are publicly known examples (Hitachi review VOL75, NO6, 1993-1993).
6, PP31-34), the first power converter side controls the power factor on the power supply side and the DC voltage is controlled to be constant, and the second power converter side generates the electric current of the electric motor. Torque and speed control is performed. That is, as shown in FIG. 4, the electric power controlled by the control device 9 (9-1A or 9-1B) of the second power converter and converted by the second power converter 4 (necessary for speed control of the electric motor). Corresponding power P I or P I ′, equal power P O (= P I ) or P O ′ (= P I ′) is applied to the controller 8 (8) of the first power converter.
-1A or 8-1B) is used to control the power by the first power converter 2. here,
P I and P O are electric power regenerated from the induction motor 5 to the power source 1, P O
I ′ and P O ′ represent electric power supplied from the power source 1 to the induction motor 5. However, in this conventional control method, as shown in FIG. 5, when the control device 8A in operation becomes abnormal, the first control
Pause power conversion of the power converter 4 (P O = 0),
Meanwhile, the power P I from the second power converter 4 continues to be converted, and the smoothing capacitor 3 is overcharged, resulting in an overvoltage. Therefore, a method is adopted in which the second power converter 4 is temporarily stopped, switched to the standby control device 8B, and then restarted. In this way, the conventional control method is
When an abnormality occurs, both power converters will be suspended. By the way, when both power converters are temporarily stopped, the DC voltage becomes a voltage due to the uncontrollable rectification action of both converters, and the excitation component current (reactive force) of the induction motor controlled by the second power converter 4 is controlled. Since the electric power component) is also stopped, the establishment of the magnetic flux of the electric motor is disrupted. Therefore, the conventional control method has a drawback that it takes time to perform a pre-start operation for establishing the DC voltage and establishing the magnetic flux of the electric motor when restarting after control switching.

【0003】[0003]

【発明が解決しようとする課題】以上のように、従来の
制御方法においては、直流電圧を制御する第1の電力変
換器2側に異常が発生すると、第2の電力変換器4も直
流電圧の上昇抑制のため、停止しなければならない。そ
のため、制御装置8、9を2重系の構成としても、両変
換器が一時停止するため、切替後に、直流電圧および誘
導電動機の磁束確立等の始動操作が必要となり、運転継
続性上問題であった。また、第1の電力変換器2の異常
により、直流電圧の上昇が生じたとき、第2の電力変換
器4は、過充電電力を停止するのみの機能しかないた
め、直流電圧上昇を減少させる制御つまり過電圧抑制が
できない、という問題があった。また、第1の電力変換
器2が異常とならなくても、第2の電力変換器4の負荷
の急変が発生すると、第1の電力変換器2の電力変換遅
れにより、PI>Poとなり、平滑コンデンサ3は過充
電し、過電圧となる。そのため、過電圧を所定レベル以
下にするため、平滑コンデンサの容量を大きくしなけれ
ばならない、という問題があった。
As described above, in the conventional control method, when an abnormality occurs on the side of the first power converter 2 for controlling the DC voltage, the second power converter 4 also receives the DC voltage. You have to stop to control the rise of. Therefore, even if the control devices 8 and 9 are configured as a dual system, both converters are temporarily stopped, and after switching, it is necessary to perform a starting operation such as establishment of a DC voltage and a magnetic flux of the induction motor, which causes a problem in operation continuity. there were. Further, when the DC voltage rises due to the abnormality of the first power converter 2, the second power converter 4 has only the function of stopping the overcharge power, so that the DC voltage rise is reduced. There is a problem that control, that is, overvoltage control cannot be performed. Even if the first power converter 2 does not become abnormal, if the load of the second power converter 4 suddenly changes, P I > Po due to the power conversion delay of the first power converter 2. The smoothing capacitor 3 is overcharged and becomes overvoltage. Therefore, there is a problem that the capacity of the smoothing capacitor must be increased in order to reduce the overvoltage to a predetermined level or less.

【0004】本発明の目的は、第1と第2の電力変換器
を有する電力変換装置において、第1の電力変換器側の
異常またはその制御装置の切替時、あるいは、負荷の急
変等によって直流電圧が上昇する時には、直流電圧の上
昇を抑制すると共に、負荷の運転継続を行なうに好適な
電力変換装置の制御方法および装置を提供することにあ
る。
An object of the present invention is, in a power converter having first and second power converters, a direct current due to an abnormality on the first power converter side, a switching of its control device, or a sudden change in load. An object of the present invention is to provide a control method and device for a power conversion device that is suitable for suppressing an increase in DC voltage when the voltage rises and continuing the operation of the load.

【0005】[0005]

【課題を解決するための手段】上記目的は、第1の電力
変換器および第2の電力変換器からなる電力変換装置に
おいて、電源の交流を直流電圧に変換する第1の電力変
換器が異常となった場合に、電動機等の負荷の速度制御
およびトルク制御に必要な電力に変換する第2の電力交
換器を直流電圧制御する機能に切替えることによって、
達成される。また、第1の電力変換器の制御装置が2重
系に構成される場合、一方の制御装置から他方の制御装
置に切替が必要となったとき、第2の電力変換器を直流
電圧を制御する電圧制御機能に切替え、第1の電力変換
器の制御装置の切替後、第2の電力変換器の制御機能を
元に戻すことよって、達成される。また、変換される直
流電圧が所定値を超えたとき、第2の電力変換器を直流
電圧を制御する電圧制御機能に切替え、変換される直流
電圧が所定値以下になったとき、第2の電力変換器の制
御機能を元に戻すことよって、達成される。また、変換
される直流電圧が所定の設定電圧以上となったとき、第
2の電力変換器の制御装置の制御機能として、速度制御
のための指令を直流電圧と前記設定電圧の偏差によって
補正し、この補正した指令に基づいて直流電圧制御する
ことよって、達成される。
SUMMARY OF THE INVENTION The object of the present invention is to provide a power conversion device comprising a first power converter and a second power converter, in which the first power converter for converting AC of the power supply into DC voltage is abnormal. In case of the above, by switching the second power exchanger that converts the power required for speed control and torque control of a load such as an electric motor to the function of controlling the DC voltage,
Achieved. In addition, when the control device of the first power converter is configured in a dual system and the switching from one control device to the other control device is required, the second power converter controls the DC voltage. It is achieved by switching to the voltage control function of the second power converter, switching the control device of the first power converter, and then restoring the control function of the second power converter. Further, when the converted DC voltage exceeds a predetermined value, the second power converter is switched to a voltage control function for controlling the DC voltage, and when the converted DC voltage becomes a predetermined value or less, the second It is achieved by restoring the control function of the power converter. Further, when the converted DC voltage becomes equal to or higher than a predetermined set voltage, a command for speed control is corrected by a deviation between the DC voltage and the set voltage as a control function of the control device of the second power converter. This is achieved by controlling the DC voltage based on this corrected command.

