JPH08236317A - Motor driven sliding type variable resistor - Google Patents
Motor driven sliding type variable resistorInfo
- Publication number
- JPH08236317A JPH08236317A JP3718095A JP3718095A JPH08236317A JP H08236317 A JPH08236317 A JP H08236317A JP 3718095 A JP3718095 A JP 3718095A JP 3718095 A JP3718095 A JP 3718095A JP H08236317 A JPH08236317 A JP H08236317A
- Authority
- JP
- Japan
- Prior art keywords
- belt
- hole
- motor
- pulley
- frame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Adjustable Resistors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はモータ駆動スライド型可
変抵抗器に係り、特に、ベルトが張架された各プーリの
うち、従動プーリをフレームに軸支するための支持構造
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a motor-driven slide type variable resistor, and more particularly to a support structure for pivotally supporting a driven pulley of a belt-stretched pulley on a frame.
【0002】[0002]
【従来の技術】モータ駆動スライド型可変抵抗器は、モ
ータの駆動と手動の両方の操作によって抵抗値を調整で
きるようにしたもので、モータの回転が駆動プーリと従
動プーリ間に巻回されたベルトを介して可変抵抗器の可
動体に伝達されるようになっている。各プーリのうち、
駆動プーリはモータの回転軸に直接固定することができ
るが、従動プーリはフレームに回転自在に軸支する必要
があり、かかる従動プーリの支持構造としては、実開平
4−77202号公報に記載されているように、従動プ
ーリの支軸をフレームにかしめ固定するものが採用され
ている。2. Description of the Related Art A motor-driven slide type variable resistor has a resistance value which can be adjusted by both driving and manually operating a motor. The rotation of the motor is wound between a driving pulley and a driven pulley. It is adapted to be transmitted to the movable body of the variable resistor via the belt. Out of each pulley
The drive pulley can be directly fixed to the rotation shaft of the motor, but the driven pulley needs to be rotatably supported by the frame. As a structure for supporting such a driven pulley, it is described in Japanese Utility Model Publication No. 4-77202. As described above, the driven shaft of the driven pulley is caulked and fixed to the frame.
【0003】[0003]
【発明が解決しようとする課題】しかしながら、上記し
た従来例のように、従動プーリの支軸をフレームにかし
め固定した場合、かしめ用治具を用いて支軸を塑性変形
しなければならないため、組立作業性が非常に悪く、し
かも、大きな加圧力を必要とするため、設備が大がかり
になってトータルコストが高騰するという問題があっ
た。However, when the driven shaft of the driven pulley is caulked and fixed to the frame as in the above-described conventional example, the shaft must be plastically deformed by using a caulking jig. Assembling workability is very poor and a large pressing force is required, so that there is a problem that equipment becomes large and total cost rises.
【0004】本発明は、このような従来技術の実情に鑑
みてなされたもので、その目的は、従動プーリをフレー
ムに対して簡単に軸支できるモータ駆動スライド型可変
抵抗器を提供することにある。The present invention has been made in view of the circumstances of the prior art as described above, and an object thereof is to provide a motor-driven slide type variable resistor capable of easily supporting a driven pulley with respect to a frame. is there.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明は、モータによって回転する駆動プーリと、
フレームに回転自在に軸支された従動プーリと、これら
駆動プーリと従動プーリ間に張架されたベルトと、この
ベルトに固着された摺動子片を有する可動体と、前記摺
動子片に対向設置された抵抗基板とを備えたモータ駆動
スライド型可変抵抗器において、前記フレームに長孔を
有する第1の受板と係合孔を有する第2の受板とを対向
設置し、前記従動プーリの支軸の一端側に形成した凹溝
を前記第1の受板を挾持するように前記長孔に挿入する
と共に、この支軸の他端側を前記係合孔に挿入したこと
を、最も主要な特徴としている。上記の構成において、
第2の受板の係合孔を第1の受板の長孔と同一方向に延
出し、これら係合孔と長孔とを対向させることも可能で
ある。In order to achieve the above object, the present invention provides a drive pulley rotated by a motor,
A driven pulley rotatably supported by a frame, a belt stretched between the drive pulley and the driven pulley, a movable body having a slider piece fixed to the belt, and a slider piece. In a motor-driven slide type variable resistor provided with a resistance substrate installed opposite to each other, a first receiving plate having an elongated hole and a second receiving plate having an engaging hole are installed to face each other in the frame, and the driven plate is driven. Inserting a concave groove formed on one end side of the support shaft of the pulley into the elongated hole so as to hold the first receiving plate, and inserting the other end side of the support shaft into the engagement hole, It has the most main feature. In the above configuration,
It is also possible to extend the engaging hole of the second receiving plate in the same direction as the elongated hole of the first receiving plate and to make the engaging hole and the elongated hole face each other.
【0006】[0006]
【作用】支軸の一端側に形成した凹溝を第1の受板の長
孔に挿入すると共に、この支軸の他端側を第2の受板の
係合孔に挿入した後、駆動プーリと従動プーリ間にベル
トを張架すると、このベルトの張力によって従動プーリ
は駆動プーリ側に引き寄せられ、従動プーリの支軸は長
孔と係合孔の端部に係止される。その際、支軸の凹溝は
第1の受板を挾持するように長孔に挿入され、ベルトの
張力によって長孔の奥部方向に付勢されているため、支
軸が長孔から抜け落ちることはない。また、第2の受板
の係合孔を第1の受板の長孔と同一方向に延出し、これ
ら係合孔と長孔とを対向させると、支軸を第1および第
2の受板の側方から長孔と係合孔の奥までスライドで
き、組立作業は一層簡単になる。Operation: After inserting the concave groove formed on one end side of the support shaft into the elongated hole of the first receiving plate and inserting the other end side of the support shaft into the engaging hole of the second receiving plate, drive When the belt is stretched between the pulley and the driven pulley, the driven pulley is pulled toward the drive pulley by the tension of the belt, and the support shaft of the driven pulley is locked at the ends of the elongated hole and the engaging hole. At that time, the groove of the support shaft is inserted into the elongated hole so as to hold the first receiving plate, and is urged in the inner direction of the elongated hole by the tension of the belt, so that the support shaft falls out of the elongated hole. There is no such thing. In addition, when the engaging hole of the second receiving plate is extended in the same direction as the elongated hole of the first receiving plate and the engaging hole and the elongated hole are opposed to each other, the support shaft is supported by the first and second receiving plates. It can slide from the side of the plate to the inside of the long hole and the engaging hole, and the assembly work becomes easier.
【0007】[0007]
【実施例】以下、本発明の実施例を図に基づいて説明す
る。図1は本発明の一実施例に係るモータ駆動スライド
型可変抵抗器の全体構成を示す分解斜視図、図2はモー
タ駆動ユニットの斜視図、図3は駆動プーリの支持構造
を示す分解斜視図、図4は駆動プーリとガイド部材の位
置関係を示す説明図、図5はガイド部材の取付け状態を
示す断面図、図6は従動プーリの支持構造を示す分解斜
視図、図7は従動プーリの取付け状態を示す断面図、図
8は可動体の分解斜視図、図9はレバーの側面図、図1
0は摺動子受けの平面図、図11は摺動子受けの背面
図、図12は可動体をベルトに取付ける途中の状態を示
す平面図、図13は図12のA−A線に沿う断面図、図
14は可動体をベルトに取付け終了した状態を示す平面
図、図15は図14のB−B線に沿う断面図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an exploded perspective view showing an entire configuration of a motor drive slide type variable resistor according to an embodiment of the present invention, FIG. 2 is a perspective view of a motor drive unit, and FIG. 3 is an exploded perspective view showing a drive pulley support structure. 4, FIG. 4 is an explanatory view showing the positional relationship between the drive pulley and the guide member, FIG. 5 is a sectional view showing the mounting state of the guide member, FIG. 6 is an exploded perspective view showing the support structure of the driven pulley, and FIG. FIG. 8 is a sectional view showing a mounted state, FIG. 8 is an exploded perspective view of a movable body, FIG. 9 is a side view of a lever, and FIG.
0 is a plan view of the slider receiver, FIG. 11 is a rear view of the slider receiver, FIG. 12 is a plan view showing a state in which the movable body is being attached to the belt, and FIG. 13 is taken along line AA of FIG. FIG. 14 is a cross-sectional view, FIG. 14 is a plan view showing a state where the movable body is attached to the belt, and FIG. 15 is a cross-sectional view taken along the line BB of FIG.
