JPH08236870A - Semiconductor laser device and its manufacture - Google Patents

Semiconductor laser device and its manufacture

Info

Publication number
JPH08236870A
JPH08236870A JP6196895A JP6196895A JPH08236870A JP H08236870 A JPH08236870 A JP H08236870A JP 6196895 A JP6196895 A JP 6196895A JP 6196895 A JP6196895 A JP 6196895A JP H08236870 A JPH08236870 A JP H08236870A
Authority
JP
Japan
Prior art keywords
region
layer
substrate
laser device
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6196895A
Other languages
Japanese (ja)
Inventor
Toshiyuki Terada
敏行 寺田
Tetsuya Suzuki
哲哉 鈴木
Yasuhisa Fujita
泰久 藤田
Satoshi Fujii
智 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP6196895A priority Critical patent/JPH08236870A/en
Publication of JPH08236870A publication Critical patent/JPH08236870A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To make it possible to produce a semiconductor laser device having good electrical characteristics and high reliability with a good yield by making a plane on a region directly below a laser oscillating region on a substrate and by constituting other regions only from slopes having specific orientations as surfaces. CONSTITUTION: This semiconductor laser device is laminated with an n-type GaAs substrate 1, an n-type ZnSe buffer layer 2, an n-type ZnSSe clad layer 3, an active layer 4 made of CdZnSe, a p-type ZnSSe clad layer 5, a heavily deped p-type ZnSe layer 6 as a contact layer in this order. Here, a region 1a directly below a laser oscillating region on the surface of the substrate 1 is made of a recessed portion, its bottom surface has a flat surface shape, and other regions in which the grating region 1b comprises slopes with the (111) plane of the substrate as surfaces; that is, it is constituted with a slope 1c only having an angle of +54.7 deg. and -54.7 deg. with the region 1a.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体基板上に異なる
導電型のクラッド層に挟まれた活性層を有し、この活性
層のレーザ発振領域からレーザ光を出射する半導体レー
ザ装置及びその製造方法に関し、特に、II−VI族化
合物半導体を用いて青色レーザを得る形式のものに適す
る半導体レーザ装置及びその製造方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device having an active layer sandwiched between cladding layers of different conductivity types on a semiconductor substrate and emitting a laser beam from a laser oscillation region of the active layer, and a manufacturing method thereof. More particularly, the present invention relates to a semiconductor laser device suitable for a type for obtaining a blue laser by using a II-VI group compound semiconductor and a manufacturing method thereof.

【0002】[0002]

【従来の技術】従来から、II−VI族化合物半導体エ
ピタキシャル結晶として砒化ガリウム(GaAs)基板
上へセレン化亜鉛(ZnSe)の結晶を成長させ、更に
ドーパントとして窒素(N)を導入して青色レーザを得
るためのp型結晶を形成する方法や装置が近年注目され
ており、特開昭62−88329号広報にはその一例が
開示されている。また、米国のDePuydtらによれ
ば、MBE法にてrfプラズマ励起セルにより活性窒素
ビームを発生させ、1×1018cm-3台の窒素ドーピン
グを実現する方法が提案されており(Appl.Phy
s.Lett.57,2127(1991)参照)、こ
れにより低抵抗のp型結晶が得られることが示唆されて
いる。
2. Description of the Related Art Conventionally, a blue laser was prepared by growing a zinc selenide (ZnSe) crystal on a gallium arsenide (GaAs) substrate as a II-VI group compound semiconductor epitaxial crystal and further introducing nitrogen (N) as a dopant. In recent years, attention has been paid to a method and an apparatus for forming a p-type crystal for obtaining the same, and an example thereof is disclosed in JP-A-62-88329. Further, according to DePuydt et al. Of the United States, a method has been proposed in which an active nitrogen beam is generated by an rf plasma excitation cell by the MBE method to realize nitrogen doping of 1 × 10 18 cm −3 (Appl. Phy.
s. Lett. 57, 2127 (1991)), which suggests that a p-type crystal with low resistance can be obtained.