【0006】[0006]

【作用】本発明は、第1の電力変換器側の異常あるいは
制御装置の切替時において、第2の電力変換器を電圧制
御する機能で作動させ、直流電圧の上昇を抑制する。ま
た、負荷の急変により発生する直流電圧の変動を所定値
内に抑制し、平滑コンデンサの容量を大巾に低減する。
また、第1の電力変換器側の制御切替が発生しても、第
2の電力変換器で負荷の励磁電流を継続して制御し、磁
束を一定に及び直流電圧を所定内に保ち、制御切替によ
る異常回復後に第2の電力変換器を元の制御に戻し、負
荷の運転継続を行う。
According to the present invention, when the abnormality of the first power converter side or the switching of the control device is performed, the second power converter is operated by the function of controlling the voltage to suppress the rise of the DC voltage. Further, the fluctuation of the DC voltage caused by the sudden change of the load is suppressed within a predetermined value, and the capacity of the smoothing capacitor is greatly reduced.
Further, even if the control switching on the side of the first power converter occurs, the second power converter continuously controls the exciting current of the load to keep the magnetic flux constant and the DC voltage within a predetermined range. After the abnormal recovery due to the switching, the second power converter is returned to the original control and the operation of the load is continued.

【0007】[0007]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。図1は、本発明の一実施例を示すGTO素子を用い
たPWM電力変換装置のブロック図である。1は電源、
2は第1の電力変換器、3は平滑コンデンサ、4は第2
の電力変換器、5は誘導電動機、6は速度を検出する速
度検出器(エンコーダ)、7Aおよび7Bは第1、第2
の電力変換器2、4の交流側電流をそれぞれ検出する電
流検出器、8は第1の電力変換器の制御装置、26、2
7は後述するA系とB系とを切替える切替部、9は第2
の電力変換器の制御装置、10は直流電圧検出器、28
は後述する常用A系制御装置8A、待機B系制御装置8
Bの異常を診断する診断部、29は後述する常用A系制
御装置9A、待機B系制御装置9Bの異常を診断する診
断部を示す。第1の電力変換器の制御装置8は、2重系
構成のうちの常用A系制御装置8Aと待機B系制御装置
8Bからなり、直流電圧検出器10で検出される直流電
圧が一定になるように制御する機能を主とする制御装置
である。第2の電力変換器の制御装置9は、2重系構成
のうちの常用A系制御装置9Aと待機B系制御装置9B
からなり、速度検出器6および電流検出器7Bの検出信
号により、電動機5の発生トルクを制御し、速度を制御
する機能を主とする制御装置であると共に、第1の電力
変換器2側が異常の場合、直流電圧を電圧検出器10の
信号により所定値内に抑制する電圧制御機能を有する制
御装置である。本実施例において、図4の従来例と異な
るところは、電圧検出器10で検出した直流電圧を常用
A系制御装置9Aと待機B系制御装置9Bに入力し、ま
た、第1の電力変換器2側が異常のとき、診断部28の
異常信号を常用A系制御装置9Aと待機B系制御装置9
Bに伝送する点である。本実施例の動作は、通常時では
図4の従来例と同様であり、制御装置9A(または9
B)は速度検出器6からの電動機5の速度信号と電流検
出器7Bからの電流信号を入力して、速度制御する機能
により第2の電力変換器4を制御している。ところで、
第1の電力変換器2側に異常が発生すると、診断部28
が異常を検知し、異常信号を制御装置9A(および9
B)に伝送する。制御装置9A(および9B)は、速度
制御する機能から直流電圧を制御する電圧制御機能に切
替えて、第2の電力変換器4を制御する。これにより、
直流電圧の上昇を抑制する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram of a PWM power converter using a GTO element showing an embodiment of the present invention. 1 is the power supply,
2 is a first power converter, 3 is a smoothing capacitor, 4 is a second
Power converter, 5 is an induction motor, 6 is a speed detector (encoder) for detecting speed, 7A and 7B are first and second
Current detectors for respectively detecting the AC side currents of the power converters 2 and 4 of the power converter, 8 is a controller of the first power converter, 26 and 2
7 is a switching unit for switching between A system and B system described later, and 9 is a second
Power converter controller, 10 is a DC voltage detector, 28
Is a regular A system controller 8A and a standby B system controller 8 which will be described later.
Reference numeral 29 denotes a diagnosis unit for diagnosing an abnormality of B, and numeral 29 denotes a diagnosis unit for diagnosing an abnormality of a regular A-system control device 9A and a standby B-system control device 9B described later. The control device 8 of the first power converter is composed of a regular A system control device 8A and a standby B system control device 8B of the dual system configuration, and the DC voltage detected by the DC voltage detector 10 becomes constant. The control device mainly has the function of controlling as described above. The control device 9 for the second power converter includes a normal A system control device 9A and a standby B system control device 9B in the dual system configuration.
The control device is mainly composed of a function of controlling the generated torque of the electric motor 5 by the detection signals of the speed detector 6 and the current detector 7B to control the speed, and the first power converter 2 side is abnormal. In this case, the control device has a voltage control function of suppressing the DC voltage within a predetermined value by the signal of the voltage detector 10. In this embodiment, the difference from the conventional example of FIG. 4 is that the DC voltage detected by the voltage detector 10 is input to the regular A system control device 9A and the standby B system control device 9B, and the first power converter is used. When the second side is abnormal, the abnormality signal of the diagnosis unit 28 is sent to the normal A system control device 9A and the standby B system control device 9
This is the point of transmission to B. The operation of this embodiment is normally the same as that of the conventional example of FIG.
B) inputs the speed signal of the electric motor 5 from the speed detector 6 and the current signal from the current detector 7B, and controls the second power converter 4 by the function of speed control. by the way,
When an abnormality occurs on the first power converter 2 side, the diagnosis unit 28
Detects an abnormality and outputs an abnormality signal to the control device 9A (and 9
B). Control device 9A (and 9B) switches the function of speed control to the voltage control function of controlling DC voltage, and controls second power converter 4. This allows
Suppresses the rise of DC voltage.