【0008】本実施例に係るモータ駆動スライド型可変
抵抗器は、図2に示すモータ駆動ユニット1と、このモ
ータ駆動ユニット1の前後面と底面を被覆する一対のカ
バー2と、モータ駆動ユニット1の左右両側面を被覆す
る一対のホルダ3と、モータ駆動ユニット1の上面を被
覆する目隠し板4、およびモータ駆動ユニット1に対向
設置された抵抗基板5とで概略構成されている。前記抵
抗基板5の表面には後述する各摺動子片に摺接する抵抗
体や集電体(いずれも図示せず)が形成されており、ま
た、抵抗基板5の両側縁には位置決め孔5aが穿設され
ている。一方、前記カバー2の内面には長手方向に沿っ
て延びる一対の位置決め溝2aが形成されており、前記
抵抗基板5はこれら位置決め溝2a間に挿入されてい
る。The motor drive slide type variable resistor according to the present embodiment comprises a motor drive unit 1 shown in FIG. 2, a pair of covers 2 for covering the front and rear surfaces and the bottom surface of the motor drive unit 1, and the motor drive unit 1. Is roughly configured by a pair of holders 3 that cover both left and right side surfaces of the motor drive unit, a blind plate 4 that covers the upper surface of the motor drive unit 1, and a resistance substrate 5 that is installed opposite to the motor drive unit 1. Resistors and current collectors (not shown) are formed on the surface of the resistance substrate 5 so as to be in sliding contact with the respective slider pieces, which will be described later, and the positioning holes 5a are formed on both side edges of the resistance substrate 5. Has been drilled. On the other hand, a pair of positioning grooves 2a extending in the longitudinal direction is formed on the inner surface of the cover 2, and the resistance substrate 5 is inserted between these positioning grooves 2a.
【0009】図2に示すように、前記モータ駆動ユニッ
ト1は、金属製のフレーム6と、このフレーム6の一端
に固定されたモータ7と、このモータ7の回転軸に固定
された駆動プーリ8と、この駆動プーリ8を包囲するガ
イド部材9と、フレーム6の他端に軸支された従動プー
リ10と、これら駆動プーリ8と従動プーリ10間に比
較的緩く張架されたベルト11と、フレーム6の両端間
に橋架された一対のガイドシャフト12,13、および
両ガイドシャフト12,13に沿って往復動自在な可動
体14とを備えており、これら各部材は後述する組立工
程を経てユニット化されている。As shown in FIG. 2, the motor drive unit 1 includes a metal frame 6, a motor 7 fixed to one end of the frame 6, and a drive pulley 8 fixed to a rotation shaft of the motor 7. A guide member 9 surrounding the drive pulley 8, a driven pulley 10 pivotally supported at the other end of the frame 6, and a belt 11 stretched relatively loosely between the drive pulley 8 and the driven pulley 10. The frame 6 is provided with a pair of guide shafts 12 and 13 bridged between both ends, and a movable body 14 which can reciprocate along the guide shafts 12 and 13, and each of these members undergoes an assembly process described later. It is unitized.
【0010】前記フレーム6には、位置決め突起15a
を有する一対の脚片15と、図示左側の脚片15の上端
から直角に折れ曲がる第2の受板16と、この第2の受
板16に所定間隔を存して対向する第1の受板17と、
図示右側の脚片15の上端からほぼ直角に折れ曲がる支
持板18と、第1の受板17および支持板18から直角
に折れ曲がる一対の起立片19等が形成されており、こ
れらは1枚の金属板からプレス加工されている。前記脚
片15と起立片19にはそれぞれ溝部15b,19aが
形成されており、両ガイドシャフト12,13はこれら
溝部15b,19aの開口端をかしめることによりフレ
ーム6に固定されている。また、前記各位置決め突起1
5aは前記抵抗基板5の各位置決め孔5aと係合してお
り、このように抵抗基板5を前記カバー2の位置決め溝
2aと脚片15の位置決め突起15aとで三次元方向に
規制することにより、抵抗基板5はネジやかしめ等を用
いずにフレーム6に固定されている。The frame 6 has a positioning protrusion 15a.
With a pair of leg pieces 15, a second receiving plate 16 bent at a right angle from the upper end of the left side leg piece 15 in the figure, and a first receiving plate facing the second receiving plate 16 at a predetermined interval. 17,
A support plate 18 that is bent substantially at a right angle from the upper end of the leg piece 15 on the right side in the figure, a pair of upright pieces 19 that are bent at a right angle from the first receiving plate 17 and the support plate 18, and the like are formed. It is pressed from a plate. Grooves 15b and 19a are formed in the leg piece 15 and the standing piece 19, respectively, and both guide shafts 12 and 13 are fixed to the frame 6 by caulking the open ends of these groove portions 15b and 19a. In addition, each of the positioning protrusions 1
5a engages with each positioning hole 5a of the resistance board 5, and by restricting the resistance board 5 in the three-dimensional direction by the positioning groove 2a of the cover 2 and the positioning protrusion 15a of the leg piece 5 in this way. The resistance substrate 5 is fixed to the frame 6 without using screws or caulking.
【0011】図3〜図5に示すように、前記フレーム6
の支持板18には円形の貫通孔18aと長方形の規制孔
18bが形成されており、図示右側の起立片19には係
止孔19bが形成されている。この支持板18の下面に
は前記モータ7がネジ止めされており、モータ7の回転
軸7aは前記貫通孔18aを挿通して支持板18の上方
へ突出している。なお、支持板18は脚片15に対して
幾分鋭角となるように折り曲げられており、その結果、
支持板18に取付けられたモータ7の回転軸7aは、両
ガイドシャフト12,13に直交する線に対して所定角
度だけ外側に傾斜している(本実施例の場合、傾斜角度
は1°30′)。一方、前記駆動プーリ8の外周面には
ギヤ部8aが形成されると共に、ギヤ部8aの下端には
鍔部8bが形成されており、この駆動プーリ8は前記モ
ータ7の回転軸7aに圧入・固定されている。ここで、
駆動プーリ8の軸孔と回転軸7aはそれぞれ断面D形状
に形成されており、このD形状によって回転軸7aの回
転が駆動プーリ8に確実に伝達されるようになってい
る。前述したように、前記駆動プーリ8にはベルト11
が巻回されており、このベルト11の内周面に形成され
た歯部11aは駆動プーリ8のギヤ部8aと噛合してい
る。その際、モータ7の回転軸7aは両ガイドシャフト
12,13に直交する線に対して僅かに外側を向くよう
に傾斜しており、モータ7の駆動によって駆動プーリ8
が回転すると、該駆動プーリ8に巻回されたベルト11
に常に鍔部8bがある下方への力が作用するため、鍔部
8bを駆動プーリ8の下端のみに形成しただけで、ベル
ト11の脱落を確実に防止することができる。As shown in FIGS. 3 to 5, the frame 6
The support plate 18 has a circular through hole 18a and a rectangular restricting hole 18b, and an upright piece 19 on the right side of the drawing has a locking hole 19b. The motor 7 is screwed to the lower surface of the support plate 18, and the rotation shaft 7a of the motor 7 is inserted into the through hole 18a and protrudes above the support plate 18. The support plate 18 is bent so as to form an acute angle with respect to the leg piece 15, and as a result,
The rotating shaft 7a of the motor 7 attached to the support plate 18 is inclined outward by a predetermined angle with respect to a line orthogonal to the guide shafts 12 and 13 (in the case of this embodiment, the inclination angle is 1 ° 30. ′). On the other hand, a gear portion 8a is formed on the outer peripheral surface of the drive pulley 8 and a flange portion 8b is formed at the lower end of the gear portion 8a. The drive pulley 8 is press-fitted onto the rotary shaft 7a of the motor 7.・ It is fixed. here,
The shaft hole of the drive pulley 8 and the rotary shaft 7a are each formed to have a D-shaped cross section, and the D-shape ensures that the rotation of the rotary shaft 7a is transmitted to the drive pulley 8. As described above, the drive pulley 8 has a belt 11
The tooth portion 11a formed on the inner peripheral surface of the belt 11 meshes with the gear portion 8a of the drive pulley 8. At that time, the rotary shaft 7a of the motor 7 is inclined so as to be slightly outward with respect to the line orthogonal to the guide shafts 12 and 13, and the drive pulley 8 is driven by the drive of the motor 7.
When the belt rotates, the belt 11 wound around the drive pulley 8
Since the flange portion 8b always has a downward force, the belt 11 can be reliably prevented from falling off by forming the flange portion 8b only on the lower end of the drive pulley 8.
【0012】前記ガイド部材9は下端を開口した袋状に
形成されており、その上面には孔9aが穿設されてい
る。また、ガイド部材9の相対向する側壁の一方には下
方へ延びる第1のスナップ爪9bが、他方には上方へ延
びる第2のスナップ爪9cがそれぞれ形成されると共
に、第1のスナップ爪9bの内側には該第1のスナップ
爪9bより幾分短寸の垂下片9dが形成されている。な
お、第1のスナップ爪9bの幅寸法は前記支持板18の
規制孔18bより幾分小さめに設定され、同様に、第2
のスナップ爪9cの幅寸法は前記起立片19の係止孔1
9bより幾分小さめに設定されている。さらに、ガイド
部材9には前記第1のスナップ爪9bを介して対向する
一対の規制部9eが形成されており、これら規制部9e
の相対向する内面は曲面状に形成されている。The guide member 9 is formed in a bag shape having an open lower end, and a hole 9a is formed in the upper surface thereof. Further, a first snap claw 9b extending downward is formed on one of the side walls of the guide member 9 facing each other, and a second snap claw 9c extending upward is formed on the other side thereof, and the first snap claw 9b is formed. A hanging piece 9d, which is slightly shorter than the first snap claw 9b, is formed on the inside of the. The width dimension of the first snap claw 9b is set to be slightly smaller than the restriction hole 18b of the support plate 18, and similarly, the second snap claw 9b
The width dimension of the snap claw 9c is the locking hole 1 of the upright piece 19.