【0003】このような半導体レーザ装置に於ては効率
の良い発振を行うべくレーザ装置内部に所謂電流狭窄構
造を設ける必要がある。例えば特開平5−19996号
や特開平6−97590号公報或いは特開平6−975
72号公報には、レーザ装置内部のいずれか一方のクラ
ッド層の上または下に電流狭窄層またはブロック層と呼
ばれる高抵抗層を形成して活性層の所定の領域に電流を
集中させる構造が開示されている。
In such a semiconductor laser device, it is necessary to provide a so-called current constriction structure inside the laser device in order to perform efficient oscillation. For example, JP-A-5-19996, JP-A-6-97590, or JP-A-6-975.
Japanese Patent Laid-Open No. 72-72 discloses a structure in which a high resistance layer called a current confinement layer or a block layer is formed on or under any one of the cladding layers inside the laser device to concentrate the current in a predetermined region of the active layer. Has been done.

【0004】しかしながら、上記高抵抗層は、例えばn
型クラッド層に対してはp型にドープされた半導体、p
型クラッド層に対してはn型にドープされた半導体とし
て形成するようになっており、その成膜、ドーピング及
びパターニングが厄介なばかりでなく、各層の成膜(結
晶成長)処理の間にドーピング及びパターニング処理を
介在させることから、基板の移動時にエピタキシャル結
晶成長させた層の表面が汚染され易くなり、膜質が低下
する問題があった。特にII−VI族のエピタキシャル
結晶成長層は汚染され易く、II−VI族化合物半導体
レーザ装置に於ては上記問題が一層深刻になる。また、
ドーピングの際の熱処理などによりエピタキシャル結晶
成長層がダメージを受け、これによっても膜質が低下す
る。
However, the high resistance layer is, for example, n
P-type doped semiconductor for the cladding layer, p
The n-type cladding layer is formed as an n-type doped semiconductor, and not only is its film formation, doping and patterning troublesome, but the doping is also performed during the film formation (crystal growth) process of each layer. Further, since the patterning process is interposed, the surface of the layer on which the epitaxial crystal is grown is easily contaminated when the substrate is moved, and there is a problem that the film quality is deteriorated. Particularly, the II-VI group epitaxial crystal growth layer is easily contaminated, and the above problem becomes more serious in the II-VI group compound semiconductor laser device. Also,
The epitaxial crystal growth layer is damaged by heat treatment during doping, etc., which also deteriorates the film quality.

【0005】[0005]

【発明が解決しようとする課題】本発明は上述したよう
な従来技術の問題点に鑑みなされたものであり、その主
たる目的は、電気的特性が良く、かつ信頼性の高い半導
体レーザ装置及びこれを歩留まり良く製造することがで
きる半導体レーザ装置の製造方法を提供することにあ
る。
SUMMARY OF THE INVENTION The present invention has been made in view of the problems of the prior art as described above, and its main object is to provide a semiconductor laser device having good electrical characteristics and high reliability, and a semiconductor laser device having the same. It is an object of the present invention to provide a method of manufacturing a semiconductor laser device capable of manufacturing a semiconductor laser device with a high yield.

【0006】[0006]