【0008】図2に、図1に示す制御装置8、9の詳細
ブロックを示す。1〜10は図1と同じであり、11
A、11BはPWM制御部、12A、12Bはd軸、q
軸の2相より3相交流に変換する2相3相変換制御部、
13A、13Bはd軸成分電流を制御するd軸電流制御
部、14A、14Bはq軸成分電流を制御するq軸電流
制御部、15A、15Bは電流検出器7A、7Bで検出
する交流電流検出値より、d軸、q軸成分電流信号に変
換検出する電流成分検出部、16Aはd軸成分電流指令
部であり、第1の電力変換器2を力率1で運転する場合
には電流指令値Id*を0とするような力率制御指令信
号である。16Bはd軸成分電流指令部であり、誘導電
動機の励滋電流指令Im*となる信号である。18A、
18Bは電圧指令部、17A、17Bは電圧指令部18
A、18Bの電圧指令値Ed*、Ed2*に電圧検出器1
0の電圧がなるように制御する直流電圧制御部、19は
速度検出部、20は、速度検出部19の速度信号ωrと
q軸電流指令Iq*とにより、電動機の速度、発生トル
クに対応する電動機に印加する電圧の周波数指令ω1*を
演算する一次周波数演算部、23は速度指令部、22は
速度指令部23の指令値ωr*に電動機の速度が制御さ
れるようにトルク電流指令であるq軸電流指令Iq1*を
発生する速度制御部、21は第1の電力変換器2側の正
常時には速度制御を選び、異常時には電圧制御を選ぶ速
度/電圧制御切替部である。25A、25Bは異常検出
部である。本実施例において特徴とする構成は、直流電
圧制御部17B、電圧指令部18B、速度/電圧制御切
替部21を設けた点にある。
FIG. 2 shows detailed blocks of the control devices 8 and 9 shown in FIG. 1 to 10 are the same as those in FIG.
A and 11B are PWM control units, 12A and 12B are d axes, and q.
A two-phase / three-phase conversion control unit that converts the two-phase shaft into three-phase alternating current,
13A and 13B are d-axis current control units that control d-axis component currents, 14A and 14B are q-axis current control units that control q-axis component currents, and 15A and 15B are AC current detections detected by current detectors 7A and 7B. 16A is a d-axis component current command unit that converts and detects the d-axis and q-axis component current signals from the value, and the current command when the first power converter 2 is operated at a power factor of 1 The power factor control command signal sets the value Id * to 0. Reference numeral 16B is a d-axis component current command unit, which is a signal that becomes an excitation current command Im * for the induction motor. 18A,
18B is a voltage command unit, 17A and 17B are voltage command units 18
Voltage detector 1 for A, 18B voltage command values Ed *, Ed 2 *
A DC voltage control unit for controlling so that the voltage becomes 0, 19 is a speed detection unit, and 20 corresponds to the speed and generated torque of the electric motor by the speed signal ωr of the speed detection unit 19 and the q-axis current command Iq *. A primary frequency calculation unit that calculates a frequency command ω 1 * of a voltage applied to the electric motor, 23 is a speed command unit, 22 is a torque current command so that the speed of the electric motor is controlled to a command value ωr * of the speed command unit 23. A speed control unit 21 that generates a certain q-axis current command Iq 1 * is a speed / voltage control switching unit that selects speed control when the first power converter 2 side is normal and selects voltage control when it is abnormal. 25A and 25B are abnormality detection units. The characteristic feature of the present embodiment is that a DC voltage control unit 17B, a voltage command unit 18B, and a speed / voltage control switching unit 21 are provided.

【0009】ここで、第1の電力変換器の制御装置8
は、第1の電力変換器2の直流側電圧(電圧検出器10
の検出値Ed)が電圧指令値Ed*となるように直流電
圧制御部17Aで電圧制御し、有効成分電流であるq軸
電流指令Ιq*を出力し、q軸電流制御部14Aで有効
成分電流指令であるΙq*となるようにq軸電流制御す
る。また、第1の電力変換器2の電源側力率を1.0に
制御するため、無効成分電流であるd軸電流Idを"0”
とするようにd軸電流制御部13Aでd軸電流制御す
る。そして、q軸電流制御部14A、d軸電流制御部1
3Aの制御出力を2相3相変換制御部12Aでベクトル
演算し、2相3相変換制御を行ない、PWM制御部11
AでPWM制御信号を作成し、第1の電力変換器2を制
御する。第2の電力変換器の制御装置9は、通常時は、
電動機5の速度(速度検出器19の検出値ωr)が速度
指令値ωr*となるように速度制御部22で速度制御
し、電動機のトルク成分電流となるq軸電流指令Ιq1*
(通常はΙq*=Ιq1*となる。)を出力し、q軸電流
制御部14Bでトルク成分電流指令であるΙq*となる
ようにq軸電流制御する。また、電動機5の励磁電流が
励磁電流指令値Im*となるように励磁電流成分となる
d軸電流制御をd軸電流制御部13Bで行なう。そし
て、d軸電流制御部13B、q軸電流制御部14Bの制
御出力を2相3相変換制御部12Bでベクトル演算し、
2相3相変換制御を行ない、PWM制御部11BでPW
M制御信号を作成し、第2の電力変換器4を電動機5の
速度及び励磁電流の指令値となるように制御する。2相
3相変換制御部12Bにおける演算は、一次周波数演算
部20で演算する周波数指令ω1*が基準信号として使わ
れる。また、電流成分検出部15A、15Bでは、第
1、第2の電力変換器のq軸、d軸成分の電流検出を行
ない、q軸、d軸電流制御のフィードバック値を検出し
ている。一方、異常時は、異常検出部25Aが異常を検
出し、この異常信号により速度/電圧制御切替部21が
速度制御部22から直流電圧制御部17Bに切替え、直
流電圧Edが第2の電圧指令値Ed2*となるように直流
電圧制御部17Bで電圧制御し、q軸電流指令Iq2*を
出力する。このIq2*をトルク成分電流であるIq1*の
代わり、電圧制御のための有効成分電流としてIq2*を
トルク成分電流指令Iq*とし、q軸電流制御する。こ
こで励磁電流成分となるIm*は、無効成分電流であ
る。
Here, the controller 8 of the first power converter
Is the voltage on the DC side of the first power converter 2 (voltage detector 10
The DC voltage control unit 17A controls the voltage so that the detected value Ed) becomes the voltage command value Ed *, outputs the q-axis current command Ιq * that is the active component current, and the q-axis current control unit 14A outputs the active component current. The q-axis current is controlled so that the command becomes Ιq *. Moreover, since the power source side power factor of the first power converter 2 is controlled to 1.0, the d-axis current Id which is the reactive component current is set to "0".
As described above, the d-axis current control unit 13A controls the d-axis current. Then, the q-axis current control unit 14A and the d-axis current control unit 1
The control output of 3A is vector-calculated by the 2-phase / 3-phase conversion control unit 12A to perform 2-phase / 3-phase conversion control.
A creates a PWM control signal to control the first power converter 2. The control device 9 of the second power converter normally
The speed control unit 22 performs speed control so that the speed of the electric motor 5 (detected value ωr of the speed detector 19) becomes the speed command value ωr *, and the q-axis current command Ιq 1 * becomes the torque component current of the electric motor.
(Normally, Ιq * = Ιq 1 *) is output, and the q-axis current control unit 14B controls the q-axis current so that the torque component current command is Ιq *. Further, the d-axis current control unit 13B performs d-axis current control which is an exciting current component so that the exciting current of the electric motor 5 becomes the exciting current command value Im *. Then, the control outputs of the d-axis current control unit 13B and the q-axis current control unit 14B are vector-calculated by the 2-phase / 3-phase conversion control unit 12B,
Performs 2-phase / 3-phase conversion control, and PW is performed by the PWM control unit 11B.
The M control signal is generated, and the second power converter 4 is controlled so as to have the command value of the speed of the electric motor 5 and the exciting current. In the calculation in the 2-phase / 3-phase conversion control unit 12B, the frequency command ω 1 * calculated in the primary frequency calculation unit 20 is used as the reference signal. The current component detectors 15A and 15B detect the currents of the q-axis and d-axis components of the first and second power converters and detect the feedback values of the q-axis and d-axis current control. On the other hand, at the time of abnormality, the abnormality detection unit 25A detects the abnormality, and the speed / voltage control switching unit 21 switches from the speed control unit 22 to the DC voltage control unit 17B by this abnormality signal, and the DC voltage Ed is the second voltage command. The DC voltage control unit 17B controls the voltage so that the value becomes Ed 2 *, and outputs the q-axis current command Iq 2 *. The Iq 2 * the Iq 1 * instead of a torque component current, the Iq 2 * and torque component current command Iq * as the active component current for voltage control, q-axis current control. Im *, which is an exciting current component, is a reactive component current.