It is set slightly smaller than 9b. Further, the guide member 9 is formed with a pair of restricting portions 9e facing each other through the first snap claw 9b.
The inner surfaces facing each other are curved.
【0013】このように構成されたガイド部材9は、前
記駆動プーリ8とそれに巻回されたベルト11に被せら
れ、第1のスナップ爪9bを規制孔18bに係止すると
共に、第2のスナップ爪9cを係止孔19bにそれぞれ
スナップインすることにより、図5に示すように孔9a
から回転軸7aが突出した状態で、前記フレーム6の支
持板18上に回転可能に取付けられる。すなわち、第1
および第2のスナップ爪9b,9cはそれぞれ規制孔1
8bおよび係止孔19bに対して幅方向に微小量移動で
きるため、ガイド部材9は孔9aを中心として微小角度
だけ回転することができる。また、ベルト11は第1の
スナップ爪9bと両規制部9eとの間を通って従動プー
リ10に張架されるが、ガイド部材9の出口近傍で両規
制部9eと接触しており、これら規制部9eでベルト1
1を内方へ押し付けることにより、ベルト11の歯部1
1aが駆動プーリ8のギヤ部8aに確実に噛合されるよ
うになっている。その際、ガイド部材9が支持板18上
に回転可能に取付けられているため、例えば駆動プーリ
8の偏心やベルト11の変形等により、ベルト11が一
方の規制部9eに強く押し付けられようとすると、ガイ
ド部材9がそれに追従して回転し、ベルト11と両規制
部9eの接触状態が常に良好に保たれる。さらに、図4
に示すように、駆動プーリ8に噛合するベルト11の巻
回部分とガイド部材9の内面との間には両者を非接触状
態に保つギャップが確保されているが、その最小ギャッ
プ寸法aはベルト11の歯部11aの歯たけ寸法bより
も小さく(a<b)設定されている。The guide member 9 thus constructed is put on the drive pulley 8 and the belt 11 wound around the drive pulley 8 to lock the first snap claw 9b in the restriction hole 18b, and the second snap. By snapping the claws 9c into the locking holes 19b respectively, as shown in FIG.
The rotary shaft 7a is rotatably mounted on the support plate 18 of the frame 6 with the rotary shaft 7a protruding therefrom. That is, the first
And the second snap claws 9b and 9c are respectively formed in the restriction hole 1.
Since the guide member 9 can be moved by a small amount in the width direction with respect to 8b and the locking hole 19b, the guide member 9 can rotate about the hole 9a by a small angle. Further, the belt 11 passes through between the first snap claw 9b and both regulating portions 9e and is stretched around the driven pulley 10, but is in contact with both regulating portions 9e near the outlet of the guide member 9. Belt 1 at the regulation section 9e
1 is pressed inward, so that the tooth portion 1 of the belt 11
The gear 1a is reliably meshed with the gear portion 8a of the drive pulley 8. At that time, since the guide member 9 is rotatably mounted on the support plate 18, if the belt 11 is strongly pressed against the one restricting portion 9e due to eccentricity of the drive pulley 8 or deformation of the belt 11, for example. The guide member 9 rotates following it, so that the contact state between the belt 11 and the both restricting portions 9e is always kept good. Furthermore, FIG.
As shown in FIG. 3, a gap is secured between the winding portion of the belt 11 meshing with the drive pulley 8 and the inner surface of the guide member 9 so as to keep them in non-contact with each other. It is set to be smaller (a <b) than the toothbrush dimension b of the 11 tooth portion 11a.
【0014】図6に示すように、前記フレーム6の第1
の受板17には支持板18の方向に延びる長孔17aが
形成されており、第2の受板16には細長い係合孔16
aが長孔17aと対向するように形成されている。一
方、前記従動プーリ10の外周面にはギヤ部10aが形
成されており、この従動プーリ10の軸孔10bには上
部周面に凹溝20aを有する支軸20が挿入されてい
る。図7に示すように、前記支軸20は、凹溝20aが
第1の受板17を挾持するように長孔17aの奥まで挿
入されると共に、従動プーリ10の下方に突出する部分
が係合孔16aの奥と当接する位置まで挿入され、この
支軸20に従動プーリ10が回転自在に軸支されてい
る。その際、支軸20を長孔17aと係合孔16aの奥
までスライドさせる力として、予め従動プーリ10にベ
ルト11を巻回しておき、このベルト11の張力を利用
すると、支軸20をフレーム6に簡単に係止することが
できる。As shown in FIG. 6, the first part of the frame 6
The receiving plate 17 has a long hole 17a extending in the direction of the support plate 18, and the second receiving plate 16 has an elongated engaging hole 16a.
a is formed so as to face the long hole 17a. On the other hand, a gear portion 10a is formed on the outer peripheral surface of the driven pulley 10, and a spindle 20 having a groove 20a on the upper peripheral surface is inserted into the shaft hole 10b of the driven pulley 10. As shown in FIG. 7, the support shaft 20 is inserted into the slot 17a so that the concave groove 20a holds the first receiving plate 17, and the portion protruding below the driven pulley 10 is engaged. The driven pulley 10 is inserted to a position where it abuts against the back of the fitting hole 16a, and the driven pulley 10 of this support shaft 20 is rotatably supported. At that time, the belt 11 is wound around the driven pulley 10 in advance as a force for sliding the support shaft 20 deep into the elongated hole 17a and the engagement hole 16a, and if the tension of the belt 11 is used, the support shaft 20 is framed. 6 can be easily locked.
【0015】図8に示すように、前記可動体14は金属
製のレバー21と合成樹脂製の摺動子受け22とから成
り、後述するように、これらレバー21と摺動子受け2
2は接合・一体化されるようになっている。図9に示す
ように、前記レバー21には、つまみ部21aと、前記
目隠し板4が挿通されるガイド孔21bと、前記ガイド
シャフト12に挿入される筒部21cと、この筒部21
cから垂下する垂下片21dとが形成されており、筒部
21cの両端には合成樹脂製の摺動筒体23がスナップ
インされる。また、前記垂下片21dの前面にはL字状
の折曲部21eとガイド突起21fおよび支持突起21
gが形成されると共に、垂下片21dの背面には係止爪
21hとストッパ段部21iが形成されており、前記支
持突起21gには第1の摺動子片24が圧入される。As shown in FIG. 8, the movable body 14 comprises a lever 21 made of metal and a slider receiver 22 made of synthetic resin. As will be described later, these lever 21 and slider receiver 2 are provided.
The two are joined and integrated. As shown in FIG. 9, the lever 21 has a knob portion 21 a, a guide hole 21 b into which the blind plate 4 is inserted, a tubular portion 21 c to be inserted into the guide shaft 12, and the tubular portion 21.
A hanging piece 21d hanging from c is formed, and sliding cylinders 23 made of synthetic resin are snapped in at both ends of the cylinder 21c. Further, an L-shaped bent portion 21e, a guide protrusion 21f, and a support protrusion 21 are provided on the front surface of the hanging piece 21d.
g is formed, a hook 21h and a stopper step 21i are formed on the back surface of the hanging piece 21d, and the first slider piece 24 is press-fitted into the support protrusion 21g.
【0016】図10と図11に示すように、前記摺動子
受け22には、内部に収納孔22aを有する枠部22b
と、この枠部22bから上方へ延びる突出片22cと、
前記ガイドシャフト13に挿入される環状部22dとが
形成されており、枠部22bの内壁には段付き状の係止
溝22eが形成されている。また、前記突出片22cの
上端には前記ベルト11の歯部11aと同一形状の凹凸
部22fが形成されると共に、突出片22cの背面には
案内溝22gが形成されている。さらに、前記枠部22
bの前面には複数のボス22hが形成されており、これ
らボス22hに前記第1の摺動子片24と第2および第
3の摺動子片25,26がかしめ固定される。As shown in FIGS. 10 and 11, the slider receiver 22 has a frame portion 22b having a storage hole 22a therein.
And a protruding piece 22c extending upward from the frame portion 22b,
An annular portion 22d to be inserted into the guide shaft 13 is formed, and a stepped locking groove 22e is formed on the inner wall of the frame portion 22b. Further, an uneven portion 22f having the same shape as the tooth portion 11a of the belt 11 is formed on the upper end of the protruding piece 22c, and a guide groove 22g is formed on the back surface of the protruding piece 22c. Further, the frame portion 22
A plurality of bosses 22h are formed on the front surface of b, and the first slider piece 24 and the second and third slider pieces 25 and 26 are caulked and fixed to these bosses 22h.