【課題を解決するための手段】上述した目的は本発明に
よれば、第1導電型の半導体基板上に、第1導電型の第
1クラッド層と活性層と第2導電型の第2クラッド層と
コンタクト層とをこの順番に有し、前記基板と前記コン
タクト層との間に電圧を印加して前記活性層のレーザ発
振領域からレーザ光を出射する半導体レーザ装置であっ
て、前記基板上のレーザ発振領域直下の領域が平面から
なると共にそれ以外の領域が、(111)面を表面とす
る斜面のみから構成されていることを特徴とする半導体
レーザ装置及び第1導電型の半導体基板上に、第1導電
型の第1クラッド層と活性層と第2導電型の第2クラッ
ド層とコンタクト層とをこの順番に有し、前記基板と前
記コンタクト層との間に電圧を印加して前記活性層のレ
ーザ発振領域からレーザ光を出射する半導体レーザ装置
の製造方法であって、前記基板表面のレーザ発振領域直
下となる領域全体を露出させ、またはマスクし、かつそ
れ以外の領域を所定の間隔及び幅でマスクして該基板表
面を異方性エッチングすることにより、前記レーザ発振
領域直下の領域全体を平面とすると共に前記それ以外の
領域を(111)面を表面とする斜面のみから構成され
るようにし、その表面に前記各層を順番に積層させるこ
とを特徴とする半導体レーザ装置の製造方法を提供する
ことにより達成される。
According to the present invention, the above-mentioned object is achieved by providing a first conductivity type first clad layer, an active layer, and a second conductivity type second clad on a first conductivity type semiconductor substrate. A semiconductor laser device having a layer and a contact layer in this order, and applying a voltage between the substrate and the contact layer to emit laser light from the laser oscillation region of the active layer, Of the semiconductor laser device and the semiconductor substrate of the first conductivity type, wherein the region immediately below the laser oscillation region of is a plane and the other region is composed only of an inclined surface having the (111) plane as a surface. A first conductive type first clad layer, an active layer, a second conductive type second clad layer, and a contact layer in this order, and a voltage is applied between the substrate and the contact layer. From the laser oscillation region of the active layer A method for manufacturing a semiconductor laser device that emits laser light, comprising exposing or masking the entire region of the surface of the substrate immediately below the laser oscillation region, and masking the other region at predetermined intervals and widths. By anisotropically etching the surface of the substrate, the entire region immediately below the laser oscillation region is made flat and the other region is made up of only slopes having the (111) plane as its surface. This is achieved by providing a method for manufacturing a semiconductor laser device, which is characterized in that the above layers are sequentially laminated on the surface.

【0007】[0007]

【作用】このように、基板表面を異方性エッチングによ
りレーザ発振領域直下の領域が平面状をなし、かつそれ
以外の領域が基板の(111)面を表面とする斜面のみ
で構成されるようにし、MBE法、MOMBE法、CB
E法などによりクラッド層、活性層などを形成してレー
ザ発振構造を形成することにより、基板の(111)面
上では例えばp型クラッド層が高抵抗層となることか
ら、結晶成長前の基板に対するエッチング処理のみで電
流狭窄構造が得られる。
As described above, the region directly below the laser oscillation region is made flat by anisotropic etching of the substrate surface, and the other region is constituted only by the slope having the (111) plane of the substrate as the surface. , MBE method, MOMBE method, CB
By forming a clad layer, an active layer, etc. by the E method or the like to form a laser oscillation structure, for example, the p-type clad layer becomes a high resistance layer on the (111) plane of the substrate, so that the substrate before crystal growth A current constriction structure can be obtained only by the etching process for.

【0008】[0008]

【実施例】以下、添付の図面に従って本発明の好適実施
例について説明する。
Preferred embodiments of the present invention will be described below with reference to the accompanying drawings.

【0009】図1には、本発明に基づく第1の実施例に
於けるII−VI族化合物半導体からなる半導体レーザ
装置の概略的な断面構造を示す。この半導体レーザ装置
は、n型砒化ガリウム(GaAs)基板1と、n型Zn
Seのバッファ層2と、n型ZnSSeの第1のクラッ
ド層3と、CdZnSeからなる活性層4と、p型Zn
SSeの第2のクラッド層5と、コンタクト層としての
高濃度ドープp型ZnSe層6とがこの順番に積層され
ている。また、高濃度ドープp型ZnSe層6の上層に
はAu電極7が蒸着により形成されている。尚、n型G
aAs基板1の裏面にはAu/Ge(ゲルマニウム)電
極層8が形成されている。
FIG. 1 shows a schematic sectional structure of a semiconductor laser device made of a II-VI group compound semiconductor according to a first embodiment of the present invention. This semiconductor laser device includes an n-type gallium arsenide (GaAs) substrate 1 and an n-type Zn
Se buffer layer 2, n-type ZnSSe first cladding layer 3, CdZnSe active layer 4, p-type Zn
The second cladding layer 5 of SSe and the heavily doped p-type ZnSe layer 6 as a contact layer are laminated in this order. An Au electrode 7 is formed on the upper layer of the heavily doped p-type ZnSe layer 6 by vapor deposition. In addition, n-type G
An Au / Ge (germanium) electrode layer 8 is formed on the back surface of the aAs substrate 1.