【0010】図3は、図1、図2に示す第1の電力変換
器2および第2の電力変換部4の詳細構成図である。3
0UP〜WNはGTO素子、31UP〜WNはダイオー
ドであり、1(または5)は電源(または電動機)、3
は平滑コンデンサを示す。
FIG. 3 is a detailed configuration diagram of the first power converter 2 and the second power converter 4 shown in FIGS. 1 and 2. Three
0UP to WN are GTO elements, 31UP to WN are diodes, 1 (or 5) is a power source (or electric motor), 3
Indicates a smoothing capacitor.

【0011】図6を用いて、運転中の制御装置8Aが異
常となり、待機系の制御装置8Bに切替える場合の動作
を説明する。制御装置8Aに異常が発生すると、第
1の電力変換器を停止させるため、平滑コンデンサ3側
より電源1に回生されていた電力POが0となる。’
第1の電力変換器を停止させると同時に、制御装置8A
の異常信号が診断部28を介して第2の電力変換器の制
御装置9Aに伝送され、第2の電力変換器の制御装置9
Aの機能を速度制御から電圧制御に切替える。すなわ
ち、図2において、制御装置8Aの異常を検知した異常
検出部25から異常信号が第2の電力変換器の制御装置
9Aの速度/電圧制御切換部21に伝送され、q軸電流
指令Iq1*を発生する速度制御部22から直流電圧制御
部17Bに切替える。直流電圧制御部17Bは、電圧検
出器10で検出した直流電圧値Edが電圧指令値Ed*
に制御されるようにq軸電流指令Iq2*を出力する。
”第2の電力変換器4側は、制御装置9Aが直流電圧
を制御する機能に切替えられるため、平滑コンデンサ3
を過充電しようとする平滑コンデンサ3側に入る電力P
Iを0に制御する。そのため、第1の電力変換器2が制
御装置8Aから8Bに切替えられる一時的な停止時にお
いて、直流電圧の上昇を抑制する。また、この期間にお
いては、励磁電流を制御するd軸電流制御部系16B、
13Bは励磁電流が無効成分であるため、直流電圧の変
動はなく、継続して制御することにより、励磁電流を一
定に確保でき、電動機の磁束一定の運転が継続する。こ
れにより、制御装置8Aから8Bに切替えた後、制御装
置9Aを電圧制御から速度制御に切替え、第2の電力変
換器4の制御機能を元に戻したとき、直流電圧および磁
束が一定に確立しているので、スムーズな正常運転が再
開できる。
The operation when the control unit 8A in operation becomes abnormal and the control unit 8B is switched to the standby control unit 8B will be described with reference to FIG. When an abnormality occurs in the control device 8A, the first power converter is stopped, so the power P O regenerated by the power supply 1 from the smoothing capacitor 3 side becomes 0. '
At the same time as stopping the first power converter, the control device 8A
Is transmitted to the control device 9A of the second power converter via the diagnostic unit 28, and the control device 9A of the second power converter is transmitted.
The function of A is switched from speed control to voltage control. That is, in FIG. 2, an abnormality signal is transmitted from the abnormality detection unit 25 that detects the abnormality of the control device 8A to the speed / voltage control switching unit 21 of the control device 9A of the second power converter, and the q-axis current command Iq 1 The speed control unit 22 generating * is switched to the DC voltage control unit 17B. The DC voltage control unit 17B determines that the DC voltage value Ed detected by the voltage detector 10 is the voltage command value Ed *.
The q-axis current command Iq 2 * is output so as to be controlled by.
“On the side of the second power converter 4, the control device 9A is switched to the function of controlling the DC voltage.
Power P that enters the smoothing capacitor 3 side that attempts to overcharge
Control I to 0. Therefore, when the first power converter 2 is temporarily stopped by switching from the control device 8A to the control device 8B, an increase in the DC voltage is suppressed. In this period, the d-axis current control system 16B that controls the exciting current,
In 13B, since the exciting current is an ineffective component, the direct current voltage does not fluctuate, and by continuously controlling the exciting current, the exciting current can be kept constant and the operation of the electric motor with constant magnetic flux continues. Thereby, after switching from the control device 8A to 8B, the control device 9A is switched from the voltage control to the speed control, and when the control function of the second power converter 4 is restored, the DC voltage and the magnetic flux are constantly established. As a result, smooth normal operation can be resumed.