【0017】このように構成された可動体14は前述の
如くベルト11に固着されるが、この場合、図12と図
13に示すように、まずレバー21の垂下片21dを摺
動子受け22の収納孔22a内に挿入し、摺動子受け2
2の突出片22cを上方へ移動する。その際、レバー2
1の支持突起21gが突出片22cの一側面に当接する
と共に、ガイド突起21fが案内溝22gと係合してお
り、これら支持突起21gとガイド突起21fによっ
て、突出片22cをレバー21に対しスムーズに移動で
きる。そして、突出片22cの上端が折曲部21eの内
部に僅かに進入した位置で、係止溝22eの上端がスト
ッパ段部21iの下端に当接し、突出片22cを移動す
るのに要する力が増大するため、当該位置で突出片22
cの移動を一旦停止する。この状態で、ベルト11を突
出片22cの上端に掛け、ベルト11の歯部11aを突
出片22cの凹凸部22fに噛合する。しかる後、突出
片22cをさらに上方へ移動すると、図14と図15に
示すように、突出片22cの上端が折曲部21eの内部
に完全に入り込むため、ベルト11は突出片22cと折
曲部21eとで挾持される。同時に、係止爪21hが係
止溝22eの段部を乗り越えてスナップインされるた
め、レバー21と摺動子受け22とは一体化される。The movable body 14 thus constructed is fixed to the belt 11 as described above. In this case, as shown in FIGS. 12 and 13, first, the hanging piece 21d of the lever 21 is moved to the slider receiver 22. Into the housing hole 22a of the
The second protruding piece 22c is moved upward. At that time, lever 2
The support protrusion 21g of No. 1 is in contact with one side surface of the protruding piece 22c, and the guide protrusion 21f is engaged with the guide groove 22g. The support protrusion 21g and the guide protrusion 21f allow the protruding piece 22c to move smoothly with respect to the lever 21. You can move to. Then, at the position where the upper end of the protruding piece 22c slightly enters the inside of the bent portion 21e, the upper end of the locking groove 22e abuts the lower end of the stopper step portion 21i, and the force required to move the protruding piece 22c is increased. Since it increases, the protruding piece 22
The movement of c is temporarily stopped. In this state, the belt 11 is hung on the upper end of the protruding piece 22c, and the tooth portion 11a of the belt 11 is meshed with the uneven portion 22f of the protruding piece 22c. Then, when the protruding piece 22c is moved further upward, the upper end of the protruding piece 22c completely enters the inside of the bent portion 21e as shown in FIGS. 14 and 15, so that the belt 11 bends with the protruding piece 22c. It is held by the part 21e. At the same time, the locking claw 21h rides over the step of the locking groove 22e and snaps in, so that the lever 21 and the slider receiver 22 are integrated.
【0018】次に、上記の如く構成されたモータ駆動ス
ライド型可変抵抗器の組立工程について説明する。Next, the process of assembling the motor-driven slide type variable resistor constructed as described above will be described.
【0019】まず、フレーム6の支持板18にモータ7
をネジ止めし、該モータ7の回転軸7aに駆動プーリ8
を圧入・固定する。次いで、従動プーリ10の軸孔10
bに支軸20を挿入し、従動プーリ10にベルト11を
巻回した状態で、支軸20の凹溝20aを長孔17aに
挿入すると共に、支軸20の下端を係合孔16aに挿入
する。しかる後、ベルト11を駆動プーリ8に巻回する
と、ベルト11の張力によって、支軸20は長孔17a
と係合孔16aの奥まで移動し、従動プーリ10がこれ
ら長孔17aと係合孔16aに係止された支軸20に回
転自在に軸支される。次に、ガイド部材9を駆動プーリ
8に被着し、これに前後して、レバー21の筒部21c
にスナップインした摺動筒体23に一方のガイドシャフ
ト12を挿通し、このガイドシャフト12の両端をフレ
ーム6の溝部19aにかしめ固定する。次いで、摺動子
受け22に各摺動子片24,25,26をかしめ固定
し、この摺動子受け22の突出片22cをレバー21の
折曲部21e内に僅かに挿入した状態で、ベルト11の
一部を突出片22cの上端に掛け、ベルト11の歯部1
1aを突出片22cの凹凸部22fに噛合する。しかる
後、突出片22cをさらに上方へ移動し、ベルト11を
突出片22cと折曲部21eとで挾持すると共に、係止
爪21hを係止溝22eの段部にスナップインさせてレ
バー21と摺動子受け22とを一体化し、可動対14を
ベルト11に固定する。次に、第1の摺動子片24を支
持突起21gに圧入することにより、第1の摺動子片2
4とレバー21を電気的に接続し、さらに、摺動子受け
22の環状部22dに他方のガイドシャフト13を挿通
し、このガイドシャフト13の両端をフレーム6の溝部
15bにかしめ固定することにより、図2に示すモータ
駆動ユニット1を得る。First, the motor 7 is attached to the support plate 18 of the frame 6.
Is screwed onto the rotary shaft 7a of the motor 7 and the drive pulley 8
Press-fit / fix. Next, the shaft hole 10 of the driven pulley 10
With the support shaft 20 inserted in b and the belt 11 wound around the driven pulley 10, the groove 20a of the support shaft 20 is inserted into the elongated hole 17a, and the lower end of the support shaft 20 is inserted into the engagement hole 16a. To do. After that, when the belt 11 is wound around the drive pulley 8, the support shaft 20 is tensioned by the belt 11 due to the tension of the belt 11.
Then, the driven pulley 10 is rotatably supported by the support shaft 20 locked in the elongated hole 17a and the engaging hole 16a. Next, the guide member 9 is attached to the drive pulley 8, and before and after this, the tubular portion 21c of the lever 21 is attached.
One guide shaft 12 is inserted into the sliding cylinder body 23 snapped into, and both ends of this guide shaft 12 are caulked and fixed to the groove portions 19a of the frame 6. Then, the respective slider pieces 24, 25, 26 are caulked and fixed to the slider receiver 22, and the protruding piece 22c of the slider receiver 22 is slightly inserted into the bent portion 21e of the lever 21, A part of the belt 11 is hung on the upper end of the protruding piece 22c, and the tooth portion 1 of the belt 11 is
1a is engaged with the uneven portion 22f of the protruding piece 22c. Thereafter, the protruding piece 22c is moved further upward, the belt 11 is held between the protruding piece 22c and the bent portion 21e, and the locking claw 21h is snapped into the stepped portion of the locking groove 22e so that the lever 21 and The movable member 14 is fixed to the belt 11 by integrating the slider receiver 22. Next, the first slider piece 24 is press-fitted into the support protrusion 21g, whereby the first slider piece 2 is pressed.
4 and the lever 21 are electrically connected, the other guide shaft 13 is inserted into the annular portion 22d of the slider receiver 22, and both ends of the guide shaft 13 are caulked and fixed to the groove portion 15b of the frame 6. , To obtain the motor drive unit 1 shown in FIG.
【0020】次に、一方のカバー2の位置決め溝2a間
に抵抗基板5を挿入し、この抵抗基板5の各位置決め孔
5aにフレーム6の各位置決め突起15aが嵌まるよう
に、該カバー2にモータ駆動ユニット1を重ね合わせ、
同時に、他方のカバー2をモータ駆動ユニット1の反対
側に重ね合わせて両カバー2をネジ止めする。この状態
で、抵抗基板5とモータ駆動ユニット1のほとんどの部
品は両カバー2内に収納されるが、レバー21のつまみ
部21aとガイド孔21bは、両カバー2の上端の間隙
から突出している。次いで、目隠し板4をガイド孔21
bに挿通して両カバー2の上端の間隙を被覆し、最後
に、両カバー2の左右両側面にホルダ3をネジ止めする
ことにより、前記目隠し板4の両端をホルダ3に固定
し、モータ駆動スライド型可変抵抗器の組立が完了す
る。Next, the resistance substrate 5 is inserted between the positioning grooves 2a of the one cover 2, and the positioning projections 15a of the frame 6 are fitted into the positioning holes 5a of the resistance substrate 5 so that the cover 2 is covered. Overlapping the motor drive unit 1,
At the same time, the other cover 2 is superposed on the opposite side of the motor drive unit 1 and both covers 2 are screwed. In this state, the resistance board 5 and most of the components of the motor drive unit 1 are housed in both covers 2, but the knob portion 21a and the guide hole 21b of the lever 21 project from the gap at the upper ends of both covers 2. . Next, the blindfold plate 4 is attached to the guide hole 21.
The cover 3 is inserted through b to cover the gaps at the upper ends of both covers 2, and finally, the holders 3 are fixed to the left and right side surfaces of both covers 2 by screws to fix both ends of the blindfold plate 4 to the holder 3 and Assembly of the drive slide type variable resistor is completed.
【0021】なお、抵抗基板5を交換するためにモータ
駆動スライド型可変抵抗器を分解する場合は、上記した
組立工程と逆の工程に従えば良いが、その際、抵抗基板
5はカバー2の位置決め溝2aとフレーム6の位置決め
突起15aとで位置決め・保持されているため、かしめ
を外したりネジを緩めたりする等の煩雑な作業を要する
ことなく、カバー2の位置決め溝2aに沿ってスライド
するという簡単な作業で抵抗基板5を取り出すことがで
きる。When disassembling the motor-driven slide type variable resistor to replace the resistance substrate 5, the steps reverse to the above-mentioned assembly steps may be followed. Since the positioning groove 2a and the positioning protrusion 15a of the frame 6 are used for positioning and holding, sliding along the positioning groove 2a of the cover 2 does not require complicated work such as removing caulking or loosening screws. The resistance substrate 5 can be taken out by such a simple operation.
【0022】次に、上記の如く構成されたモータ駆動ス
ライド型可変抵抗器の動作ついて説明する。Next, the operation of the motor-driven slide type variable resistor configured as described above will be described.