【0010】ここで、基板1の表面に於けるレーザ発振
領域直下の領域1aは凹部からなると共にその底面は平
面状をなし、かつそれ以外の領域、即ちグレーティング
領域1bが基板の(111)面を表面とする斜面、即ち
領域1aに対して+54.7゜及び−54.7゜の角度
をなす斜面1cのみで構成されている。また、その上層
の各層もこの基板1の表面形状に応じた形状に成膜され
ている。従って、基板1の結晶構造上、(111)面の
みからなるグレーティング領域1bではその上層が高抵
抗層となって電流が殆ど生じず、領域1aに集中する電
流狭窄構造となっている。
Here, the region 1a directly below the laser oscillation region on the surface of the substrate 1 is made of a concave portion and its bottom surface is flat, and the other region, that is, the grating region 1b is the (111) plane of the substrate. The surface is a slope 1c, that is, only the slope 1c forming an angle of + 54.7 ° and −54.7 ° with respect to the region 1a. Further, each of the upper layers is also formed in a shape corresponding to the surface shape of the substrate 1. Therefore, in the crystal structure of the substrate 1, in the grating region 1b formed only of the (111) plane, the upper layer thereof becomes a high resistance layer, and a current hardly occurs, and the current confinement structure is concentrated in the region 1a.

【0011】以下に本実施例の半導体レーザ装置の製造
手順について説明する。まず、n型GaAs基板1に、
ホトリソグラフィ及びウェットエッチングにより領域1
aを凹設すると共にグレーティング領域1bを形成す
る。ここで、図2に示すように、領域1aは露出させ、
グレーティング領域1b上には所定の間隔及び幅でレジ
スト9を形成し、異方性エッチングすることにより、領
域1aは凹部からなると共にその底面が平面状をなし、
領域1bは(111)面を表面とする斜面のみが残る基
板1ができる。次いで、この基板1上にn型ZnSeの
バッファ層2と、n型ZnSSeの第1のクラッド層3
と、CdZnSeからなる活性層4と、p型ZnSSe
の第2のクラッド層5と、高濃度ドープp型ZnSe層
6とをこの順番にMBE法により形成する。ここで、バ
ッファ層2の厚みは1000Å、第1のクラッド層3の
厚みは2.0μm(組成:ZnS0.07Se0.9
3)、活性層4の厚みは100Å(組成;Cd0.1Z
n0.9Se)、第2のクラッド層5の厚みは1.5μ
m(組成;ZnS0.07Se0.93)、高濃度ドー
プp型ZnSe層6の厚みは1000Å、キャリア濃度
は1×1018cm-3となるように順番に結晶成長させる。
尚、上記した各n型層のドーパントには塩素(Cl)、
各p型層のドーパントには窒素(N)を用いた。
The manufacturing procedure of the semiconductor laser device of this embodiment will be described below. First, on the n-type GaAs substrate 1,
Area 1 by photolithography and wet etching
A is recessed and a grating region 1b is formed. Here, as shown in FIG. 2, the region 1a is exposed,
By forming the resist 9 on the grating region 1b at a predetermined interval and width and anisotropically etching the region 1a, the region 1a is formed of a concave portion and the bottom surface thereof is flat.
In the region 1b, the substrate 1 is formed in which only the slope having the (111) plane as the surface remains. Then, on the substrate 1, an n-type ZnSe buffer layer 2 and an n-type ZnSSe first cladding layer 3 are formed.
An active layer 4 made of CdZnSe, and p-type ZnSSe
The second clad layer 5 and the heavily doped p-type ZnSe layer 6 are sequentially formed by the MBE method. Here, the thickness of the buffer layer 2 is 1000Å, and the thickness of the first cladding layer 3 is 2.0 μm (composition: ZnS0.07Se0.9).
3), the thickness of the active layer 4 is 100Å (composition: Cd0.1Z
n0.9Se), and the thickness of the second cladding layer 5 is 1.5 μm.
m (composition: ZnS0.07Se0.93), the highly-doped p-type ZnSe layer 6 has a thickness of 1000Å, and a carrier concentration is 1 × 10 18 cm −3, and crystals are sequentially grown.
In addition, chlorine (Cl) is used as a dopant for each of the above n-type layers,
Nitrogen (N) was used as a dopant for each p-type layer.