【0012】図7は、本発明の他の実施例を示す。1〜
25は図2と同じである。図2と異なるところは、直流
電圧が第1の電力変換器2側の電圧指令値Ed*を超え
た所定の値以上になったとき、この電圧を検出する過電
圧検出器50を設け、この過電圧検出器50が検出した
過電圧レベル信号を第2の電力変換器の制御装置9Aの
速度/電圧制御切換部21に伝送し、q軸電流指令Iq
1*を発生する速度制御部22から直流電圧制御部17B
に切替え、つまり速度制御から電圧制御に切替えること
にある。いま、制御装置8Aに異常が発生すると、第1
の電力変換器を停止させるため、平滑コンデンサ3側よ
り電源1に回生されていた電力POが0となる。一方、
第2の電力変換器4から平滑コンデンサ3に電力PI
流入し、平滑コンデンサ3を過充電しようとする(図6
を参照)。過電圧検出器50は、過電圧を検出し、直流
電圧が電圧指令値Ed*を超えた所定の値以上になった
とき、過電圧レベル信号を第2の電力変換器の制御装置
9Aの速度/電圧制御切換部21に伝送し、q軸電流指
令Iq1*を発生する速度制御部22から直流電圧制御部
17Bに切替え、電圧検出器10で検出した直流電圧値
Edが電圧指令値Ed*に制御されるようにq軸電流指
令Iq2*を出力する。以下、図6の動作で説明したよう
に、第2の電力変換器4側は、制御装置9Aが直流電圧
を制御する機能に切替えられるため、平滑コンデンサ3
を過充電しようとする平滑コンデンサ3側に入る電力P
Iを抑制する。そのため、直流電圧が電圧指令値Ed*を
超えた所定値以上になったとき、直流電圧の上昇を抑制
する。また、この期間においては、励磁電流を制御する
d軸電流制御部系16B、13Bは励磁電流が無効成分
であるため、直流電圧の変動はなく、継続して制御する
ことにより、励磁電流を一定に確保でき、電動機の磁束
一定の運転が継続する。これにより、制御装置8Aから
8Bに切替えた後、直流電圧が電圧指令値Ed*を超え
た所定値以下に戻ると、制御装置9Aを電圧制御から速
度制御に切替え、第2の電力変換器4の制御機能を元に
戻したとき、直流電圧および磁束が一定に確立している
ので、スムーズな正常運転が再開できる。
FIG. 7 shows another embodiment of the present invention. 1 to
25 is the same as FIG. 2 is different from FIG. 2 in that when the DC voltage exceeds a predetermined value exceeding the voltage command value Ed * on the first power converter 2 side, an overvoltage detector 50 for detecting this voltage is provided. The overvoltage level signal detected by the detector 50 is transmitted to the speed / voltage control switching unit 21 of the control device 9A of the second power converter, and the q-axis current command Iq is transmitted.
1 * generating speed control unit 22 to DC voltage control unit 17B
In other words, switching from speed control to voltage control. If an abnormality occurs in the control device 8A, the first
Since the power converter of 1 is stopped, the power P O regenerated from the smoothing capacitor 3 side to the power source 1 becomes 0. on the other hand,
The power P I flows from the second power converter 4 into the smoothing capacitor 3 and tries to overcharge the smoothing capacitor 3 (FIG. 6).
See). The overvoltage detector 50 detects the overvoltage, and when the direct current voltage exceeds a predetermined value exceeding the voltage command value Ed *, the overvoltage level signal is used to control the speed / voltage of the control device 9A of the second power converter. The speed control unit 22 which transmits the q-axis current command Iq 1 * to the switching unit 21 is switched to the DC voltage control unit 17B, and the DC voltage value Ed detected by the voltage detector 10 is controlled to the voltage command value Ed *. To output the q-axis current command Iq 2 *. Hereinafter, as described in the operation of FIG. 6, on the second power converter 4 side, since the control device 9A switches to the function of controlling the DC voltage, the smoothing capacitor 3
Power P that enters the smoothing capacitor 3 side that attempts to overcharge
Suppress I. Therefore, when the DC voltage becomes equal to or higher than a predetermined value that exceeds the voltage command value Ed *, the increase of the DC voltage is suppressed. Further, in this period, since the d-axis current control system 16B, 13B that controls the exciting current has the exciting current as an ineffective component, there is no fluctuation of the DC voltage, and the exciting current is kept constant by controlling continuously. Therefore, the operation of the motor with constant magnetic flux continues. As a result, after the control device 8A is switched to the control device 8B, when the DC voltage returns to the predetermined value exceeding the voltage command value Ed * or less, the control device 9A is switched from the voltage control to the speed control, and the second power converter 4 is operated. When the control function of is restored to its original value, the DC voltage and the magnetic flux are constantly established, so that smooth normal operation can be resumed.