【0023】外部からの信号によってモータ7が正逆い
ずれかの方向に回転すると、その回転方向に応じて駆動
プーリ8が回転し、この駆動プーリ8の回転力はギヤ部
8aと歯部11aの噛合によりベルト11に確実に伝達
されるため、ベルト11が駆動プーリ8と従動プーリ1
0とを周って回動する。ベルト11が回動すると、ベル
ト11に固着された可動体14は両ガイドシャフト1
2,13に沿って、図1の矢印PまたはQ方向に往復移
動する。この可動体14には各摺動子片24〜26が保
持されており、可動体14の移動によって抵抗基板5上
の抵抗体(図示せず)と第2および第3の摺動子片2
5,26との摺接位置が変化するため、その摺接位置に
応じた抵抗値が出力される。その際、可動体14が両ガ
イドシャフト12,13の端部まで移動すると、可動体
14とベルト11はそれ以上移動できずに停止するが、
モータ7が引き続いて回転しようとすると、回転する駆
動プーリ8のギヤ部8aと停止しているベルト11の歯
部11aとの位相がずれるため、ベルト11は駆動プー
リ8によって外側へ押し拡げられ、ガイド部材9の内壁
に当接する。ここで、ベルト11とガイド部材9間の最
小ギャップ寸法aがベルト11の歯部11aの歯たけ寸
法bよりも小さく設定されているため、ベルト11が寸
法aだけ外側へ押し拡げられると、ガイド部材9によっ
てベルト11の拡がりがストップされる。したがって、
駆動プーリ8のギヤ部8aはベルト11の歯部11aを
乗り越えられず、駆動プーリ8とモータ7の回転がベル
ト11によって強制的にロックされるため、ギヤ部8a
と歯部11aとの係脱に起因する異音は発生しなくな
る。When the motor 7 rotates in either the forward or reverse direction according to a signal from the outside, the drive pulley 8 rotates in accordance with the rotating direction, and the rotational force of the drive pulley 8 is the gear portion 8a and the tooth portion 11a. The belt 11 is surely transmitted to the belt 11 by meshing, so that the belt 11 is driven by the drive pulley 8 and the driven pulley 1.
Rotate around 0. When the belt 11 rotates, the movable body 14 fixed to the belt 11 moves to the guide shafts 1
It reciprocates in the direction of arrow P or Q in FIG. The movable body 14 holds the respective slider pieces 24 to 26, and the movement of the movable body 14 causes a resistor (not shown) on the resistance substrate 5 and the second and third slider pieces 2 to be held.
Since the sliding contact position with 5, 26 changes, the resistance value corresponding to the sliding contact position is output. At that time, when the movable body 14 moves to the end portions of both the guide shafts 12 and 13, the movable body 14 and the belt 11 cannot move any more and stop.
When the motor 7 continues to rotate, the phase of the gear portion 8a of the rotating drive pulley 8 and the tooth portion 11a of the belt 11 that is stopped shifts, so the belt 11 is pushed outward by the drive pulley 8, It contacts the inner wall of the guide member 9. Here, since the minimum gap size a between the belt 11 and the guide member 9 is set smaller than the tooth clearance size b of the tooth portion 11a of the belt 11, when the belt 11 is pushed outward by the size a, the guide The expansion of the belt 11 is stopped by the member 9. Therefore,
Since the gear portion 8a of the drive pulley 8 cannot ride over the tooth portion 11a of the belt 11 and the rotations of the drive pulley 8 and the motor 7 are forcibly locked by the belt 11, the gear portion 8a
The abnormal noise due to the engagement / disengagement between the tooth and the tooth portion 11a does not occur.
【0024】一方、操作者がレバー21のつまみ部21
aに指を触れると、操作者に帯電した静電気が第1の摺
動子片24とそれに摺接する抵抗基板5上の集電体(図
示せず)を介して出力され、その出力信号に基づいてモ
ータ7の回転が停止する。そして、操作者がつまみ部2
1aを摘んで可動体14を図1の矢印PまたはQ方向に
往復移動すると、ベルト11は駆動プーリ8および従動
プーリ10と共に回動し、上記したモータ駆動時と同様
に、可動体14の移動に応じた抵抗値が出力される。そ
の際、ベルト11はガイド部材9の両規制部9eと接触
しており、可動体14の移動方向によってベルト11と
ガイド部材9の相対位置が微小量ずれるが、このずれは
ガイド部材9が回転することによって吸収される。すな
わち、可動体14が駆動プーリ8に近づく方向(矢印P
方向)に移動した場合、可動体14と駆動プーリ8間の
ベルト11には圧縮方向の力が作用し、これとは逆に、
可動体14が駆動プーリ8から遠ざかる方向(矢印Q方
向)に移動した場合、可動体14と駆動プーリ8間のベ
ルト11には引張方向の力が作用するが、このようなベ
ルト11の変形に追従してガイド部材9が回転するた
め、ベルト11は両規制部9eに対し常にバランス良く
接触し、ガイド部材9によってベルト11の回動が妨げ
られることはない。On the other hand, the operator operates the knob 21 of the lever 21.
When a finger is touched on a, static electricity charged to the operator is output via the first slider piece 24 and a current collector (not shown) on the resistance substrate 5 in sliding contact therewith, and based on the output signal thereof. The motor 7 stops rotating. Then, the operator operates the knob 2
When the movable body 14 is reciprocated in the direction of arrow P or Q in FIG. 1 by pinching 1a, the belt 11 rotates together with the drive pulley 8 and the driven pulley 10, and the movement of the movable body 14 is the same as when the motor is driven. A resistance value corresponding to is output. At that time, the belt 11 is in contact with both the restricting portions 9e of the guide member 9, and the relative position between the belt 11 and the guide member 9 is slightly shifted depending on the moving direction of the movable body 14, but this deviation causes the guide member 9 to rotate. Is absorbed by doing. That is, the direction in which the movable body 14 approaches the drive pulley 8 (arrow P
Direction), a force in the compression direction acts on the belt 11 between the movable body 14 and the drive pulley 8, and conversely,
When the movable body 14 moves in the direction away from the drive pulley 8 (direction of arrow Q), the belt 11 between the movable body 14 and the drive pulley 8 receives a force in the pulling direction. Since the guide member 9 rotates following the belt 9, the belt 11 is always in contact with the both restricting portions 9e in good balance, and the guide member 9 does not hinder the rotation of the belt 11.
【0025】なお、上記実施例では、フレーム6の第1
の受板17と第2の受板16とに、互いに対向する長孔
17aと細長い係合孔16aとをそれぞれ形成した場合
について説明したが、第2の受板16の係合孔16aは
支軸20の駆動プーリ8方向への移動を規制するもので
あるため、例えば円形や角形等の他の形状を採用するこ
とも可能である。In the above embodiment, the first part of the frame 6 is
The case where the long hole 17a and the elongated engaging hole 16a facing each other are formed in the receiving plate 17 and the second receiving plate 16 of the above has been described, but the engaging hole 16a of the second receiving plate 16 is supported. Since the movement of the shaft 20 in the direction of the drive pulley 8 is regulated, other shapes such as a circular shape and a rectangular shape can be adopted.
【0026】[0026]
【発明の効果】以上説明したように、本発明によれば、
従動プーリをフレームに軸支する構造として、フレーム
に長孔を有する第1の受板と係合孔を有する第2の受板
とを対向設置すると共に、従動プーリの支軸の一端側に
凹溝を形成し、この支軸をベルトの張力によって長孔と
係合孔の奥までスライドさせる構造を採用したため、従
動プーリの支軸をフレームにかしめ固定していた従来技
術に比べると、組立作業性が極めて良好になり、コスト
の低減化を図ることができる。また、第2の受板の係合
孔を第1の受板の長孔と同一方向に延出し、これら係合
孔と長孔とを対向させると、支軸を第1および第2の受
板の側方から長孔と係合孔とに簡単に挿入できるため、
組立作業を一層簡単に行うことができる。As described above, according to the present invention,
As a structure in which the driven pulley is axially supported by the frame, a first receiving plate having an elongated hole and a second receiving plate having an engaging hole are installed to face each other in the frame, and the driven pulley has a recess on one end side of the supporting shaft. Since a groove is formed and the shaft is slid to the back of the long hole and the engagement hole by the tension of the belt, the assembly work is more difficult than the conventional technique in which the driven pulley shaft is caulked and fixed to the frame. The property becomes extremely good, and the cost can be reduced. In addition, when the engaging hole of the second receiving plate is extended in the same direction as the elongated hole of the first receiving plate and the engaging hole and the elongated hole are opposed to each other, the support shaft is supported by the first and second receiving plates. Since it can be easily inserted into the long hole and the engagement hole from the side of the plate,
Assembly work can be performed more easily.
【図面の簡単な説明】[Brief description of drawings]
【図1】本発明の一実施例に係るモータ駆動スライド型
可変抵抗器の全体構成を示す分解斜視図である。FIG. 1 is an exploded perspective view showing the overall configuration of a motor-driven slide type variable resistor according to an embodiment of the present invention.
【図2】該モータ駆動スライド型可変抵抗器に備えられ
るモータ駆動ユニットの斜視図である。FIG. 2 is a perspective view of a motor drive unit included in the motor drive slide type variable resistor.