【0012】最後に、高濃度ドープp型ZnSe層6の
上層にAu電極7、基板1の裏面にAu/Ge(ゲルマ
ニウム)電極層8を形成する。
Finally, an Au electrode 7 is formed on the heavily doped p-type ZnSe layer 6 and an Au / Ge (germanium) electrode layer 8 is formed on the back surface of the substrate 1.

【0013】図3には、本発明に基づく第2の実施例に
於ける半導体レーザ装置の概略的な断面構造を示す。本
実施例の構造に於ける第1の実施例と同様な部分には同
一の符号を付し、その詳細な説明を省略する。本実施例
では基板11の表面に於けるレーザ発振領域直下の領域
11aは凸部からなると共にその底面は平面状をなして
いる。そして、グレーティング領域11bが基板の(1
11)面を表面とする斜面、即ち領域11aに対して+
54.7゜及び−54.7゜の角度をなす斜面11cの
みで構成されている。それ以外の構造は第1の実施例と
同様である。
FIG. 3 shows a schematic sectional structure of a semiconductor laser device according to a second embodiment of the present invention. In the structure of this embodiment, the same parts as those in the first embodiment are designated by the same reference numerals, and detailed description thereof will be omitted. In this embodiment, the region 11a directly below the laser oscillation region on the surface of the substrate 11 is formed of a convex portion and the bottom surface thereof is flat. Then, the grating region 11b becomes (1
11) Slope with the surface as the surface, that is, with respect to the region 11a
It is composed of only the slope 11c forming an angle of 54.7 ° and -54.7 °. Other structures are the same as those of the first embodiment.

【0014】以下に本実施例の半導体レーザ装置の製造
手順について説明する。まず、n型GaAs基板11
に、ホトリソグラフィ及びウェットエッチングにより領
域11aを凸設すると共にグレーティング領域11bを
形成する。ここで、図4に示すように、領域11aはそ
の全面をレジスト19で覆い、グレーティング領域11
b上には所定の間隔及び幅でレジスト19を形成し、異
方性エッチングすることにより、領域11aは凸部から
なると共にその底面が平面状をなし、領域11bは(1
11)面を表面とする斜面のみが残る基板11ができ
る。他の層の形成手順は第1の実施例と同様である。
The manufacturing procedure of the semiconductor laser device of this embodiment will be described below. First, the n-type GaAs substrate 11
Then, the region 11a is formed to be convex and the grating region 11b is formed by photolithography and wet etching. Here, as shown in FIG. 4, the entire area of the region 11a is covered with the resist 19, and the grating region 11 is formed.
By forming resists 19 on b at a predetermined interval and width and performing anisotropic etching, the region 11a is formed of a convex portion and the bottom surface thereof has a planar shape, and the region 11b is (1
11) A substrate 11 is formed in which only the sloped surface is the surface. The procedure for forming the other layers is the same as in the first embodiment.