【0013】図8は、本発明の他の実施例を示す。1〜
25は図2と同じである。図2と異なるところは、速度
/電圧制御切換部21に替えて、直流電圧が所定レベル
以上になったとき、速度制御部22が出力するq軸電流
指令Ιq1*を直流電圧制御部17Bが出力するq軸電流
指令Iq2*によって補正する補正制御部21Bを設け、
直流電圧を制御することにある。図9に、補正制御部2
1Bの詳細ブロックを示す。51は直流電圧が電圧設定
値Ed2*以上でその偏差に比例した信号を出力し、電圧
設定値Ed2*以下では"0"を出力するリミッタ部、52
は速度制御部22の出力信号より直流電圧制御部17B
の出力信号を優先させるための偏差増巾部、53は減算
部である。本実施例では、第1の電力変換器2側が異常
とならなくても、第2の電力変換器4の負荷の急変が発
生すると、第2の電力変換器4から平滑コンデンサ3に
電力が流入し、平滑コンデンサ3を過充電しようとす
る。補正制御部21Bは、速度制御部22からq軸電流
指令Ιq1*と、直流電圧制御部17Bからq軸電流指令
Iq2*を入力し、直流電圧が電圧設定値Ed2*以上にな
ったときはその偏差に比例した信号を偏差増巾部52を
介してq軸電流指令Ιq1より優先させて出力し、減算
部53でq軸電流指令Ιq1*から直流電圧と電圧設定値
Ed2*の偏差に比例した信号を減算して、つまりq軸電
流指令Ιq1*を補正して、電圧制御のための有効成分電
流としてIq*を出力する。そのため、第2の電力変換
器4は、補正されたq軸電流指令Iq*に基づいて電圧
制御され、平滑コンデンサ3を過充電しようとする平滑
コンデンサ3側に入る電力を抑制する。負荷が通常状態
に戻り、リミッタ部51において直流電圧が電圧設定値
Ed2*以下となると、q軸電流指令Iq2*を"0"として
出力し、第2の電力変換器4の制御装置9の制御機能を
元に戻し、第2の電力変換器4は速度制御される。これ
により、負荷の急変等で発生する直流電圧の上昇を一定
値以下に制御することができ、平滑コンデンサの容量を
大巾に低減できる。また、図10に示すように、リミッ
タ部51の特性を上限リミッタ値Ed2、下限リミッタ
値Ed1として上下限リミッタ特性にすると、図9に示
した直流電圧を上昇抑制だけでなく、下降抑制機能も持
たせることができる。
FIG. 8 shows another embodiment of the present invention. 1 to
25 is the same as FIG. 2 is different from the speed / voltage control switching unit 21 in that the DC voltage control unit 17B sends a q-axis current command Ιq 1 * output from the speed control unit 22 when the DC voltage becomes a predetermined level or higher. A correction controller 21B for correcting the q-axis current command Iq 2 * to be output is provided,
It is to control the DC voltage. In FIG. 9, the correction controller 2
1B shows a detailed block of 1B. 51 limiter portion a DC voltage to output a signal proportional to the deviation voltage set value Ed 2 * or more, the voltage setting value Ed 2 * The following outputs "0", 52
Is a DC voltage control unit 17B based on the output signal of the speed control unit 22.
Is a deviation widening unit for giving priority to the output signal of, and 53 is a subtracting unit. In the present embodiment, even if the first power converter 2 side is not abnormal, when the load of the second power converter 4 suddenly changes, power flows from the second power converter 4 to the smoothing capacitor 3. Then, the smoothing capacitor 3 tries to be overcharged. The correction control unit 21B inputs the q-axis current command Ιq 1 * from the speed control unit 22 and the q-axis current command Iq 2 * from the DC voltage control unit 17B, and the DC voltage becomes the voltage set value Ed 2 * or more. In this case, a signal proportional to the deviation is output via the deviation widening unit 52 with priority over the q-axis current command Ιq 1 and the subtraction unit 53 outputs the DC voltage and the voltage set value Ed 2 from the q-axis current command Ιq 1 *. A signal proportional to the deviation of * is subtracted, that is, the q-axis current command Ιq 1 * is corrected, and Iq * is output as an active component current for voltage control. Therefore, the second power converter 4 is voltage-controlled based on the corrected q-axis current command Iq *, and suppresses the electric power that enters the smoothing capacitor 3 side that attempts to overcharge the smoothing capacitor 3. When the load returns to the normal state and the DC voltage in the limiter unit 51 becomes equal to or lower than the voltage setting value Ed 2 *, the q-axis current command Iq 2 * is output as "0", and the control device 9 of the second power converter 4 is output. The control function of is restored to its original value, and the speed of the second power converter 4 is controlled. As a result, it is possible to control the rise of the DC voltage that occurs due to a sudden change in the load to a fixed value or less, and it is possible to greatly reduce the capacity of the smoothing capacitor. Further, as shown in FIG. 10, when the characteristics of the limiter section 51 are set to the upper and lower limiter characteristics with the upper limit limiter value Ed 2 and the lower limit limiter value Ed 1 , the DC voltage shown in FIG. It can also have functions.

【0014】なお、以上説明した実施例では、自己消弧
素子としてGTOを用いた例を示したが、本発明は、I
GBT、トランジスタ、IGCT、SIサイリスタ等全
ての自己消弧素子を用いても、同じ制御方法で同じ効果
が得られる。また、以上説明した実施例では、第1の電
力変換器側の異常、あるいは、負荷の急変時に第1の電
力変換器の常用A系制御装置8Aから待機B系制御装置
8Bに切替える例を示したが、本発明は、通常のメンテ
ナンス等のため、常用A系8Aから待機B系8Bまたは
その逆の制御切替時においても適用できる。
In the embodiment described above, the GTO is used as the self-extinguishing element, but the present invention is
Even if all self-extinguishing elements such as GBTs, transistors, IGCTs, and SI thyristors are used, the same effect can be obtained by the same control method. Further, in the embodiment described above, an example is shown in which the normal A-system control device 8A of the first power converter is switched to the standby B-system control device 8B when an abnormality occurs on the first power converter side or when the load changes suddenly. However, the present invention can be applied even when the control is switched from the regular A system 8A to the standby B system 8B or vice versa for normal maintenance or the like.

【0015】[0015]

【発明の効果】以上説明したように、本発明によれば、
第1の電力変換器側の異常あるいは制御装置の切替時に
おいて、第2の電力変換器を電圧制御する機能で作動さ
せるので、直流電圧の上昇を抑制できる。また、負荷の
急変により発生する直流電圧の変動を所定値内に抑制す
るので、平滑コンデンサの容量を大巾に低減できる。ま
た、第1の電力変換器側の制御切替が発生しても、第2
の電力変換器で負荷の励磁電流を継続して制御するの
で、磁束を一定に保つこと及び直流電圧を所定内に保つ
ことができ、制御切替による異常回復後に第2の電力変
換器を元の制御に戻し、負荷の運転継続が行なえるとい
う効果がある。
As described above, according to the present invention,
When the abnormality of the first power converter side or the switching of the control device is performed, the second power converter is operated by the function of controlling the voltage, so that the rise of the DC voltage can be suppressed. Further, since the fluctuation of the DC voltage caused by the sudden change of the load is suppressed within a predetermined value, the capacity of the smoothing capacitor can be greatly reduced. Even if the control switching on the first power converter side occurs,
Since the exciting current of the load is continuously controlled by the power converter of No. 2, the magnetic flux can be kept constant and the DC voltage can be kept within a predetermined range. There is an effect that the operation can be continued by returning to the control.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すGTO素子を用いたP
WM電力変換装置のブロック図
FIG. 1 shows a P using a GTO element showing an embodiment of the present invention.
Block diagram of WM power converter

【図2】図1に示す制御装置の詳細ブロック図FIG. 2 is a detailed block diagram of the control device shown in FIG.

【図3】電力変換器の構成図FIG. 3 is a configuration diagram of a power converter

【図4】従来技術の説明図FIG. 4 is an explanatory diagram of a conventional technique.

【図5】従来技術の説明図FIG. 5 is an explanatory diagram of a conventional technique.

【図6】本発明の動作説明図FIG. 6 is an operation explanatory diagram of the present invention.

【図7】本発明の他の実施例FIG. 7 is another embodiment of the present invention.

【図8】本発明の他の実施例FIG. 8 is another embodiment of the present invention.

【図9】図8の一部詳細ブロック図FIG. 9 is a partial detailed block diagram of FIG.

【図10】図9のリミッタ特性図FIG. 10 is a limiter characteristic diagram of FIG.