【図3】該モータ駆動ユニットに備えられる駆動プーリ
の支持構造を示す分解斜視図である。FIG. 3 is an exploded perspective view showing a support structure of a drive pulley provided in the motor drive unit.
【図4】該駆動プーリとガイド部材の位置関係を示す説
明図である。FIG. 4 is an explanatory diagram showing a positional relationship between the drive pulley and a guide member.
【図5】該ガイド部材の取付け状態を示す断面図であ
る。FIG. 5 is a cross-sectional view showing an attached state of the guide member.
【図6】図2のモータ駆動ユニットに備えられる従動プ
ーリの支持構造を示す分解斜視図である。6 is an exploded perspective view showing a support structure of a driven pulley provided in the motor drive unit of FIG.
【図7】該従動プーリの取付け状態を示す断面図であ
る。FIG. 7 is a cross-sectional view showing a mounted state of the driven pulley.
【図8】図2のモータ駆動ユニットに備えられる可動体
の分解斜視図である。FIG. 8 is an exploded perspective view of a movable body included in the motor drive unit of FIG.
【図9】該可動体に備えられるレバーの側面図である。FIG. 9 is a side view of a lever included in the movable body.
【図10】該可動体に備えられる摺動子受けの平面図で
ある。FIG. 10 is a plan view of a slider receiver provided on the movable body.
【図11】該摺動子受けの背面図である。FIG. 11 is a rear view of the slider receiver.
【図12】図8の可動体をベルトに取付ける途中の状態
を示す平面図である。FIG. 12 is a plan view showing a state in which the movable body of FIG. 8 is being attached to a belt.
【図13】図12のA−A線に沿う断面図である。13 is a cross-sectional view taken along the line AA of FIG.
【図14】図8の可動体をベルトに取付け終了した状態
を示す平面図である。FIG. 14 is a plan view showing a state in which the movable body of FIG. 8 has been attached to a belt.
【図15】図14のB−B線に沿う断面図である。15 is a cross-sectional view taken along the line BB of FIG.
1 モータ駆動ユニット 5 抵抗基板 6 フレーム 7 モータ 7a 回転軸 8 駆動プーリ 8a ギヤ部 8b 鍔部 9 ガイド部材 9b 第1のスナップ爪 9c 第2のスナップ爪 9e 規制部 10 従動プーリ 10a ギヤ部 11 ベルト 11a 歯部 12,13 ガイドシャフト 14 可動体 16 第2の受板 16a 係合孔 17 第1の受板 17a 長孔 18 支持板 18a 貫通孔 18b 規制孔 19 起立片 19b 係止孔 20 支軸 20a 凹溝 21 レバー 21a つまみ部 21d 垂下片 21e 折曲部 21f ガイド突起 21h 係止爪 21i ストッパ段部 22 摺動子受け 22a 収納孔 22c 突出片 22e 係止溝 22f 凹凸部 22g 案内溝 24,25,26 摺動子片 DESCRIPTION OF SYMBOLS 1 Motor drive unit 5 Resistance board 6 Frame 7 Motor 7a Rotating shaft 8 Drive pulley 8a Gear part 8b Collar part 9 Guide member 9b First snap claw 9c Second snap claw 9e Restriction part 10 Driven pulley 10a Gear part 11 Belt 11a Tooth portion 12, 13 Guide shaft 14 Movable body 16 Second receiving plate 16a Engagement hole 17 First receiving plate 17a Long hole 18 Support plate 18a Through hole 18b Regulation hole 19 Standing piece 19b Locking hole 20 Spindle 20a Recess Groove 21 Lever 21a Knob portion 21d Hanging piece 21e Bent portion 21f Guide protrusion 21h Locking claw 21i Stopper step 22 Slider receiver 22a Storage hole 22c Projecting piece 22e Locking groove 22f Uneven portion 22g Guide groove 24, 25, 26 Slider piece
Claims (2)
フレームに回転自在に軸支された従動プーリと、これら
駆動プーリと従動プーリ間に張架されたベルトと、この
ベルトに固着された摺動子片を有する可動体と、前記摺
動子片に対向設置された抵抗基板とを備え、 前記フレームに長孔を有する第1の受板と係合孔を有す
る第2の受板とを対向設置し、前記従動プーリの支軸の
一端側に形成した凹溝を前記第1の受板を挾持するよう
に前記長孔に挿入すると共に、この支軸の他端側を前記
係合孔に挿入したことを特徴とするモータ駆動スライド
型可変抵抗器。1. A drive pulley rotated by a motor,
A driven pulley rotatably supported by a frame, a belt stretched between the drive pulley and the driven pulley, a movable body having a slider piece fixed to the belt, and a slider piece. A first receiving plate having an elongated hole and a second receiving plate having an engaging hole, which are provided to face each other, and are formed on one end side of a spindle of the driven pulley. The motor drive slide type variable resistor characterized in that the recessed groove is inserted into the elongated hole so as to hold the first receiving plate, and the other end side of the support shaft is inserted into the engaging hole. .
前記長孔と同一方向に延出し、これら係合孔と長孔とを
対向させたことを特徴とするモータ駆動スライド型可変
抵抗器。2. The motor drive slide type variable resistor according to claim 1, wherein the engaging hole extends in the same direction as the elongated hole, and the engaging hole and the elongated hole face each other. vessel.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03718095A JP3273456B2 (en) | 1995-02-24 | 1995-02-24 | Motor driven slide type variable resistor |
GB9703360A GB2308506B (en) | 1995-02-24 | 1996-02-21 | Sliding variable resistor |
GB9603703A GB2298317B (en) | 1995-02-24 | 1996-02-21 | Sliding variable resistor |
GB9703392A GB2308507B (en) | 1995-02-24 | 1996-02-21 | Sliding variable resistor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03718095A JP3273456B2 (en) | 1995-02-24 | 1995-02-24 | Motor driven slide type variable resistor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08236317A true JPH08236317A (en) | 1996-09-13 |
JP3273456B2 JP3273456B2 (en) | 2002-04-08 |
Family
ID=12490397
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03718095A Expired - Fee Related JP3273456B2 (en) | 1995-02-24 | 1995-02-24 | Motor driven slide type variable resistor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3273456B2 (en) |
Cited By (46)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6258493B1 (en) | 1996-09-18 | 2001-07-10 | Numerical Technologies, Inc. | Phase shifting circuit manufacture method and apparatus |
US6453457B1 (en) | 2000-09-29 | 2002-09-17 | Numerical Technologies, Inc. | Selection of evaluation point locations based on proximity effects model amplitudes for correcting proximity effects in a fabrication layout |
US6503666B1 (en) | 2000-07-05 | 2003-01-07 | Numerical Technologies, Inc. | Phase shift masking for complex patterns |
US6523165B2 (en) | 2001-07-13 | 2003-02-18 | Numerical Technologies, Inc. | Alternating phase shift mask design conflict resolution |
US6523162B1 (en) | 2000-08-02 | 2003-02-18 | Numerical Technologies, Inc. | General purpose shape-based layout processing scheme for IC layout modifications |
US6524752B1 (en) | 2000-07-05 | 2003-02-25 | Numerical Technologies, Inc. | Phase shift masking for intersecting lines |
US6539521B1 (en) | 2000-09-29 | 2003-03-25 | Numerical Technologies, Inc. | Dissection of corners in a fabrication layout for correcting proximity effects |
US6541165B1 (en) | 2000-07-05 | 2003-04-01 | Numerical Technologies, Inc. | Phase shift mask sub-resolution assist features |
US6551750B2 (en) | 2001-03-16 | 2003-04-22 | Numerical Technologies, Inc. | Self-aligned fabrication technique for tri-tone attenuated phase-shifting masks |
US6553560B2 (en) | 2001-04-03 | 2003-04-22 | Numerical Technologies, Inc. | Alleviating line end shortening in transistor endcaps by extending phase shifters |
US6566019B2 (en) | 2001-04-03 | 2003-05-20 | Numerical Technologies, Inc. | Using double exposure effects during phase shifting to control line end shortening |
US6569583B2 (en) | 2001-05-04 | 2003-05-27 | Numerical Technologies, Inc. | Method and apparatus for using phase shifter cutbacks to resolve phase shifter conflicts |
US6584610B1 (en) | 2000-10-25 | 2003-06-24 | Numerical Technologies, Inc. | Incrementally resolved phase-shift conflicts in layouts for phase-shifted features |
US6584609B1 (en) | 2000-02-28 | 2003-06-24 | Numerical Technologies, Inc. | Method and apparatus for mixed-mode optical proximity correction |
US6593038B2 (en) | 2001-05-04 | 2003-07-15 | Numerical Technologies, Inc. | Method and apparatus for reducing color conflicts during trim generation for phase shifters |
US6605481B1 (en) | 2002-03-08 | 2003-08-12 | Numerical Technologies, Inc. | Facilitating an adjustable level of phase shifting during an optical lithography process for manufacturing an integrated circuit |
US6622288B1 (en) | 2000-10-25 | 2003-09-16 | Numerical Technologies, Inc. | Conflict sensitive compaction for resolving phase-shift conflicts in layouts for phase-shifted features |
US6625801B1 (en) | 2000-09-29 | 2003-09-23 | Numerical Technologies, Inc. | Dissection of printed edges from a fabrication layout for correcting proximity effects |
US6635393B2 (en) | 2001-03-23 | 2003-10-21 | Numerical Technologies, Inc. | Blank for alternating PSM photomask with charge dissipation layer |
US6664009B2 (en) | 2001-07-27 | 2003-12-16 | Numerical Technologies, Inc. | Method and apparatus for allowing phase conflicts in phase shifting mask and chromeless phase edges |
US6665856B1 (en) | 2000-12-01 | 2003-12-16 | Numerical Technologies, Inc. | Displacing edge segments on a fabrication layout based on proximity effects model amplitudes for correcting proximity effects |
US6670082B2 (en) | 2001-10-09 | 2003-12-30 | Numerical Technologies, Inc. | System and method for correcting 3D effects in an alternating phase-shifting mask |
US6681379B2 (en) | 2000-07-05 | 2004-01-20 | Numerical Technologies, Inc. | Phase shifting design and layout for static random access memory |
US6698007B2 (en) | 2001-10-09 | 2004-02-24 | Numerical Technologies, Inc. | Method and apparatus for resolving coloring conflicts between phase shifters |
US6704921B2 (en) | 2002-04-03 | 2004-03-09 | Numerical Technologies, Inc. | Automated flow in PSM phase assignment |
US6721938B2 (en) | 2001-06-08 | 2004-04-13 | Numerical Technologies, Inc. | Optical proximity correction for phase shifting photolithographic masks |
US6735752B2 (en) | 2001-09-10 | 2004-05-11 | Numerical Technologies, Inc. | Modifying a hierarchical representation of a circuit to process features created by interactions between cells |
US6733929B2 (en) | 2000-07-05 | 2004-05-11 | Numerical Technologies, Inc. | Phase shift masking for complex patterns with proximity adjustments |
US6777141B2 (en) | 2000-07-05 | 2004-08-17 | Numerical Technologies, Inc. | Phase shift mask including sub-resolution assist features for isolated spaces |
US6785879B2 (en) | 2002-06-11 | 2004-08-31 | Numerical Technologies, Inc. | Model-based data conversion |
US6787271B2 (en) | 2000-07-05 | 2004-09-07 | Numerical Technologies, Inc. | Design and layout of phase shifting photolithographic masks |
US6792590B1 (en) | 2000-09-29 | 2004-09-14 | Numerical Technologies, Inc. | Dissection of edges with projection points in a fabrication layout for correcting proximity effects |
US6811935B2 (en) | 2000-07-05 | 2004-11-02 | Numerical Technologies, Inc. | Phase shift mask layout process for patterns including intersecting line segments |
US6821689B2 (en) | 2002-09-16 | 2004-11-23 | Numerical Technologies | Using second exposure to assist a PSM exposure in printing a tight space adjacent to large feature |
US6852471B2 (en) | 2001-06-08 | 2005-02-08 | Numerical Technologies, Inc. | Exposure control for phase shifting photolithographic masks |
US6866971B2 (en) | 2000-09-26 | 2005-03-15 | Synopsys, Inc. | Full phase shifting mask in damascene process |
US6901575B2 (en) | 2000-10-25 | 2005-05-31 | Numerical Technologies, Inc. | Resolving phase-shift conflicts in layouts using weighted links between phase shifters |
US6978436B2 (en) | 2000-07-05 | 2005-12-20 | Synopsys, Inc. | Design data format and hierarchy management for phase processing |
US6981240B2 (en) | 2001-11-15 | 2005-12-27 | Synopsys, Inc. | Cutting patterns for full phase shifting masks |
US7024655B2 (en) | 1999-04-30 | 2006-04-04 | Cobb Nicolas B | Mixed-mode optical proximity correction |
US7028285B2 (en) | 2000-07-05 | 2006-04-11 | Synopsys, Inc. | Standard cell design incorporating phase information |
US7083879B2 (en) | 2001-06-08 | 2006-08-01 | Synopsys, Inc. | Phase conflict resolution for photolithographic masks |
US7122281B2 (en) | 2002-02-26 | 2006-10-17 | Synopsys, Inc. | Critical dimension control using full phase and trim masks |
US7172838B2 (en) | 2002-09-27 | 2007-02-06 | Wilhelm Maurer | Chromeless phase mask layout generation |
US7178128B2 (en) | 2001-07-13 | 2007-02-13 | Synopsys Inc. | Alternating phase shift mask design conflict resolution |
US7710237B2 (en) | 2006-02-22 | 2010-05-04 | Yamaha Corporation | Sliding operating device |
-
1995
- 1995-02-24 JP JP03718095A patent/JP3273456B2/en not_active Expired - Fee Related
Cited By (73)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6566023B2 (en) | 1996-09-18 | 2003-05-20 | Numerical Technology, Inc. | Phase shifting circuit manufacture method and apparatus |
US6420074B2 (en) | 1996-09-18 | 2002-07-16 | Numerial Technologies, Inc. | Phase shifting circuit manufacture method and apparatus |
US6436590B2 (en) | 1996-09-18 | 2002-08-20 | Numerical Technologies, Inc. | Phase shifting circuit manufacture method and apparatus |
US6258493B1 (en) | 1996-09-18 | 2001-07-10 | Numerical Technologies, Inc. | Phase shifting circuit manufacture method and apparatus |
US6818385B2 (en) | 1996-09-18 | 2004-11-16 | Numerical Technologies, Inc. | Phase shifting circuit manufacture method and apparatus |
US7024655B2 (en) | 1999-04-30 | 2006-04-04 | Cobb Nicolas B | Mixed-mode optical proximity correction |
US6988259B2 (en) | 2000-02-28 | 2006-01-17 | Synopsys, Inc. | Method and apparatus for mixed-mode optical proximity correction |
US6584609B1 (en) | 2000-02-28 | 2003-06-24 | Numerical Technologies, Inc. | Method and apparatus for mixed-mode optical proximity correction |
US6811935B2 (en) | 2000-07-05 | 2004-11-02 | Numerical Technologies, Inc. | Phase shift mask layout process for patterns including intersecting line segments |
US6733929B2 (en) | 2000-07-05 | 2004-05-11 | Numerical Technologies, Inc. | Phase shift masking for complex patterns with proximity adjustments |
US7028285B2 (en) | 2000-07-05 | 2006-04-11 | Synopsys, Inc. | Standard cell design incorporating phase information |
US8977989B2 (en) | 2000-07-05 | 2015-03-10 | Synopsys, Inc. | Handling of flat data for phase processing including growing shapes within bins to identify clusters |
US7585595B2 (en) | 2000-07-05 | 2009-09-08 | Synopsys, Inc. | Phase shift mask including sub-resolution assist features for isolated spaces |
US6787271B2 (en) | 2000-07-05 | 2004-09-07 | Numerical Technologies, Inc. | Design and layout of phase shifting photolithographic masks |
US6681379B2 (en) | 2000-07-05 | 2004-01-20 | Numerical Technologies, Inc. | Phase shifting design and layout for static random access memory |
US6541165B1 (en) | 2000-07-05 | 2003-04-01 | Numerical Technologies, Inc. | Phase shift mask sub-resolution assist features |
US6524752B1 (en) | 2000-07-05 | 2003-02-25 | Numerical Technologies, Inc. | Phase shift masking for intersecting lines |
US7500217B2 (en) | 2000-07-05 | 2009-03-03 | Synopsys, Inc. | Handling of flat data for phase processing including growing shapes within bins to identify clusters |
US7435513B2 (en) | 2000-07-05 | 2008-10-14 | Synopsys, Inc. | Design and layout of phase shifting photolithographic masks |
US6610449B2 (en) | 2000-07-05 | 2003-08-26 | Numerical Technologies, Inc. | Phase shift masking for “double-T” intersecting lines |
US6978436B2 (en) | 2000-07-05 | 2005-12-20 | Synopsys, Inc. | Design data format and hierarchy management for phase processing |
US6777141B2 (en) | 2000-07-05 | 2004-08-17 | Numerical Technologies, Inc. | Phase shift mask including sub-resolution assist features for isolated spaces |
US7348108B2 (en) | 2000-07-05 | 2008-03-25 | Synopsys, Inc. | Design and layout of phase shifting photolithographic masks |
US7132203B2 (en) | 2000-07-05 | 2006-11-07 | Synopsys, Inc. | Phase shift masking for complex patterns with proximity adjustments |
US6503666B1 (en) | 2000-07-05 | 2003-01-07 | Numerical Technologies, Inc. | Phase shift masking for complex patterns |
US6523162B1 (en) | 2000-08-02 | 2003-02-18 | Numerical Technologies, Inc. | General purpose shape-based layout processing scheme for IC layout modifications |
US7534531B2 (en) | 2000-09-26 | 2009-05-19 | Synopsys, Inc. | Full phase shifting mask in damascene process |
US7659042B2 (en) | 2000-09-26 | 2010-02-09 | Synopsys, Inc. | Full phase shifting mask in damascene process |
US6866971B2 (en) | 2000-09-26 | 2005-03-15 | Synopsys, Inc. | Full phase shifting mask in damascene process |
US6918104B2 (en) | 2000-09-29 | 2005-07-12 | Synopsys, Inc. | Dissection of printed edges from a fabrication layout for correcting proximity effects |
US7003757B2 (en) | 2000-09-29 | 2006-02-21 | Synopsys, Inc. | Dissection of edges with projection points in a fabrication layout for correcting proximity effects |
US6792590B1 (en) | 2000-09-29 | 2004-09-14 | Numerical Technologies, Inc. | Dissection of edges with projection points in a fabrication layout for correcting proximity effects |
US6625801B1 (en) | 2000-09-29 | 2003-09-23 | Numerical Technologies, Inc. | Dissection of printed edges from a fabrication layout for correcting proximity effects |
US6453457B1 (en) | 2000-09-29 | 2002-09-17 | Numerical Technologies, Inc. | Selection of evaluation point locations based on proximity effects model amplitudes for correcting proximity effects in a fabrication layout |
US6539521B1 (en) | 2000-09-29 | 2003-03-25 | Numerical Technologies, Inc. | Dissection of corners in a fabrication layout for correcting proximity effects |
US7827518B2 (en) | 2000-10-25 | 2010-11-02 | Synopsys, Inc. | Incrementally resolved phase-shift conflicts in layouts for phase-shifted features |
US7216331B2 (en) | 2000-10-25 | 2007-05-08 | Synopsys, Inc. | Resolving phase-shift conflicts in layouts using weighted links between phase shifters |
US7281226B2 (en) | 2000-10-25 | 2007-10-09 | Synopsys, Inc. | Incrementally resolved phase-shift conflicts in layouts for phase-shifted features |
US6622288B1 (en) | 2000-10-25 | 2003-09-16 | Numerical Technologies, Inc. | Conflict sensitive compaction for resolving phase-shift conflicts in layouts for phase-shifted features |
US6584610B1 (en) | 2000-10-25 | 2003-06-24 | Numerical Technologies, Inc. | Incrementally resolved phase-shift conflicts in layouts for phase-shifted features |
US6901575B2 (en) | 2000-10-25 | 2005-05-31 | Numerical Technologies, Inc. | Resolving phase-shift conflicts in layouts using weighted links between phase shifters |
US7131101B2 (en) | 2000-12-01 | 2006-10-31 | Synopsys Inc. | Displacing edge segments on a fabrication layout based on proximity effects model amplitudes for correcting proximity effects |
US7926004B2 (en) | 2000-12-01 | 2011-04-12 | Synopsys, Inc. | Displacing edge segments on a fabrication layout based on proximity effects model amplitudes for correcting proximity effects |
US7562319B2 (en) | 2000-12-01 | 2009-07-14 | Synopsys, Inc. | Displacing edge segments on a fabrication layout based on proximity effects model amplitudes for correcting proximity effects |
US6665856B1 (en) | 2000-12-01 | 2003-12-16 | Numerical Technologies, Inc. | Displacing edge segments on a fabrication layout based on proximity effects model amplitudes for correcting proximity effects |
US6551750B2 (en) | 2001-03-16 | 2003-04-22 | Numerical Technologies, Inc. | Self-aligned fabrication technique for tri-tone attenuated phase-shifting masks |
US6635393B2 (en) | 2001-03-23 | 2003-10-21 | Numerical Technologies, Inc. | Blank for alternating PSM photomask with charge dissipation layer |
US6859918B2 (en) | 2001-04-03 | 2005-02-22 | Numerical Technologies | Alleviating line end shortening by extending phase shifters |
US6553560B2 (en) | 2001-04-03 | 2003-04-22 | Numerical Technologies, Inc. | Alleviating line end shortening in transistor endcaps by extending phase shifters |
US6566019B2 (en) | 2001-04-03 | 2003-05-20 | Numerical Technologies, Inc. | Using double exposure effects during phase shifting to control line end shortening |
US6569583B2 (en) | 2001-05-04 | 2003-05-27 | Numerical Technologies, Inc. | Method and apparatus for using phase shifter cutbacks to resolve phase shifter conflicts |
US6593038B2 (en) | 2001-05-04 | 2003-07-15 | Numerical Technologies, Inc. | Method and apparatus for reducing color conflicts during trim generation for phase shifters |
US7169515B2 (en) | 2001-06-08 | 2007-01-30 | Synopsys, Inc. | Phase conflict resolution for photolithographic masks |
US7422841B2 (en) | 2001-06-08 | 2008-09-09 | Synopsys, Inc. | Exposure control for phase shifting photolithographic masks |
US6721938B2 (en) | 2001-06-08 | 2004-04-13 | Numerical Technologies, Inc. | Optical proximity correction for phase shifting photolithographic masks |
US7083879B2 (en) | 2001-06-08 | 2006-08-01 | Synopsys, Inc. | Phase conflict resolution for photolithographic masks |
US6852471B2 (en) | 2001-06-08 | 2005-02-08 | Numerical Technologies, Inc. | Exposure control for phase shifting photolithographic masks |
US7178128B2 (en) | 2001-07-13 | 2007-02-13 | Synopsys Inc. | Alternating phase shift mask design conflict resolution |
US6523165B2 (en) | 2001-07-13 | 2003-02-18 | Numerical Technologies, Inc. | Alternating phase shift mask design conflict resolution |
US6664009B2 (en) | 2001-07-27 | 2003-12-16 | Numerical Technologies, Inc. | Method and apparatus for allowing phase conflicts in phase shifting mask and chromeless phase edges |
US6735752B2 (en) | 2001-09-10 | 2004-05-11 | Numerical Technologies, Inc. | Modifying a hierarchical representation of a circuit to process features created by interactions between cells |
US6830854B2 (en) | 2001-10-09 | 2004-12-14 | Numerical Technologies, Inc. | System and method for correcting 3D effects in an alternating phase-shifting mask |
US6698007B2 (en) | 2001-10-09 | 2004-02-24 | Numerical Technologies, Inc. | Method and apparatus for resolving coloring conflicts between phase shifters |
US6670082B2 (en) | 2001-10-09 | 2003-12-30 | Numerical Technologies, Inc. | System and method for correcting 3D effects in an alternating phase-shifting mask |
US6981240B2 (en) | 2001-11-15 | 2005-12-27 | Synopsys, Inc. | Cutting patterns for full phase shifting masks |
US7122281B2 (en) | 2002-02-26 | 2006-10-17 | Synopsys, Inc. | Critical dimension control using full phase and trim masks |
US6605481B1 (en) | 2002-03-08 | 2003-08-12 | Numerical Technologies, Inc. | Facilitating an adjustable level of phase shifting during an optical lithography process for manufacturing an integrated circuit |
US6704921B2 (en) | 2002-04-03 | 2004-03-09 | Numerical Technologies, Inc. | Automated flow in PSM phase assignment |
US6785879B2 (en) | 2002-06-11 | 2004-08-31 | Numerical Technologies, Inc. | Model-based data conversion |
US7165234B2 (en) | 2002-06-11 | 2007-01-16 | Synopsys, Inc. | Model-based data conversion |
US6821689B2 (en) | 2002-09-16 | 2004-11-23 | Numerical Technologies | Using second exposure to assist a PSM exposure in printing a tight space adjacent to large feature |
US7172838B2 (en) | 2002-09-27 | 2007-02-06 | Wilhelm Maurer | Chromeless phase mask layout generation |
US7710237B2 (en) | 2006-02-22 | 2010-05-04 | Yamaha Corporation | Sliding operating device |
Also Published As
Publication number | Publication date |
---|---|
JP3273456B2 (en) | 2002-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08236317A (en) | Motor driven sliding type variable resistor | |
US6158978A (en) | Blower housing motor mount adapter and gaskets | |
JP3273457B2 (en) | Motor driven slide type variable resistor | |
JP2003267139A (en) | Rear view mirror | |
JP3273422B2 (en) | Motor driven slide type variable resistor | |
JP3587721B2 (en) | Rotating electrical parts with click | |
JP2007528687A (en) | Snap cover plate and gear housing for electric motors | |
GB2308506A (en) | Motor/manually driven sliding variable resistor | |
CN208987628U (en) | Pancake-baking machine oil brushing device | |
JPH0440557B2 (en) | ||
JP2545551Y2 (en) | Motor driven slide type variable resistor | |
JP2717105B2 (en) | Brush holders for electric motors, etc. | |
JPH076898Y2 (en) | Beauty and health device | |
JP4014251B2 (en) | Door latch bracket | |
CN213088657U (en) | High-stability gearbox | |
JPH11173327A (en) | Hinge | |
JP7093324B2 (en) | Electric steering lock device | |
JP3660719B2 (en) | Shaft | |
JPH0424181Y2 (en) | ||
JPS60623Y2 (en) | panel connection device | |
JP2020175842A (en) | Electric steering lock device | |
JPH10201184A (en) | Motor | |
JPS587005Y2 (en) | Automotive door handle mounting structure | |
JP3570222B2 (en) | Rotation transmission device | |
GB2298317A (en) | Motor/manually driven sliding variable resistor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20011225 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080201 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090201 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090201 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100201 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100201 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110201 Year of fee payment: 9 |
|
LAPS | Cancellation because of no payment of annual fees |