【0015】尚、上記各実施例では各層の結晶成長にM
BE法を用いたが、例えばMOMBE法或いはCBE法
でも同様な結果が得られる。また、基板をp型として各
層をpn反転させても同じ結果が得られる。加えて、上
記各実施例では各クラッド層に直接活性層が接していた
が、各クラッド層と活性層との間に例えば0.4μm程
度の光導波層を介在させても良い。このとき、各光導波
層の導電型はこれに接するクラッド層の導電型と同じで
ある。また同様に上記各層間に必要に応じて電気的或い
は光学的特性を変化させるための任意の層を介在させて
も同様な結果が得られることは云うまでもない。
In each of the above embodiments, M is used for crystal growth of each layer.
Although the BE method is used, similar results can be obtained by the MONBE method or the CBE method, for example. The same result can be obtained even if the substrate is p-type and each layer is pn-inverted. In addition, although the active layer is in direct contact with each clad layer in each of the above-mentioned embodiments, an optical waveguide layer of about 0.4 μm may be interposed between each clad layer and the active layer. At this time, the conductivity type of each optical waveguide layer is the same as the conductivity type of the cladding layer in contact with it. Similarly, it goes without saying that the same result can be obtained by interposing an arbitrary layer for changing the electrical or optical characteristics between the layers as required.

【0016】[0016]

【発明の効果】上記した説明により明らかなように、本
発明に基づく半導体装置及びその製造方法によれば、基
板表面を異方性エッチングによりレーザ発振領域直下の
領域が平面状をなし、かつそれ以外の領域が基板の(1
11)面を表面とする斜面のみで構成されるようにし、
MBE法、MOMBE法、CBE法などによりクラッド
層、活性層などを形成してレーザ発振構造を形成するこ
とにより、基板の(111)面上では例えばp型クラッ
ド層が高抵抗層となることから、結晶成長前の基板に対
するエッチング処理のみで電流狭窄構造が得られ、製造
工数を減らせると共にドーピング、エッチングなどによ
る各層への悪影響を最小限に留めることができることか
ら、電気的特性が良く信頼性の高い半導体レーザ装置が
歩留り良く製造できる。
As is apparent from the above description, according to the semiconductor device and the method of manufacturing the same according to the present invention, the region immediately below the laser oscillation region has a planar shape by anisotropic etching of the substrate surface, and Areas other than (1
11) Only the slope with the surface as the surface,
Since a laser oscillation structure is formed by forming a clad layer, an active layer, etc. by the MBE method, the MOMBE method, the CBE method, etc., for example, the p-type clad layer becomes a high resistance layer on the (111) plane of the substrate. , The current confinement structure can be obtained only by etching the substrate before crystal growth, and the number of manufacturing steps can be reduced and the adverse effects on each layer due to doping, etching, etc. can be minimized. A highly efficient semiconductor laser device can be manufactured with high yield.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に基づく第1の実施例に於けるII−V
I族化合物半導体からなる半導体レーザ装置の要部断面
図。
FIG. 1 is a II-V in a first embodiment according to the present invention.
Sectional drawing of the principal part of the semiconductor laser device which consists of a group I compound semiconductor.

【図2】図1の半導体レーザ装置の製造手順を説明する
図。
FIG. 2 is a diagram illustrating a manufacturing procedure of the semiconductor laser device of FIG.

【図3】本発明に基づく第2の実施例に於けるII−V
I族化合物半導体からなる半導体レーザ装置の要部断面
図。
FIG. 3 II-V in a second embodiment according to the present invention
Sectional drawing of the principal part of the semiconductor laser device which consists of a group I compound semiconductor.

【図4】図3の半導体レーザ装置の製造手順を説明する
図。
FIG. 4 is a diagram illustrating a manufacturing procedure of the semiconductor laser device of FIG.

【符号の説明】[Explanation of symbols]

1 n型GaAs基板 1a レーザ発振領域直下の領域 1b グレーティング領域 1c 斜面 2 n型ZnSeからなるバッファ層 3 n型ZnSSeからなる第1のクラッド層 4 CdZnSeからなる活性層 5 p型ZnSSeからなる第2のクラッド層 6 高濃度ドープp型ZnSe層(コンタクト層) 7 Au電極層 8 Au/Ge電極層 9 レジスト 11 n型GaAs基板 11a レーザ発振領域直下の領域 11b グレーティング領域 11c 斜面 1 n-type GaAs substrate 1a region immediately below laser oscillation region 1b grating region 1c slope 2 buffer layer made of n-type ZnSe 3 first clad layer made of n-type ZnSSe 4 active layer made of CdZnSe 5 second made of p-type ZnSSe Clad layer 6 Highly doped p-type ZnSe layer (contact layer) 7 Au electrode layer 8 Au / Ge electrode layer 9 Resist 11 n-type GaAs substrate 11a Region immediately below laser oscillation region 11b Grating region 11c Slope

フロントページの続き (72)発明者 藤井 智 相模原市淵野辺5−10−1 新日本製鐵株 式会社エレクトロニクス研究所内Continuation of the front page (72) Inventor Satoshi Fujii 5-10-1, Fuchinobe, Sagamihara-shi Nippon Steel Co., Ltd. Inside Electronics Research Laboratory

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の半導体基板上に、第1導
電型の第1クラッド層と活性層と第2導電型の第2クラ
ッド層とコンタクト層とをこの順番に有し、前記基板と
前記コンタクト層との間に電圧を印加して前記活性層の
レーザ発振領域からレーザ光を出射する半導体レーザ装
置であって、 前記基板上のレーザ発振領域直下の領域が平面からなる
と共にそれ以外の領域が、(111)面を表面とする斜
面のみから構成されていることを特徴とする半導体レー
ザ装置。
1. A substrate having a first conductivity type first clad layer, an active layer, a second conductivity type second clad layer, and a contact layer in this order on a first conductivity type semiconductor substrate. A semiconductor laser device that emits laser light from a laser oscillation region of the active layer by applying a voltage between the contact layer and the contact layer, and the region directly below the laser oscillation region on the substrate is a flat surface The semiconductor laser device is characterized in that the region (1) is composed of only a slope having the (111) plane as its surface.
【請求項2】 第1導電型の半導体基板上に、第1導
電型の第1クラッド層と活性層と第2導電型の第2クラ
ッド層とコンタクト層とをこの順番に有し、前記基板と
前記コンタクト層との間に電圧を印加して前記活性層の
レーザ発振領域からレーザ光を出射する半導体レーザ装
置の製造方法であって、 前記基板表面のレーザ発振領域直下となる領域全体を露
出させ、またはマスクし、かつそれ以外の領域を所定の
間隔及び幅でマスクして該基板表面を異方性エッチング
することにより、前記レーザ発振領域直下の領域全体を
平面とすると共に前記それ以外の領域を(111)面を
表面とする斜面のみから構成されるようにし、その表面
に前記各層を順番に積層させることを特徴とする半導体
レーザ装置の製造方法。
2. A substrate having a first conductivity type first cladding layer, an active layer, a second conductivity type second cladding layer, and a contact layer in this order on a first conductivity type semiconductor substrate. A method for manufacturing a semiconductor laser device in which a laser beam is emitted from a laser oscillation region of the active layer by applying a voltage between the contact layer and the contact layer, and the entire region of the substrate surface immediately below the laser oscillation region is exposed. Or masking and masking the other regions at a predetermined interval and width to anisotropically etch the substrate surface, thereby making the entire region immediately below the laser oscillation region a plane and A method for manufacturing a semiconductor laser device, wherein a region is constituted by only a slope having a (111) plane as a surface, and the respective layers are sequentially laminated on the surface.
JP6196895A 1995-02-24 1995-02-24 Semiconductor laser device and its manufacture Withdrawn JPH08236870A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6196895A JPH08236870A (en) 1995-02-24 1995-02-24 Semiconductor laser device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6196895A JPH08236870A (en) 1995-02-24 1995-02-24 Semiconductor laser device and its manufacture

Publications (1)

Publication Number Publication Date
JPH08236870A true JPH08236870A (en) 1996-09-13

Family

ID=13186495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6196895A Withdrawn JPH08236870A (en) 1995-02-24 1995-02-24 Semiconductor laser device and its manufacture

Country Status (1)

Country Link
JP (1) JPH08236870A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002185040A (en) * 2000-12-15 2002-06-28 Sony Corp Semiconductor light emitting element and manufacturing method therefor
JP2003318441A (en) * 2001-07-24 2003-11-07 Nichia Chem Ind Ltd Semiconductor light emitting element
KR100682877B1 (en) * 2005-07-12 2007-02-15 삼성전기주식회사 Light emitting diode and fabrication method of the same
US7683386B2 (en) 2003-08-19 2010-03-23 Nichia Corporation Semiconductor light emitting device with protrusions to improve external efficiency and crystal growth

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002185040A (en) * 2000-12-15 2002-06-28 Sony Corp Semiconductor light emitting element and manufacturing method therefor
US7804101B2 (en) 2001-07-24 2010-09-28 Nichia Corporation Semiconductor light-emitting device
US7635875B2 (en) 2001-07-24 2009-12-22 Nichia Corporation Semiconductor light emitting device
US7745245B2 (en) 2001-07-24 2010-06-29 Nichia Corporation Semiconductor light emitting device
JP2003318441A (en) * 2001-07-24 2003-11-07 Nichia Chem Ind Ltd Semiconductor light emitting element
US8148744B2 (en) 2001-07-24 2012-04-03 Nichia Corporation Semiconductor light emitting device
US8227280B2 (en) 2001-07-24 2012-07-24 Nichia Corporation Semiconductor light emitting device
US9368681B2 (en) 2001-07-24 2016-06-14 Nichia Corporation Semiconductor light emitting device
US9865773B2 (en) 2001-07-24 2018-01-09 Nichia Corporation Semiconductor light emitting device
US10396242B2 (en) 2001-07-24 2019-08-27 Nichia Corporation Semiconductor light emitting device
US10593833B2 (en) 2001-07-24 2020-03-17 Nichia Corporation Semiconductor light emitting device
US7683386B2 (en) 2003-08-19 2010-03-23 Nichia Corporation Semiconductor light emitting device with protrusions to improve external efficiency and crystal growth
US8119534B2 (en) 2003-08-19 2012-02-21 Nichia Corporation Semiconductor light emitting device with protrusions to improve external efficiency and crystal growth
KR100682877B1 (en) * 2005-07-12 2007-02-15 삼성전기주식회사 Light emitting diode and fabrication method of the same

Similar Documents

Publication Publication Date Title
US6849875B2 (en) Nitride semiconductor device
US4843032A (en) Process for producing a DFB laser with a diffraction grating superlattice
US6990134B2 (en) GaN series surface-emitting laser diode having spacer for effective diffusion of holes between P-type electrode and active layer, and method for manufacturing the same
CA1152624A (en) Semiconductor laser device
US6744797B2 (en) Semiconductor laser device
US5573976A (en) Method of fabricating semiconductor laser
GB2252872A (en) Laser diode and method of manufacture
US4788689A (en) Composite resonator-type semiconductor laser device
JPH08236870A (en) Semiconductor laser device and its manufacture
JPS5943836B2 (en) semiconductor light emitting device
EP0487192B1 (en) Opto-electronic integrated circuit having a transmitter of long wavelength
JP2950028B2 (en) Method for manufacturing optical semiconductor device
US5173913A (en) Semiconductor laser
US5887011A (en) Semiconductor laser
JPH08236871A (en) Semiconductor laser array and its manufacture
JP2629678B2 (en) Semiconductor laser device and method of manufacturing the same
JPH11204878A (en) Semiconductor laser and its manufacture
JPH07111361A (en) Buried type semiconductor laser device and manufacture thereof
US7046708B2 (en) Semiconductor laser device including cladding layer having stripe portion different in conductivity type from adjacent portions
JPH10209565A (en) Lateral current-injection type surface light-emitting semiconductor laser device, its manufacture, and semiconductor laser array
JPS58106885A (en) Semiconductor laser
JP2943719B2 (en) Semiconductor laser and manufacturing method thereof
JP2751356B2 (en) Manufacturing method of semiconductor laser
KR100330591B1 (en) Method of making semiconductor laser diode
JPH10321945A (en) Semiconductor laser device and its manufacture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507