JPH08236369A - Power generating system of taking advantage of quenching phenomenon in superconduction - Google Patents
Power generating system of taking advantage of quenching phenomenon in superconductionInfo
- Publication number
- JPH08236369A JPH08236369A JP7077068A JP7706895A JPH08236369A JP H08236369 A JPH08236369 A JP H08236369A JP 7077068 A JP7077068 A JP 7077068A JP 7706895 A JP7706895 A JP 7706895A JP H08236369 A JPH08236369 A JP H08236369A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- superconductor
- induction coil
- source
- field source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductive Dynamoelectric Machines (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、巨大設備を必要とせ
ず、有害な排気物を排出しない発電方式に関するもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation system which does not require huge equipment and does not emit harmful exhaust gas.
【0002】[0002]
【従来の技術】現在の一般的な発電方式は、回転(変
動)磁界による電磁誘導を利用している。したがって磁
界の変動に要するエネルギーが少ないほど、発電効率は
良くなる。しかし現在の発電方式では、磁界の変動に要
するエネルギーは、発電エネルギーより常に大きい。2. Description of the Related Art The current general power generation system utilizes electromagnetic induction by a rotating (fluctuation) magnetic field. Therefore, the smaller the energy required to change the magnetic field, the better the power generation efficiency. However, in the current power generation method, the energy required for the fluctuation of the magnetic field is always larger than the power generation energy.
【0003】[0003]
【発明が解決しようとする課題】この発明が解決しよう
とする課題は、超電導体のクエンチ現象を利用して、磁
界の変動に要するエネルギーを、発電によって生じるエ
ネルギーよりも少なくすることである。The problem to be solved by the present invention is to utilize the quench phenomenon of a superconductor to reduce the energy required for the fluctuation of the magnetic field to be smaller than the energy generated by power generation.
【0004】[0004]
【課題を解決するための手段】その手段を図面にもとず
いて説明すると、The means will be described with reference to the drawings.
【図1】のように円筒型の第一種超電導体1と常磁界源
2、変動磁界源3、誘導コイル5を直線的に並べる。超
電導体1の臨界磁界をHCとする。常磁界源2は永久磁
石、もしくは超電導磁石であり、その磁界を今、H2=
0,95HCとする。変動磁界源3は、交流電源4が接
続された電磁石である。その磁界H3はAs shown in FIG. 1, a cylindrical first-type superconductor 1, a constant magnetic field source 2, a fluctuating magnetic field source 3, and an induction coil 5 are linearly arranged. Let H C be the critical magnetic field of the superconductor 1. The normal magnetic field source 2 is a permanent magnet or a superconducting magnet, and its magnetic field is now H 2 =
0.95H C. The fluctuating magnetic field source 3 is an electromagnet to which an AC power source 4 is connected. The magnetic field H 3 is
【図2】の点線矢印の方向を+の磁界として0から±
0,1HCの間を変動する。誘導コイル5は、通常の発
電機で出力を取り出す電機子コイルに相当する。取り出
された出力は、負荷抵抗6で消費される。図の点線矢印
は磁力線であり、実戦矢印は電流Jである。2 is a range from 0 to ± when the direction of the dotted arrow in FIG.
It varies between 0 and 1H C. The induction coil 5 corresponds to an armature coil that takes out an output from a normal generator. The extracted output is consumed by the load resistance 6. The dotted arrow in the figure is the magnetic field line, and the actual battle arrow is the current J.
【0005】[0005]
【作用】変動磁界源に電流を流してもその磁界H3が−
0,1HCから+0,05HCの間では、超電導体1は
超電導状態にある。そのためThe magnetic field H 3 of the fluctuating magnetic field source is
The superconductor 1 is in a superconducting state between 0,1H C and + 0,05H C. for that reason
【図1】のようにマイスナー効果によって、常磁界源2
の磁束を遮蔽するので誘導コイル5が受ける磁界は0で
ある。H3が+0,05HCを超えると、超電導体1の
受ける磁界(H2+H3)がHCを超え、超電導体1は
急激に常電導状態になる。その結果、FIG. 1 shows the normal magnetic field source 2 by the Meissner effect as shown in FIG.
The magnetic field received by the induction coil 5 is 0 because it shields the magnetic flux. When H 3 exceeds +0.05 H C , the magnetic field (H 2 + H 3 ) received by the superconductor 1 exceeds H C , and the superconductor 1 rapidly enters the normal conducting state. as a result,
【図2】のように、常磁界源2と変動磁界源3の磁束が
誘導コイル5を貫き誘導コイル5に電流Jが流れる。変
動磁界源3の磁界が、最大値+0,1HCから減少して
ゆき、+0,05HC以下になると、超電導体1に再び
マイスナー効果が現れ、常磁界源2と変動磁界源3の磁
束が遮蔽される。この時には、誘導コイル5にAs shown in FIG. 2, the magnetic fluxes of the constant magnetic field source 2 and the fluctuating magnetic field source 3 penetrate the induction coil 5 and the current J flows in the induction coil 5. When the magnetic field of the fluctuating magnetic field source 3 decreases from the maximum value + 0,1H C to + 0,05H C or less, the Meissner effect appears again in the superconductor 1 and the magnetic fluxes of the ordinary magnetic field source 2 and the fluctuating magnetic field source 3 Shielded. At this time, the induction coil 5
【図2】とは逆向きの電流が流れる。FIG. 2 shows an electric current flowing in the opposite direction.
【0006】[0006]
【図3】のように超電導体1に、常磁界源2を絶縁して
巻き付けるのが実用的である。その時、変動磁界源3、
誘導コイル5のいずれか、もしくは両者も同時に重ねて
巻くことができれば、発電設備をより一層、小型化でき
る。また、It is practical to wind the magnetic field source 2 around the superconductor 1 while insulating it as shown in FIG. At that time, the fluctuating magnetic field source 3,
If either or both of the induction coils 5 can be wound at the same time, the power generation equipment can be further downsized. Also,
【図1】にあいて遮蔽電流が流れている超電導体1の電
流を、直接増減することができれば、変動磁界源3は必
要なくなる。また第二種超電導体は臨界磁界が高いの
で、将来において上部臨界磁界と下部臨界磁界が、きわ
めて接近しているような第二種超電導体が開発されれ
ば、起電力はより大きくなる。FIG. 1 shows that the variable magnetic field source 3 is not necessary if the current of the superconductor 1 in which the shield current flows can be directly increased or decreased. Further, since the second type superconductor has a high critical magnetic field, if a second type superconductor is developed in which the upper critical magnetic field and the lower critical magnetic field are very close to each other in the future, the electromotive force will be larger.
【0007】[0007]
【図2】のように誘導コイル5に電流Jを発生させる場
合、すなわちわれわれが利用できる電力を取り出す場合
に、変動磁界源3に必要な電力は、0→±0,1HCの
磁界の変動に要するものである。 する際の電磁誘導による。したがって誘導コイル5で得
ることができる電力を100とすると、変動磁界源3に
必要な電力は、10でよいことになる。そこで100の
誘導起電力から、10の電力を変動磁界源3へ回収する
と、残りの90が出力として利用できるエネルギーであ
る。回路の損失や冷却に要する電力を考慮しても、80
のエネルギーが負荷抵抗6からの出力として利用できる
だろう。実際には、どの程度の電力を得ることができる
のかを、超電導体1の素材として第一種超電導体のニオ
ブの場合で考えてみると、その臨界磁界は0,2テスラ
である。一方、現在試作されている通常の超電導発電機
は、5テスラの超電導電磁石で7万kwの出力があると
されているから、単純に比較すれば、この発明の発電機
では約2200kwの出力になる。10万kwから10
0万kw級の既存の発電機に比べると、出力は小さく、
一機の発電機だけでは大規模の電力供給源にはならな
い。しかし外部からのエネルギー補給が必要なく、ダム
や蒸気発生器、タービン等の大規模な設備が必要ないな
どの利点は、低出力の欠点を補って余りあるであろう。[Fig. 2] When the electric current J is generated in the induction coil 5 as shown in Fig. 2, that is, when the electric power that can be used by us is taken out, the electric power required for the fluctuating magnetic field source 3 is the fluctuation of the magnetic field of 0 → ± 0, 1H C. Is required. By electromagnetic induction when doing. Therefore, assuming that the electric power that can be obtained by the induction coil 5 is 100, the electric power required for the variable magnetic field source 3 will be 10. Then, when 10 electric powers are recovered from the induced electromotive force of 100 to the fluctuating magnetic field source 3, the remaining 90 is energy that can be used as an output. Even if the circuit loss and the power required for cooling are taken into consideration, 80
Energy will be available as output from the load resistor 6. Actually, considering how much electric power can be obtained in the case of niobium which is a first-type superconductor as a material of the superconductor 1, the critical magnetic field is 0,2 Tesla. On the other hand, the normal superconducting generator currently prototyped is said to have an output of 70,000 kw with a superconducting electromagnet of 5 Tesla. Therefore, a simple comparison shows that the generator of the present invention has an output of about 2200 kw. Become. From 100,000 kW to 10
Compared to the existing generator of 0,000 kW class, the output is small,
A single generator does not provide a large-scale power source. However, the advantage of not requiring external energy supply and the need for large-scale equipment such as dams, steam generators, turbines, etc. would be more than enough to compensate for the drawback of low output.
【図1】 超電導体(1)の受ける磁界が、その臨界磁
界より小さい場合の側面図FIG. 1 is a side view when a magnetic field received by a superconductor (1) is smaller than its critical magnetic field.
【図2】 超電導体(2)の受ける磁界が、その臨界磁
界より小さい場合の側面図FIG. 2 is a side view when the magnetic field received by the superconductor (2) is smaller than its critical magnetic field.
【図3】 この発明の構造がFIG. 3 shows the structure of the present invention.
【図1】、[Figure 1]
【図2】よりコンパクトにできることを示した側面図FIG. 2 is a side view showing that it can be made more compact.
1は超電導体 2は常磁界源 3は変動磁界源 4は交流電源 5は誘導コイル 6は負荷抵抗 1 is a superconductor 2 is a constant magnetic field source 3 is a fluctuating magnetic field source 4 is an AC power source 5 is an induction coil 6 is a load resistance
Claims (2)
部臨界磁界がきわめて接近している第二種超電導体が、
外部からの、あるいはそれ自体の、微小な磁界の増減に
よって超電導状態から常電導状態へ移行する時、あるい
はその逆の時に外部磁界及び超電導体の磁界が急激に大
きく変動すること(クエンチ現象)を利用した磁界の変
動方式。1. A first-class superconductor, or a second-class superconductor in which an upper critical magnetic field and a lower critical magnetic field are extremely close to each other,
A sudden large change in the external magnetic field and the magnetic field of the superconductor (quenching phenomenon) at the time of transition from the superconducting state to the normal conducting state by the increase or decrease of a minute magnetic field from the outside or itself, or vice versa. The magnetic field fluctuation method used.
方式2. A power generation method using the magnetic field fluctuation method according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7077068A JPH08236369A (en) | 1995-02-23 | 1995-02-23 | Power generating system of taking advantage of quenching phenomenon in superconduction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7077068A JPH08236369A (en) | 1995-02-23 | 1995-02-23 | Power generating system of taking advantage of quenching phenomenon in superconduction |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08236369A true JPH08236369A (en) | 1996-09-13 |
Family
ID=13623491
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7077068A Pending JPH08236369A (en) | 1995-02-23 | 1995-02-23 | Power generating system of taking advantage of quenching phenomenon in superconduction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08236369A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010053672A (en) * | 1999-12-01 | 2001-07-02 | 이수양 | Apparatus generating Electricity in Superconductivity State |
WO2010038196A3 (en) * | 2008-09-30 | 2010-05-27 | Richard Adams | Vortex flux generator |
US9822997B2 (en) | 2010-04-12 | 2017-11-21 | Silicon Turbine Systems, Inc. | Method and apparatus for electricity generation using electromagnetic induction including thermal transfer between vortex flux generator and refrigerator compartment |
-
1995
- 1995-02-23 JP JP7077068A patent/JPH08236369A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20010053672A (en) * | 1999-12-01 | 2001-07-02 | 이수양 | Apparatus generating Electricity in Superconductivity State |
WO2010038196A3 (en) * | 2008-09-30 | 2010-05-27 | Richard Adams | Vortex flux generator |
CN102171920A (en) * | 2008-09-30 | 2011-08-31 | 理查德·亚当斯 | Vortex flux generator |
US8692437B2 (en) | 2008-09-30 | 2014-04-08 | Silicon Turbine Systems, Inc. | Vortex flux generator |
US9822997B2 (en) | 2010-04-12 | 2017-11-21 | Silicon Turbine Systems, Inc. | Method and apparatus for electricity generation using electromagnetic induction including thermal transfer between vortex flux generator and refrigerator compartment |
US20180202693A1 (en) * | 2010-04-12 | 2018-07-19 | Silicon Turbine Systems, Inc. | Method And Apparatus For Electricity Generation Using Electromagnetic Induction Including Thermal Transfer Between Vortex Flux Generator And Refrigerator Compartment |
US10429104B2 (en) * | 2010-04-12 | 2019-10-01 | Silicon Turbine Systems, Inc. | Method and apparatus for electricity generation using electromagnetic induction including thermal transfer between vortex flux generator and refrigerator compartment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Bumby et al. | Development of a brushless HTS exciter for a 10 kW HTS synchronous generator | |
Sung et al. | Design and heat load analysis of a 12 MW HTS wind power generator module employing a brushless HTS exciter | |
Ma et al. | Rotating permanent magnets based flux pump for HTS no-insulation coil | |
US20100253177A1 (en) | Multi-pattern high temperature superconducting motor using flux trapping and concentration | |
Chung et al. | Design and performance of compensator for decremental persistent current in HTS magnets using linear type magnetic flux pump | |
Xue et al. | Stator optimization of wind power generators with high-temperature superconducting armature windings and permanent magnet rotor | |
Liu et al. | Influences of generator parameters on fault current and torque in a large-scale superconducting wind generator | |
Zhang et al. | Stator design aspects for permanent magnet superconducting wind power generators | |
Cheng et al. | Design and analysis of 10 MW HTS double-stator flux-modulation generator for wind turbine | |
Li et al. | A new linear vernier permanent-magnet machine using high-temperature superconducting DC field excitation | |
Oberly | Air force applications of lightweight superconducting machinery | |
Lee et al. | Exploring fully superconducting air-core machine topology for off-shore wind turbine applications | |
JPH08236369A (en) | Power generating system of taking advantage of quenching phenomenon in superconduction | |
Pan et al. | Optimal design of a high temperature superconducting homopolar inductor machine | |
Kails et al. | Mass reduction of superconducting power generators for large wind turbines | |
Kalsi et al. | Iron-core superconducting magnet design and test results for maglev application | |
Xue et al. | Influence of coil location and current angle in permanent magnet wind power generators with high-temperature superconducting armature windings | |
Kovalev et al. | Superconducting system with 100 kW output power for experimental research | |
Do Chung et al. | Characteristics of a persistent current compensator for superconducting NMR magnets using linear type magnetic flux pump | |
Go et al. | Modularization of the HTS field coils for a large-scale superconducting generator | |
Mawardi et al. | Armature reaction in a flux pump | |
Liu et al. | Performance of Multi-Layer and Stator-Shifting Fractional-Slot Concentrated Windings for Superconducting Wind Turbine Generators Under Normal and Short-Circuit Operation Conditions | |
Stekly et al. | Rotating machinery utilizing superconductors | |
Kirtley | Power/energy: Supercool generation: More compact and efficient machines are in the offing as superconducting generators are about to reach the field | |
WO1988008220A1 (en) | Method and apparatus for converting energy from the surroundings into electric energy |