【符号の説明】[Explanation of symbols]

1 電源 2、4 電力変換器 5 誘導電動機 8、9 制御装置 8A、9A 常用A系制御装置 8B、9B 待機B系制御装置 10 直流電圧検出器 28 診断部 17 直流電圧制御部 18 電圧指令部 21 速度/電圧制御切替部 21B 補正制御部 22 速度制御部 23 速度指令部 25 異常検出部 50 過電圧検出器 51 リミッタ部 1 Power Supply 2, 4 Power Converter 5 Induction Motor 8, 9 Control Device 8A, 9A Regular A System Control Device 8B, 9B Standby B System Control Device 10 DC Voltage Detector 28 Diagnostic Unit 17 DC Voltage Control Unit 18 Voltage Command Unit 21 Speed / voltage control switching unit 21B Correction control unit 22 Speed control unit 23 Speed command unit 25 Abnormality detection unit 50 Overvoltage detector 51 Limiter unit

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 自己消弧素子を用いて、電源から電動機
等の負荷に電力を供給し、また、電動機等の負荷から電
源に電力を回生する第1の電力変換器および第2の電力
変換器からなる電力変換装置において、電源の交流を直
流電圧に変換する第1の電力変換器が異常となった場合
に、電動機等の負荷の速度制御およびトルク制御に必要
な電力に変換する第2の電力交換器を直流電圧制御する
機能に切替え、直流電圧の上昇を抑制することを特徴と
する電力変換装置の制御方法。
1. A first power converter and a second power converter for supplying electric power from a power supply to a load such as an electric motor using the self-extinguishing element and for regenerating electric power from the load such as the electric motor to the power supply. In a power conversion device including a power supply device, a second power conversion device that converts an alternating current of a power supply into a direct current voltage into electric power required for speed control and torque control of a load such as an electric motor when an abnormality occurs A method for controlling a power conversion device, characterized in that the power exchanger is switched to a function for controlling a DC voltage to suppress an increase in the DC voltage.
【請求項2】 自己消弧素子を用いて、電源から電動機
等の負荷に電力を供給し、また、電動機等の負荷から電
源に電力を回生する第1の電力変換器および第2の電力
変換器からなり、第1の電力変換器の制御装置を2重系
に構成する電力変換装置において、一方の制御装置から
他方の制御装置に切替が必要となった場合に、第2の電
力変換器を電動機等の負荷の速度制御およびトルク制御
を行なう速度制御機能から直流電圧を制御する電圧制御
機能に切替え、第1の電力変換器の制御装置の切替後、
第2の電力変換器の制御機能を元に戻し、負荷の運転を
継続することを特徴とする電力変換装置の制御方法。
2. A first power converter and a second power converter, which use a self-extinguishing element to supply electric power from a power supply to a load such as an electric motor and to regenerate electric power from the load such as an electric motor to the power supply. And a control device for the first power converter in a dual system, the second power converter when it is necessary to switch from one control device to the other control device. Is switched from a speed control function for controlling the speed and torque of a load such as an electric motor to a voltage control function for controlling a DC voltage, and after switching the control device of the first power converter,
A method of controlling a power converter, wherein the control function of the second power converter is returned to the original state and the operation of the load is continued.
【請求項3】 自己消弧素子を用いて、電源から電動機
等の負荷に電力を供給し、また、電動機等の負荷から電
源に電力を回生する第1の電力変換器および第2の電力
変換器からなる電力変換装置において、変換される直流
電圧が所定値を超えたとき、第2の電力変換器を電動機
等の負荷の速度制御およびトルク制御を行なう速度制御
機能から直流電圧を制御する電圧制御機能に切替え、直
流電圧の上昇を抑制することを特徴とする電力変換装置
の制御方法。
3. A first power converter and a second power converter, which use a self-extinguishing element to supply electric power from a power supply to a load such as an electric motor and to regenerate electric power from the load such as an electric motor to the power supply. In a power conversion device including a voltage converter, when the converted DC voltage exceeds a predetermined value, the second power converter controls the DC voltage from a speed control function that controls the speed and torque of a load such as an electric motor. A control method for a power conversion device, comprising switching to a control function and suppressing a rise in a DC voltage.
【請求項4】 請求項3において、変換される直流電圧
が所定値以下になったとき、第2の電力変換器の制御機
能を元に戻し、負荷の運転継続を行なうことを特徴とす
る電力変換装置の制御方法。
4. The electric power according to claim 3, wherein when the DC voltage to be converted becomes equal to or lower than a predetermined value, the control function of the second power converter is restored to continue the operation of the load. Control method of converter.
【請求項5】 自己消弧素子を用いて、電源から電動機
等の負荷に電力を供給し、また、電動機等の負荷から電
源に電力を回生する第1の電力変換器および第2の電力
変換器からなる電力変換装置において、変換される直流
電圧が所定の設定電圧以上となったとき、第2の電力変
換器の制御装置の制御機能として、速度制御のための指
令を直流電圧と前記設定電圧の偏差によって補正し、こ
の補正した指令に基づいて直流電圧制御し、直流電圧の
上昇を抑制することを特徴とする電力変換装置の制御方
法。
5. A first power converter and a second power converter, which use a self-extinguishing element to supply electric power from a power supply to a load such as an electric motor and to regenerate electric power from the load such as an electric motor to the power supply. In a power conversion device including a power converter, when the DC voltage to be converted becomes equal to or higher than a predetermined set voltage, a command for speed control is set to the DC voltage and the setting as a control function of the control device of the second power converter. A control method for a power conversion device, characterized in that the voltage is corrected by a deviation of the voltage, and the direct current voltage is controlled based on the corrected command to suppress an increase in the direct current voltage.
【請求項6】 請求項5において、所定の設定電圧は、
変換される直流電圧の上限と下限に定めることを特徴と
する電力変換装置の制御方法。
6. The predetermined set voltage according to claim 5,
A control method for a power conversion device, characterized in that the upper limit and the lower limit of the converted DC voltage are set.
【請求項7】 請求項3から請求項6のいずれかにおい
て、第1の電力変換器は、その制御装置が2重系に構成
されることを特徴とする電力変換装置の制御方法。
7. The method for controlling a power conversion device according to claim 3, wherein the control device of the first power converter is configured in a dual system.
【請求項8】 自己消弧素子を用いて、電源から電動機
等の負荷に電力を供給し、また、電動機等の負荷から電
源に電力を回生する第1の電力変換器および第2の電力
変換器からなる電力変換装置において、第1の電力変換
器の制御装置に異常を検出する検出手段、第2の電力交
換器の制御装置に電動機等の負荷の速度制御およびトル
ク制御を行なう速度制御機能と変換される直流電圧を制
御する電圧制御機能とを切替える切替手段を設け、第1
の電力変換器の異常時に、第2の電力交換器の制御装置
の制御機能を電圧制御機能に切替えることを特徴とする
電力変換装置の制御装置。
8. A first power converter and a second power converter for supplying electric power from a power supply to a load such as an electric motor using the self-extinguishing element and regenerating electric power from the load such as an electric motor to the power supply. In a power converter comprising a power converter, the controller for the first power converter detects an abnormality, and the controller for the second power exchanger has a speed control function for performing speed control and torque control of a load such as an electric motor. Switching means for switching between a voltage control function for controlling a DC voltage converted to
2. The control device for a power converter, wherein the control function of the controller for the second power exchanger is switched to the voltage control function when the power converter is abnormal.
【請求項9】 自己消弧素子を用いて、電源から電動機
等の負荷に電力を供給し、また、電動機等の負荷から電
源に電力を回生する第1の電力変換器および第2の電力
変換器からなる電力変換装置において、変換される直流
電圧が所定値を超えたとき、これを検出する手段と、第
2の電力交換器の制御装置に電動機等の負荷の速度制御
およびトルク制御を行なう速度制御機能と直流電圧を制
御する電圧制御機能とを切替える切替手段を設け、直流
電圧が所定値を超えたとき、第2の電力交換器の制御装
置の制御機能を電圧制御機能に切替えることを特徴とす
る電力変換装置の制御装置。
9. A first power converter and a second power converter that use a self-extinguishing element to supply electric power from a power supply to a load such as an electric motor and to regenerate electric power from the load such as an electric motor to the power supply. In a power conversion device including a switch, when the converted DC voltage exceeds a predetermined value, a means for detecting this and a control device for the second power exchanger perform speed control and torque control of a load such as an electric motor. A switching means for switching between the speed control function and the voltage control function for controlling the DC voltage is provided, and when the DC voltage exceeds a predetermined value, the control function of the control device of the second power exchanger is switched to the voltage control function. A control device for a characteristic power converter.
【請求項10】 請求項8または請求項9において、第
1の電力変換器は、その制御装置が2重系に構成され、
切替手段は、一方の制御装置から他方の制御装置に切替
えた後に、第2の電力変換器の制御機能を元に戻すこと
を特徴とする電力変換装置の制御装置。
10. The first power converter according to claim 8 or 9, wherein the control device is configured in a dual system.
The control device of the power conversion device, wherein the switching means restores the control function of the second power converter after switching from one control device to the other control device.
【請求項11】 自己消弧素子を用いて、電源から電動
機等の負荷に電力を供給し、また、電動機等の負荷から
電源に電力を回生する第1の電力変換器および第2の電
力変換器からなる電力変換装置において、変換される直
流電圧が所定の設定電圧以上または所定の設定電圧以下
となったとき、速度制御のための指令を直流電圧と前記
設定電圧の偏差によって補正する手段を設け、第2の電
力変換器の制御装置の制御機能として、前記補正した指
令に基づいて直流電圧制御することを特徴とする電力変
換装置の制御装置。
11. A first power converter and a second power converter that use a self-extinguishing element to supply electric power from a power supply to a load such as an electric motor and regenerate electric power from the load such as an electric motor to the power supply. In a power conversion device including a power supply, when the converted DC voltage is equal to or higher than a predetermined set voltage or lower than or equal to a predetermined set voltage, a means for correcting a command for speed control by a deviation between the DC voltage and the set voltage is provided. A control device for a power converter, wherein the control device for a second power converter controls DC voltage based on the corrected command.
JP05997495A 1995-02-23 1995-02-23 Power conversion device control method and device Expired - Fee Related JP3314260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05997495A JP3314260B2 (en) 1995-02-23 1995-02-23 Power conversion device control method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05997495A JP3314260B2 (en) 1995-02-23 1995-02-23 Power conversion device control method and device

Publications (2)

Publication Number Publication Date
JPH08237963A true JPH08237963A (en) 1996-09-13
JP3314260B2 JP3314260B2 (en) 2002-08-12

Family

ID=13128663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05997495A Expired - Fee Related JP3314260B2 (en) 1995-02-23 1995-02-23 Power conversion device control method and device

Country Status (1)

Country Link
JP (1) JP3314260B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223599A (en) * 2000-11-22 2002-08-09 Isao Takahashi Inverter control method and its device
US7259470B2 (en) * 2003-10-28 2007-08-21 Mitsubishi Denki Kabushiki Kaisha Power control device for vehicle
JP2013154496A (en) * 2012-01-27 2013-08-15 Sumitomo Heavy Ind Ltd Injection molding machine and converter
AT512995A1 (en) * 2012-05-18 2013-12-15 Fronius Int Gmbh Method for controlling a current source, as well as current source and process controller therefor
JP2015158189A (en) * 2014-02-25 2015-09-03 三菱重工業株式会社 Supercharger and ship

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002223599A (en) * 2000-11-22 2002-08-09 Isao Takahashi Inverter control method and its device
US7259470B2 (en) * 2003-10-28 2007-08-21 Mitsubishi Denki Kabushiki Kaisha Power control device for vehicle
JP2013154496A (en) * 2012-01-27 2013-08-15 Sumitomo Heavy Ind Ltd Injection molding machine and converter
AT512995A1 (en) * 2012-05-18 2013-12-15 Fronius Int Gmbh Method for controlling a current source, as well as current source and process controller therefor
US9531276B2 (en) 2012-05-18 2016-12-27 Fronius International Gmbh Method for controlling a power source, and power source and process controller therefor
JP2015158189A (en) * 2014-02-25 2015-09-03 三菱重工業株式会社 Supercharger and ship

Also Published As

Publication number Publication date
JP3314260B2 (en) 2002-08-12

Similar Documents

Publication Publication Date Title
US5285029A (en) Device for driving elevator at service interruption
US5389749A (en) Elevator system
JP2013162529A (en) Motor drive pwm rectifier having modulation scheme selector
JP3760153B2 (en) Method for dynamically controlling the torque of a motor drive by feeding back the temperature of the power switching device
JP3192058B2 (en) Control device for PWM converter
JPH0556682A (en) Power converting system and control method therefor
JP3314260B2 (en) Power conversion device control method and device
US7091690B1 (en) Power conversion device
JP2001095300A (en) Device for controlling permanent magnet synchronous motor
JP2001037236A (en) Voltage control apparatus of power converting apparatus
JP3773798B2 (en) Power converter
JP2009077606A (en) Power generator and related controller for electric motor
JP3312178B2 (en) Control device for self-excited inverter
JPH07288980A (en) Voltage controller for power converter
JPS63302732A (en) Controller for ac/dc converter
JP2005218186A (en) Controller for ac electric rolling stock
JPH09285185A (en) Inverter device
JPH01231685A (en) Voltage type inverter
JPH06245565A (en) Regenerative controller for voltage-type inverter
JP2002095183A (en) Uninterruptible power source
JP2001286155A (en) Power converter
JP2781145B2 (en) Power transmission control device
JPH07222457A (en) Control method of overloaded inverter
JPH0568305A (en) Controller for ac electric vehicle
JPH0327793A (en) Controller for motor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080607

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090607

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100607

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110607

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120607

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130607

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees