JPH08236263A - Manufacture of spark plug - Google Patents

Manufacture of spark plug

Info

Publication number
JPH08236263A
JPH08236263A JP6170695A JP6170695A JPH08236263A JP H08236263 A JPH08236263 A JP H08236263A JP 6170695 A JP6170695 A JP 6170695A JP 6170695 A JP6170695 A JP 6170695A JP H08236263 A JPH08236263 A JP H08236263A
Authority
JP
Japan
Prior art keywords
metal shell
ground electrode
surface treatment
spark plug
plating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6170695A
Other languages
Japanese (ja)
Inventor
Junichi Kagawa
純一 加川
Makoto Yamaguchi
誠 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP6170695A priority Critical patent/JPH08236263A/en
Publication of JPH08236263A publication Critical patent/JPH08236263A/en
Pending legal-status Critical Current

Links

Landscapes

  • Spark Plugs (AREA)

Abstract

PURPOSE: To provide a spark plug with improved heat resistance by carrying out plating after an earthing electrode welded to main metal fittings is temporarily curved into almost the same shape as the final shape. CONSTITUTION: An earthing electrode 11 is joined to a tip end face of a cylindrical part of main metal fittings 4 by resistance welding. The earthing electrode 11 is bent into an L-shape which is almost the same shape as that in the final state to be assembled. Then, after the metal fittings 4 are pickled to remove oxides and powders due to cutting, corrosion resistant at high temperature and hardly processible surface treatment is carried out for the inner circumference and the outer circumference of the metal fittings 4 and the earthing electrode 11 by plating. Next, an insulator built in a middle axis 2 is assembled with the metal fittings 4 and a spark gap 12 is formed between the earthing electrode 11 and the middle axis 2. After that, if necessary, a gap gauge 13 is inserted in the spark gap 12 and the spark gap 12 is finely adjusted by lightly hitting the earthing electrode 11 from the outside. Troubles such as cracking and peeling of the plating scarcely occur in the obtained spark plug 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、筒状の主体金具の先端
面に単数又は複数の接地電極を接合するスパークプラグ
の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a spark plug in which a single or a plurality of ground electrodes are joined to the end surface of a tubular metal shell.

【0002】[0002]

【従来の技術】従来より、易加工表面処理を行う場合に
は、図12に示したような単数又は複数の接地電極を有
するスパークプラグの製造方法(以下従来の易加工表面
処理製造方法と呼ぶ)が知られている(図12では単数
の接地電極の場合を示す)。この従来の易加工表面処理
製造方法は、先ず、図12(a)に示したように、筒状
の主体金具101の外周に六角部102と円筒部103
を冷間加工した後に、図12(b)に示したように、六
角部102の上端部1021と下端部1022、円筒部
103の上部1031と下部1032を所定の軸方向及
び径方向の寸法となるように主体金具101の外周を切
削する切削加工を行う。
2. Description of the Related Art Conventionally, in the case of performing easy-to-machine surface treatment, a method for manufacturing a spark plug having one or a plurality of ground electrodes as shown in FIG. 12 (hereinafter referred to as a conventional easy-machine surface treatment manufacturing method). ) Is known (FIG. 12 shows the case of a single ground electrode). In this conventional easy-to-machine surface treatment manufacturing method, first, as shown in FIG. 12A, a hexagonal portion 102 and a cylindrical portion 103 are provided on the outer circumference of a tubular metal shell 101.
After cold working, as shown in FIG. 12B, the upper end 1021 and the lower end 1022 of the hexagonal part 102, the upper part 1031 and the lower part 1032 of the cylindrical part 103 have predetermined axial and radial dimensions. A cutting process for cutting the outer periphery of the metal shell 101 is performed so that

【0003】そして、図12(c)に示したように、円
筒状の主体金具101の先端面107に単数又は複数の
接地電極104を溶接後に接地電極104の先端部を切
断し、図12(d)に示したように、主体金具101の
円筒部103の外周面にネジ部105を転造した後に、
図12(e)に示したように、主体金具101及び単数
又は複数の接地電極104に易加工表面処理を施し、図
12(f)に示したように中軸付絶縁体106を組み付
けた後、図12(g)に示したように単数又は複数の接
地電極104を途中から主体金具101の軸心に向けて
L字状に折り曲げる折曲工程を行うことによってスパー
クギャップ107を形成するスパークプラグ1を製造し
ていた。この場合の易加工表面処理には主として亜鉛メ
ッキ、亜鉛メッキクロメート処理等が行われていた。
Then, as shown in FIG. 12 (c), after welding one or a plurality of ground electrodes 104 to the tip surface 107 of the cylindrical metal shell 101, the tip portion of the ground electrode 104 is cut off, and as shown in FIG. As shown in d), after rolling the threaded portion 105 on the outer peripheral surface of the cylindrical portion 103 of the metal shell 101,
As shown in FIG. 12 (e), the metal shell 101 and the single or plural ground electrodes 104 are subjected to easy-to-machine surface treatment, and the insulator 106 with the inner shaft is assembled as shown in FIG. 12 (f). As shown in FIG. 12G, the spark plug 1 forming the spark gap 107 by performing a bending step of bending a single or a plurality of ground electrodes 104 from the middle toward the axis of the metal shell 101 into an L shape. Was being manufactured. In this case, the easily-processed surface treatment was mainly zinc plating, zinc plating chromate treatment or the like.

【0004】また、難加工表面処理を行う場合には、図
13に示したような単数又は複数の接地電極を有するス
パークプラグの製造方法(以下従来の第1の難加工表面
処理製造方法と呼ぶ)が知られている(図13では単数
の接地電極を有する場合を示す)。従来の難加工表面処
理製造方法は、先ず、図13(a)に示したように、筒
状の主体金具201の外周に六角部202と円筒部20
3を冷間加工した後に、図13(b)に示したように、
六角部202の上端部2021と下端部2022、円筒
部203の上部2031と下部2032を所定の軸方向
及び径方向の寸法となるように主体金具の外周を切削す
る切削加工を行う。
Further, when the difficult-to-process surface treatment is performed, a method for manufacturing a spark plug having a single or a plurality of ground electrodes as shown in FIG. 13 (hereinafter referred to as a conventional first difficult-to-process surface treatment manufacturing method). ) Is known (FIG. 13 shows the case of having a single ground electrode). In the conventional difficult-to-process surface treatment manufacturing method, first, as shown in FIG. 13A, a hexagonal portion 202 and a cylindrical portion 20 are provided on the outer periphery of a tubular metallic shell 201.
After cold working No. 3, as shown in FIG.
The upper end portion 2021 and the lower end portion 2022 of the hexagonal portion 202, and the upper portion 2031 and the lower portion 2032 of the cylindrical portion 203 are cut so as to cut the outer periphery of the metal shell so as to have predetermined axial and radial dimensions.

【0005】そして、図13(c)に示したように、円
筒状の主体金具201の先端面207に単数又は複数の
接地電極204を溶接後に接地電極204の先端部を切
断し、図13(d)に示したように主体金具201の円
筒部203の外周面にネジ部205を転造した後に、図
13(e)に示したように、接地電極204を熱収縮チ
ューブ208等によりマスキングを行った後に、主体金
具201及び単数又は複数の接地電極204と主体金具
201の溶接部209に難加工表面処理を施し、図13
(f)に示したようにマスキングを除去し、中軸付絶縁
体206を組み付けた後、図13(g)に示したように
単数又は複数の接地電極204を途中から主体金具20
1の軸心に向けL字状に折り曲げる折曲工程を行うこと
によってスパークギャップ207を形成するスパークプ
ラグ1を製造していた。
Then, as shown in FIG. 13C, after welding one or a plurality of ground electrodes 204 to the tip surface 207 of the cylindrical metallic shell 201, the tip portion of the ground electrode 204 is cut, and then the After the threaded portion 205 is rolled on the outer peripheral surface of the cylindrical portion 203 of the metal shell 201 as shown in d), the ground electrode 204 is masked with a heat shrinkable tube 208 or the like as shown in FIG. After that, the metal shell 201, the single or plural ground electrodes 204, and the welded portion 209 of the metal shell 201 are subjected to a difficult-to-process surface treatment.
After removing the masking as shown in (f) and assembling the insulator 206 with the center rod, as shown in FIG.
The spark plug 1 that forms the spark gap 207 is manufactured by performing a bending step of bending in an L-shape toward the axis of No. 1.

【0006】その他の従来の第2の難加工表面処理製造
方法としては、主体金具301の円筒部303の外周面
にネジ部305を転造した後に、図14(a)に示した
ように、接地電極304をチャック307等により表面
処理層310に浸らないように保持しながら主体金具3
01及び単数又は複数の接地電極304と主体金具30
1の溶接部308に表面処理を施し、図14(b)に示
したように中軸付絶縁体306を組み付けた後、図14
(c)に示したように単数又は複数の接地電極304を
途中から主体金具301の軸心に向けL字状に折り曲げ
る折曲工程を行うことによってスパークギャップ307
を形成するスパークプラグ1を製造していた。この場合
の難加工表面処理としては主としてニッケルメッキが用
いられていた。
As another conventional second difficult-to-machine surface treatment manufacturing method, as shown in FIG. 14 (a), after the threaded portion 305 is rolled on the outer peripheral surface of the cylindrical portion 303 of the metal shell 301, While holding the ground electrode 304 with the chuck 307 or the like so as not to be immersed in the surface treatment layer 310, the metal shell 3
01 and one or more ground electrodes 304 and metal shell 30
After the surface treatment is applied to the welded portion 308 of No. 1 and the insulator 306 with a center rod is assembled as shown in FIG.
As shown in (c), the spark gap 307 is formed by performing a bending step of bending one or more ground electrodes 304 from the middle toward the axis of the metal shell 301 into an L shape.
Was produced. In this case, nickel plating was mainly used as the difficult-to-process surface treatment.

【0007】[0007]

【発明が解決しようとする課題】しかし、内燃機関の出
力向上又はエンジンルームスペースの減少に伴うスパー
クプラグ主体金具の耐熱性向上の必要性から従来の易加
工表面処理では対処が困難となってきた。
However, it has become difficult to deal with the conventional easy-to-machine surface treatment due to the necessity of improving the heat resistance of the spark plug metal shell with the improvement of the output of the internal combustion engine or the reduction of the engine room space. .

【0008】即ち、高速で連続運転した場合、エンジン
の排気管等から受ける輻射熱によってスパークプラグ全
体が従来の易加工表面処理層の耐熱性を越える様な高温
となる。この様な高速での連続運転後には主体金具及び
接地電極に施した易加工表面処理層の全体が変色し、は
げ落ちる状態となって、主体金具の表面に錆が発生し、
スパークプラグをエンジンから取り外すことが困難とな
る等の不具合が生じる危険性が出てきた。
That is, when continuously operated at a high speed, radiant heat received from the exhaust pipe of the engine causes the temperature of the entire spark plug to exceed the heat resistance of the conventional easily processed surface treatment layer. After continuous operation at such a high speed, the entire surface of the easily processed surface treatment layer applied to the metal shell and the ground electrode was discolored and peeled off, causing rust on the surface of the metal shell.
There is a danger of problems such as difficulty in removing the spark plug from the engine.

【0009】このため単純に従来の易加工表面処理製造
工程における表面処理の工程のみを難加工表面処理に置
き換えると、接地電極はその後の折曲工程により従来の
易加工表面処理では生じなかった難加工表面処理層の割
れ、剥離等を生じ、スパークギャップ間に剥離した難加
工表面処理層がブリッジ状態となって短絡し、電気火花
を生じない等の不具合を生じる危険性がある。
Therefore, if only the surface treatment step in the conventional easy-to-machine surface treatment manufacturing step is replaced with the difficult-to-machine surface treatment, the ground electrode is difficult to be generated by the conventional easily-machined surface treatment due to the subsequent bending step. There is a risk that cracks and peeling of the processed surface treatment layer may occur, and the difficult-to-process surface treatment layer separated between the spark gaps may be short-circuited in a bridge state to cause no electric spark.

【0010】この不具合を回避するため、一度施した難
加工表面処理層を剥がす工程を設ける方法も考えられ
る。この方法としては酸処理を行うことが一般的である
が、易加工表面処理層の場合は塩酸で容易に剥がすこと
ができ、接地電極の素地を痛めることは少ないのに対
し、難加工表面処理では、弗酸、王水等の強酸を使用し
なければならず、接地電極の素地まで腐食されてしまう
等の不具合もある。
In order to avoid this inconvenience, a method of providing a step of peeling off the difficult-to-process surface treatment layer once applied may be considered. As this method, acid treatment is generally performed, but in the case of a surface treatment layer that can be easily processed, it can be easily peeled off with hydrochloric acid, and the base material of the ground electrode is less likely to be damaged. Then, a strong acid such as hydrofluoric acid or aqua regia must be used, and there is a problem that the base material of the ground electrode is also corroded.

【0011】また、難加工表面処理層の厚みを薄くする
ことにより、表面処理層に加わる応力を減少させること
ができるが、表面処理層が薄いことから耐食性に劣る結
果となる。
Although the stress applied to the surface treatment layer can be reduced by reducing the thickness of the surface treatment layer which is difficult to process, the thinness of the surface treatment layer results in poor corrosion resistance.

【0012】一方、従来の難加工表面処理製造方法にお
いては、接地電極に表面処理を行わないように、マスキ
ングし、又は表面処理層に浸らないようにする等、非常
に工数がかかり、量産性の悪いものとなっていた。本発
明は、耐熱性に優れる難加工表面処理層を有するスパー
クプラグの製造方法の提供を目的とする。
On the other hand, in the conventional difficult-to-process surface treatment manufacturing method, it takes a lot of man-hours such as masking so as not to perform surface treatment on the ground electrode or preventing it from immersing in the surface treatment layer. It was a bad thing. An object of the present invention is to provide a method for manufacturing a spark plug having a difficult-to-process surface treatment layer having excellent heat resistance.

【0013】[0013]

【課題を解決するための手段】請求項1の発明は、外周
面にネジを施した筒状の主体金具の先端面に接続した単
数又は複数の接地電極を最終形状とほぼ同等の状態に仮
曲げを行う第1工程と、この第1工程の終了後に、前記
主体金具に高温耐食性の難加工表面処理を施す第2工程
と、この第2工程終了後に、該主体金具に中軸付絶縁体
を組み付けることによって前記接地電極と中軸との間で
スパークギャップを形成する第3工程と、を備えた製造
方法を採用した。
According to a first aspect of the present invention, a single or a plurality of ground electrodes connected to the front end surface of a tubular metal shell whose outer peripheral surface is threaded are temporarily put into a state substantially equivalent to the final shape. A first step of bending, a second step of finishing the first step with a difficult-to-process surface treatment with high-temperature corrosion resistance on the metallic shell, and an end of the metallic shell with an insulator with a center rod after the second step. And a third step of forming a spark gap between the ground electrode and the center pole by assembling.

【0014】請求項2の発明は、外周面にネジを施した
筒状の主体金具の先端面に接続した複数の接地電極を最
終形状に仮曲げを行う第1工程と、この第1工程終了後
に、前記主体金具に高温耐食性の難加工表面処理を施す
第2工程と、この第2工程終了後に、前記接地電極を切
断し、放電端面を形成する第3工程と、この第3工程終
了後に、該主体金具に中軸付絶縁体を組み付けることに
よって前記放電端面と該中軸の先端側面部とでスパーク
ギャップが形成される第4工程を備えた製造方法を採用
した。
According to a second aspect of the present invention, a first step of temporarily bending a plurality of ground electrodes connected to the front end surface of a tubular metal shell having an outer peripheral surface with a screw into a final shape, and the first step is completed. Later, a second step of subjecting the metal shell to a high-temperature corrosion-resistant difficult-to-process surface treatment, a third step of cutting the ground electrode to form a discharge end face after the second step, and a third step after the third step. A manufacturing method including a fourth step in which a spark gap is formed between the discharge end surface and the tip side surface portion of the center shaft by assembling the insulator with the center shaft to the metal shell is adopted.

【0015】請求項3の発明は、外周面にネジを施した
筒状の主体金具の先端面に接続した複数の接地電極を最
終形状に仮曲げを行う第1工程と、この第1工程の終了
後に、前記接地電極を切断し、放電端面を形成する第2
工程と、この第2の工程終了後に、前記主体金具に高温
耐食性の難加工表面処理を施す第3工程と、この第3工
程終了後に、該主体金具に中軸付絶縁体を組み付けるこ
とによって前記放電端面と該中軸の先端側面部とでスパ
ークギャップが形成される第4工程を備えた製造方法を
採用した。
According to a third aspect of the present invention, a first step of temporarily bending a plurality of ground electrodes connected to the front end surface of a tubular metallic shell having an outer peripheral surface with a screw into a final shape, and the first step After finishing, the ground electrode is cut to form a discharge end face.
And a third step of subjecting the metal shell to a high-temperature corrosion-resistant difficult-to-process surface treatment after the second step, and after the third step is completed, by assembling the insulator with a center rod into the electric discharge. A manufacturing method including a fourth step in which a spark gap is formed between the end face and the tip side face portion of the center rod is adopted.

【0016】請求項4の発明は、前記請求項1から3の
発明のうち、高温耐食性の難加工表面処理が、クロムメ
ッキ、ニッケルメッキ、ニッケルメッキクロメート処
理、ニッケルクロムメッキ又は亜鉛ニッケルメッキのう
ち少なくとも一種類である製造方法を採用した。
A fourth aspect of the present invention is characterized in that, in the first to third aspects of the invention, the high-temperature corrosion-resistant difficult-to-process surface treatment is chromium plating, nickel plating, nickel plating chromate treatment, nickel chromium plating, or zinc nickel plating. At least one manufacturing method was adopted.

【0017】[0017]

【作用及び効果】本発明によれば、主体金具に溶接した
接地電極を最終形状とほぼ同等の状態に仮曲げを行った
後にメッキを行うため、ニッケルメッキ等の難加工表面
処理においてもメッキ割れ、剥離が防止できる。これに
伴い、メッキ厚を増加させることができるので、耐熱性
をより向上させることができ、エンジンでの使用中にお
けるメッキの変色、はげ落ち、錆等によるエンジンから
の取り外し不可能という不具合を回避できる。
According to the present invention, since the ground electrode welded to the metal shell is temporarily bent into a state substantially equivalent to the final shape and then plated, plating cracking occurs even in difficult-to-process surface treatment such as nickel plating. , Peeling can be prevented. As a result, the plating thickness can be increased to improve heat resistance and avoid the problem of discoloration of the plating, peeling off, rust, etc., which prevents it from being removed from the engine during use in the engine. it can.

【0018】また、接地電極にマスキングを施したり、
接地電極のみを表面処理層に浸らないようにする等の必
要もないため、工数が減少し、経済的な効果も大きく、
強酸処理の必要もないため、スパークプラグの性能も安
定する。
Also, masking the ground electrode,
Since it is not necessary to keep only the ground electrode immersed in the surface treatment layer, the man-hours are reduced and the economic effect is large.
Since there is no need for strong acid treatment, the spark plug performance is stable.

【0019】[0019]

【実施例】本発明のスパークプラグの製造方法を図1な
いし図11に示す実施例に基づき説明する。 〔第1実施例〕図1ないし図5は本発明の第1実施例を
示すもので、図1は単数の接地電極を有する平行電極ス
パークプラグを示した図である。平行電極スパークプラ
グ1は、高電圧が印加される中心電極2と、この中心電
極2を保持する筒状の絶縁体3と、この絶縁体3を保持
する筒状の主体金具4とを備えている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A spark plug manufacturing method according to the present invention will be described with reference to the embodiments shown in FIGS. [First Embodiment] FIGS. 1 to 5 show a first embodiment of the present invention. FIG. 1 is a view showing a parallel electrode spark plug having a single ground electrode. The parallel electrode spark plug 1 includes a center electrode 2 to which a high voltage is applied, a tubular insulator 3 that holds the center electrode 2, and a tubular metal shell 4 that holds the insulator 3. There is.

【0020】主体金具4の構造を図2及び図3に基づい
て詳細に説明する。この主体金具4の中央部より一端側
の外周には、工具(図示せず)と係合するボルト状の六
角部5が形成されている。主体金具4の中央部より他端
側の外周には、内燃機関のエンジンブロック(図示せ
ず)にねじ込むためのネジ部6が形成されている。主体
金具4の中央部には、円環状の鍔状部(胴部)7が形成
されている。尚、主体金具4の内部には、絶縁体3を挿
入するための軸孔8が形成されている。その軸孔8に
は、絶縁体3を係止するテーパ状の係止部9が内側に向
かって突き出している。
The structure of the metal shell 4 will be described in detail with reference to FIGS. 2 and 3. A bolt-shaped hexagonal portion 5 that engages with a tool (not shown) is formed on the outer periphery of the metal shell 4 at one end side from the center portion. A threaded portion 6 for screwing into an engine block (not shown) of an internal combustion engine is formed on the outer periphery of the metal shell 4 from the center to the other end. An annular collar-shaped part (body) 7 is formed in the center of the metal shell 4. A shaft hole 8 for inserting the insulator 3 is formed inside the metal shell 4. A taper-shaped locking portion 9 that locks the insulator 3 projects inward from the shaft hole 8.

【0021】また、主体金具4の先端面10には、図3
に示したように、途中で主体金具4の軸心に向けてL字
状に折り曲げられた接地電極11が抵抗溶接等の手段に
より接合されている。これらの接地電極11の先端内側
には、中心電極2の先端部との間に図1に示したように
所定のギャップ長のスパークギャップ12を形成する放
電面13が形成されている。尚、接地電極11は、図3
に示したように、所定の電極高さhとなるように形成さ
れている。
Further, the front end surface 10 of the metal shell 4 has a structure shown in FIG.
As shown in, the ground electrode 11 bent in the L shape toward the axis of the metal shell 4 is joined by means such as resistance welding. Inside the tips of the ground electrodes 11, a discharge surface 13 is formed between the tip of the center electrode 2 and a spark gap 12 having a predetermined gap length as shown in FIG. The ground electrode 11 is shown in FIG.
As shown in FIG. 3, the electrodes are formed to have a predetermined electrode height h.

【0022】〔第1実施例の製造方法〕次に、この実施
例の製造方法を図4及び図5に基づき説明する。ここ
で、図4はこの実施例の製造方法を示した工程図であ
る。 (第1工程)冷間押出し成形によって、鉄に数パーセン
ト以下の炭素を含有させた低炭素鋼などよりなる金属素
材の中央部21より一方側に中央部21の径より大きい
径で断面形状が六角形状の筒状部22を形成すると共
に、金属素材の中央部21より他方側に中央部21の径
より小さい径で断面形状が円筒形状の筒状部23と、更
に、冷間押し出し成形によって、その金属素材を軸方向
に貫通し、棚部24を有する軸孔8を形成することによ
り主体金具4が得られる(図4(a)参照)。
[Manufacturing Method of First Embodiment] Next, a manufacturing method of this embodiment will be described with reference to FIGS. 4 and 5. Here, FIG. 4 is a process drawing showing the manufacturing method of this embodiment. (First step) By cold extrusion molding, a cross-sectional shape having a diameter larger than the diameter of the central portion 21 on one side of the central portion 21 of a metal material made of low carbon steel or the like in which iron contains carbon of several percent or less is formed. A hexagonal tubular portion 22 is formed, and a tubular portion 23 having a diameter smaller than the diameter of the central portion 21 and a cylindrical cross section is provided on the other side of the central portion 21 of the metal material, and further, by cold extrusion. The metal shell 4 is obtained by axially penetrating the metal material and forming the shaft hole 8 having the shelf portion 24 (see FIG. 4A).

【0023】次に、主体金具4の六角形状の筒状部22
の外周に切削加工を施すことによって、上方側に円筒状
の上端部5aと下端部5bを形成して所定の軸方向寸法
の六角部5を形成し、円筒形状の筒状部23の外周に切
削加工を施すことによって上方側に上部25aと下方側
に下部25bを備える筒状部25を形成し、前記中央部
21に鍔状部7を形成することによって主体金具4が得
られる(図4(b)参照)。なお、主体金具4は冷間押
出し成形せずに円柱状、六角状などの棒材から切削加工
により形成したものでもよい。
Next, the hexagonal cylindrical portion 22 of the metal shell 4
By cutting the outer circumference of the above, the upper end portion 5a and the lower end portion 5b of the cylindrical shape are formed on the upper side to form the hexagonal portion 5 having a predetermined axial dimension, and the outer circumference of the cylindrical portion 23 of the cylindrical shape is formed. The metal shell 4 is obtained by forming the tubular portion 25 having the upper portion 25a on the upper side and the lower portion 25b on the lower side by performing the cutting process and forming the collar portion 7 on the central portion 21 (FIG. 4). (See (b)). Note that the metal shell 4 may be formed by cutting a cylindrical or hexagonal bar material without cold extrusion.

【0024】次に、ニッケルを主体とするニッケル合金
製の接地電極11を、主体金具4の筒状部25の先端面
10に、抵抗溶接等を用いて接合する(図4(c)参
照)。なお、接地電極11の材料としてニッケルにC
r、Mn、Siを加えたニッケル合金、インコネル(N
i−Cr−Fe)を用い、またこれら材料の放電面に白
金、イリジウムまたはこれら合金等の貴金属材料を用い
ても良く、更にニッケル合金内に銅、純ニッケル等を封
入したものを用いてもよい。
Next, the ground electrode 11 made of nickel alloy mainly composed of nickel is joined to the tip surface 10 of the tubular portion 25 of the metal shell 4 by resistance welding or the like (see FIG. 4 (c)). . The ground electrode 11 is made of nickel and C.
Inconel (N
i-Cr-Fe), and a noble metal material such as platinum, iridium, or an alloy thereof may be used for the discharge surface of these materials, and a nickel alloy filled with copper, pure nickel, or the like may be used. Good.

【0025】この際、接地電極は溶接後規定長さに切断
する。規定長さは、この後の工程で行う接地電極の曲げ
形状および中軸付絶縁体を主体金具に組み合わせた際の
中軸の位置より予め定めておく。次に、主体金具4の円
筒部25のネジ転造を行う。即ち、ネジ部の山形を有す
る丸形ダイスまたは平形ダイス(いずれも図示ぜず)を
用いてネジ部6を形成することにより主体金具4が得ら
れる(図4(d)参照)。
At this time, the ground electrode is cut into a prescribed length after welding. The prescribed length is determined in advance from the bent shape of the ground electrode and the position of the center rod when the insulator with the center rod is combined with the metal shell, which is performed in the subsequent steps. Then, the cylindrical portion 25 of the metal shell 4 is thread-rolled. That is, the metal shell 4 can be obtained by forming the screw portion 6 using a round die or a flat die having a thread shape of the screw portion (neither is shown) (see FIG. 4 (d)).

【0026】なお、ネジ部6の長さは内燃機関のシリン
ダヘッドの厚さ等によって定められている。ここで、接
地電極の溶接とネジ転造の順番は逆でもよい。次に、接
地電極の曲げを行う。この曲げ工程で最終的な組み付け
状態とほぼ同程度に接地電極をL字状に曲げる(図4
(e)参照)。
The length of the screw portion 6 is determined by the thickness of the cylinder head of the internal combustion engine. Here, the order of welding the ground electrode and thread rolling may be reversed. Next, the ground electrode is bent. In this bending step, the ground electrode is bent into an L-shape in the same manner as in the final assembled state (Fig. 4).
(E)).

【0027】(第2工程)次に、前記主体金具4を酸洗
いする。即ち、該主体金具4を10〜20%容量の塩酸
に浸漬し、さび、酸化物、切削加工で発生した切り粉等
を除去して、水洗いをした後に、該主体金具4の内周と
外周及び該接地電極11にニッケルメッキを行う(図4
(f)参照)。
(Second Step) Next, the metal shell 4 is pickled. That is, the metal shell 4 is immersed in hydrochloric acid having a capacity of 10 to 20% to remove rust, oxides, cutting chips generated by cutting, and after washing with water, the inner and outer circumferences of the metal shell 4 are removed. And the ground electrode 11 is plated with nickel (see FIG. 4).
(See (f)).

【0028】(第3工程)次に、中軸を予め組み込んだ
絶縁体9を前記主体金具4に組み付けることによって、
前記接地電極11及び前記中軸との間でスパークギャッ
プが形成される。この後必要に応じ、図5のように規格
通りのギャップ長を得られるように、該スパークギャッ
プ12にギャップゲージ13を挿入し、前記接地電極を
外側から軽く叩くことによって、スパークギャップの微
調整を行う。接地電極を叩く作業は極軽く行われるもの
であるため、メッキの割れ、剥がれ等の不具合はほとん
ど起こらない。
(Third step) Next, by assembling the insulator 9 in which the center shaft is incorporated in advance to the metal shell 4,
A spark gap is formed between the ground electrode 11 and the center pole. Thereafter, if necessary, a gap gauge 13 is inserted into the spark gap 12 and the ground electrode is tapped from the outside so that the gap length conforming to the standard can be obtained as shown in FIG. I do. Since the work of hitting the ground electrode is extremely light, there is almost no problem such as plating cracking or peeling.

【0029】〔変形例〕本実施例では、本発明を平行電
極スパークプラグ1に用いたが、本発明を2極以上の多
極スパークプラグに用いてもよい。また、本実施例では
主体金具4は六角部5が鍔状部7よりも大きい形状につ
いて説明したが、六角部5が鍔状部7よりも小さい形状
の主体金具にも適用することができることはいうまでも
ない。
[Modification] In the present embodiment, the present invention is used for the parallel electrode spark plug 1, but the present invention may be used for a multipolar spark plug having two or more poles. Further, in the present embodiment, the metal shell 4 has been described as having a shape in which the hexagonal portion 5 is larger than the collar-shaped portion 7. However, it is also applicable to a metal shell having a hexagonal portion 5 smaller than the collar-shaped portion 7. Needless to say.

【0030】以上のように、この実施例では、抵抗溶
接、ネジ転造、接地電極の曲げ工程を行った後に、メッ
キ工程を行っているので、従来のように接地電極11の
曲げ工程によるメッキの割れ、剥離を防止でき、メッキ
厚を増加させることができる。
As described above, in this embodiment, the plating process is performed after the resistance welding, the thread rolling, and the bending process of the ground electrode are performed. Therefore, the conventional plating process of the bending process of the ground electrode 11 is performed. Can be prevented from cracking and peeling, and the plating thickness can be increased.

【0031】従来の工程によるメッキの割れ、剥離限界
のメッキ厚が約8μmであったのに対し、この工程によ
れば12μm前後まで増加させることができ、メッキ厚
を50%増加させることができ、スパークプラグの性能
・及び信頼性をより向上させることができる。
In the conventional process, the plating thickness at the limit of cracking and peeling of the plating was about 8 μm, but according to this process, the thickness can be increased to about 12 μm, and the plating thickness can be increased by 50%. The performance and reliability of the spark plug can be further improved.

【0032】〔第2実施例〕図6は本発明の第2実施例
を示すもので、接地電極を2本有する二極スパークプラ
グの製造方法を示すものである。本実施例では、接地電
極を主体金具に溶接した後における接地電極の切断方
法、スパークギャップの形成方法のみが第1実施例と相
違するため、この相違点を中心に詳細に説明する。
[Second Embodiment] FIG. 6 shows a second embodiment of the present invention and shows a method for manufacturing a bipolar spark plug having two ground electrodes. In the present embodiment, only the method of cutting the ground electrode after welding the ground electrode to the metallic shell and the method of forming the spark gap are different from those of the first embodiment, and therefore the differences will be mainly described.

【0033】(第1工程)第1実施例と同様の工程に
て、冷間押出し成形等により主体金具4が得られる(図
6(a)参照)。
(First Step) In the same step as the first embodiment, the metal shell 4 is obtained by cold extrusion molding or the like (see FIG. 6 (a)).

【0034】次に、主体金具4の筒状部22、23の外
周に切削加工を施すことによって、鍔状部7を形成し、
主体金具4が得られる(図6(b)参照)。
Next, the flange portions 7 are formed by cutting the outer circumferences of the tubular portions 22 and 23 of the metal shell 4.
The metallic shell 4 is obtained (see FIG. 6B).

【0035】次に、ニッケルを主体とするニッケル合金
製の接地電極11を、主体金具4の筒状部25の先端面
において対向する位置に、抵抗溶接等の電気溶接を用い
て2本接合する(図6(c)参照)。この際、接地電極
は溶接後規定長さよりも余裕を持った長さで切断する。
Next, two ground electrodes 11 made of nickel and mainly made of nickel are joined to the opposite positions on the tip surface of the tubular portion 25 of the metal shell 4 by electric welding such as resistance welding. (See FIG. 6 (c)). At this time, the ground electrode is cut with a length having a margin larger than the specified length after welding.

【0036】次に、主体金具4の円筒部25のネジ転造
を行う(図6(d)参照)。なお、接地電極の溶接とネ
ジ転造の工程は逆でもよい。
Then, the cylindrical portion 25 of the metal shell 4 is thread-rolled (see FIG. 6 (d)). The steps of welding the ground electrode and thread rolling may be reversed.

【0037】図7は次に行う接地電極の曲げ工程を示し
た図である。この曲げ工程を行う曲げ成形機27は、接
地電極11の所定の曲げ形状に応じた形状の成形面28
を有する曲げ型29、主体金具4を曲げ型29側へ案内
するガイド30、および主体金具4の内側から外側(図
示矢印方向)に向かって移動する曲げパンチ31等より
構成されている。
FIG. 7 is a view showing the step of bending the ground electrode, which is performed next. The bending machine 27 that performs this bending process includes a molding surface 28 having a shape corresponding to the predetermined bending shape of the ground electrode 11.
And a guide 30 for guiding the metal shell 4 to the side of the metal mold 4, and a bending punch 31 that moves from the inside of the metal shell 4 toward the outside (in the direction of the arrow in the drawing).

【0038】この曲げパンチ31は、主体金具4の軸穴
8内を貫通して2本の接地電極11を曲げ型29の上面
に押しつけて塑性変形させる。なお、曲げパンチ31
は、主体金具4の軸穴8内の係止部9に当接する肩部3
2を有し、肩部32より下方に延びる脚部33の長さで
2本の接地電極11の電極高さが決まる。
The bending punch 31 penetrates the shaft hole 8 of the metal shell 4 and presses the two ground electrodes 11 against the upper surface of the bending die 29 for plastic deformation. The bending punch 31
Is a shoulder portion 3 that abuts a locking portion 9 in the shaft hole 8 of the metal shell 4.
2, the length of the leg portion 33 extending downward from the shoulder portion 32 determines the electrode height of the two ground electrodes 11.

【0039】次に主体金具4を、曲げ型29の成形面2
8に接触するようにガイド30内に挿入した後に、曲げ
パンチ31の脚部33の先端面により途中から主体金具
4の軸心に向けてL字状に接地電極11を折り曲げる
(図6(e)参照)。
Next, the metal shell 4 is attached to the molding surface 2 of the bending die 29.
After being inserted into the guide 30 so as to be in contact with 8, the ground electrode 11 is bent in an L shape toward the axial center of the metal shell 4 from the middle by the tip surface of the leg portion 33 of the bending punch 31 (FIG. 6 (e )reference).

【0040】この曲げ工程により、2本の接地電極11
の先端面が対向配置され、2本の接地電極11が共に所
定の電極高さhとなるように形成される。
By this bending step, the two ground electrodes 11 are
2 and the two ground electrodes 11 are formed to have a predetermined electrode height h.

【0041】(第2工程)第1実施例と同様にニッケル
メッキ処理を行う(図6(f)参照)。
(Second Step) Nickel plating is performed as in the first embodiment (see FIG. 6 (f)).

【0042】(第3工程)図8は接地電極の打ち抜き工
程を示した図である。この打ち抜き工程を行う打ち抜き
成形機34は、接地電極11の先端部より切断された切
れ片(図示せず)を排出する排出孔35を有する打ち抜
き型36、主体金具4を打ち抜き型36側へ案内するガ
イド37、および主体金具4の内側から外側(図示矢印
方向)に向かって移動する打ち抜きパンチ38等より構
成されている。この打ち抜きパンチ38は、主体金具4
の軸穴8内より2本の接地電極11の先端部を打ち抜
く。
(Third Step) FIG. 8 is a diagram showing a punching step of the ground electrode. The punching molding machine 34 which performs this punching step guides the punching die 36 and the metal shell 4 to the punching die 36 side, which has a discharge hole 35 for discharging a cut piece (not shown) cut from the tip of the ground electrode 11. The guide 37 and the punching punch 38 that moves from the inside to the outside (in the direction of the arrow in the drawing) of the metal shell 4 and the like. The punching punch 38 is formed by the metal shell 4
The tip ends of the two ground electrodes 11 are punched out from the shaft hole 8.

【0043】次に主体金具4の接地電極11が打ち抜き
型36の上面に接触するようにガイド37内に挿入した
後に、打ち抜きパンチ38の先端部39により2本の接
地電極11の先端部を打ち抜くことによって、図9に示
したように、2本の接地電極11の先端部に打ち抜き径
φとなる放電端面13を形成する(図6(g)参照)。
尚、接地電極の打抜工程と、メッキ工程は順序が逆でも
よい。以上の第1工程から第3工程を行うことによって
主体金具4が製造される。
Next, the ground electrode 11 of the metal shell 4 is inserted into the guide 37 so as to come into contact with the upper surface of the punching die 36, and then the tip portions 39 of the punching punch 38 punch out the tip portions of the two ground electrodes 11. As a result, as shown in FIG. 9, the discharge end face 13 having the punching diameter φ is formed at the tips of the two ground electrodes 11 (see FIG. 6G).
The order of the punching process of the ground electrode and the plating process may be reversed. The metal shell 4 is manufactured by performing the above first to third steps.

【0044】(第4工程)次に、中軸を予め組み込んだ
絶縁体を前記主体金具4に組み付けることによって、前
記接地電極11及び前記中軸との間でスパークギャップ
12が形成される(図6(h)参照)。
(Fourth Step) Next, the spark gap 12 is formed between the ground electrode 11 and the center rod by assembling the insulator in which the center rod is incorporated into the metal shell 4 (FIG. 6 ( See h)).

【0045】メッキ工程後に、打抜工程を行った場合に
は、打抜工程で精度良く打ち抜いたものが、主体金具を
出し入れする際に主体金具4同士のぶつかりあいにより
接地電極11が変形したりすることが防止される。これ
により中軸付絶縁体の組み付け後における、接地電極1
1の放電端面13との中心電極2の先端部との間に形成
されるスパークギャップ12(図1参照)のギャップ長
の精度やスパークギャップ12の位置の精度を飛躍的に
向上することができる。
When the punching step is performed after the plating step, the ground electrode 11 may be deformed due to the collision of the metal shells 4 when the metal shells are taken in and out, when the metal plate 4 is punched with high precision in the punching step. Is prevented. As a result, the ground electrode 1 after assembling the insulator with the center shaft
The accuracy of the gap length of the spark gap 12 (see FIG. 1) formed between the first discharge end surface 13 and the tip of the center electrode 2 and the accuracy of the position of the spark gap 12 can be dramatically improved. .

【0046】また規格外となる主体金具4の個数を著し
く減少することができるので、規格通りのスパークギャ
ップ12のギャップ長を得られるように、複数の接地電
極11の放電端面13間の寸法を拡げたり、狭めたりす
る調整作業を廃止することができる。このため、量産性
を向上することができ、スパークプラグ1の製作コスト
を著しく低下させることができる。
Since the number of non-standard metal shells 4 can be significantly reduced, the dimensions between the discharge end faces 13 of the plurality of ground electrodes 11 are set so that the gap length of the spark gap 12 conforming to the standard can be obtained. Adjustment work for expanding and narrowing can be eliminated. Therefore, mass productivity can be improved, and the manufacturing cost of the spark plug 1 can be significantly reduced.

【0047】〔第3実施例〕図10は本発明の第3実施
例を示すもので、接地電極の曲げ工程を示した図であ
る。この実施例の曲げ成形機41は、主体金具4の軸穴
8内に嵌め込まれて主体金具4を保持する芯金42、お
よび図示上方より2本の接地電極11に向かって移動す
る曲げ型43等により構成されている。芯金42は、主
体金具4の軸穴8内の係止部9に当接する肩部44を有
し、肩部44より上方に延びる頭部45の長さで2本の
接地電極11の電極高さが決まる。また、曲げ型43
は、下面に成形面46を有し、芯金42の頭部45の上
部との間で2本の接地電極11を挟み込んで、2本の接
地電極11の途中から主体金具4の軸心に向けてL字状
に2本の接地電極を折り曲げる。この実施例のように、
2本の接地電極11の曲げ工程では、主体金具4に対し
曲げ型43が移動して主体金具4の外側より力を加えて
もよい。
[Third Embodiment] FIG. 10 shows a third embodiment of the present invention and is a view showing a step of bending a ground electrode. The bending machine 41 of this embodiment includes a cored bar 42 which is fitted into the shaft hole 8 of the metal shell 4 to hold the metal shell 4, and a bending die 43 which moves toward the two ground electrodes 11 from above in the drawing. Etc. The cored bar 42 has a shoulder portion 44 that comes into contact with the locking portion 9 in the shaft hole 8 of the metal shell 4, and has a length of a head portion 45 that extends upward from the shoulder portion 44 and is an electrode of the two ground electrodes 11. Height is decided. Also, the bending die 43
Has a molding surface 46 on the lower surface, and sandwiches the two ground electrodes 11 with the upper portion of the head portion 45 of the cored bar 42, and from the middle of the two ground electrodes 11 to the axial center of the metal shell 4. The two ground electrodes are bent toward the L shape. As in this example,
In the bending process of the two ground electrodes 11, the bending die 43 may move with respect to the metal shell 4 and force may be applied from the outside of the metal shell 4.

【0048】〔第4実施例〕図11は、本発明の第4実
施例を示すもので、接地電極の打ち抜き工程を示した図
である。この実施例の打ち抜き成形機47は、主体金具
4の軸穴8内に嵌め込まれて主体金具4を保持する芯金
48の内部には接地電極11の先端部より切断された切
れ片(図示せず)を排出する排出孔50が形成されてい
る。また、打ち抜きパンチ49は、主体主体金具4の外
側から内側(図示矢印方向)に向かって2本の接地電極
11の先端部を切断する。この実施例のように、接地電
極11の打ち抜き工程では、主体金具4の外側より力を
加えてもよい。
[Fourth Embodiment] FIG. 11 shows a fourth embodiment of the present invention and is a view showing a punching process of a ground electrode. In the punching molding machine 47 of this embodiment, a piece (not shown) cut from the tip of the ground electrode 11 is inserted inside the cored bar 48 which is fitted into the shaft hole 8 of the metal shell 4 and holds the metal shell 4. A discharge hole 50 for discharging the () is formed. Further, the punching punch 49 cuts the tips of the two ground electrodes 11 from the outside of the metal shell 4 toward the inside (in the direction of the arrow in the figure). As in this embodiment, a force may be applied from the outside of the metal shell 4 in the punching process of the ground electrode 11.

【0049】〔変形例〕第2から第4実施例では、本発
明を2極スパークプラグ1に用いたが、本発明を3極以
上の多極スパークプラグに用いてもよい。また、第1か
ら第4実施例では、ニッケルメッキを使用したが、ニッ
ケルメッキクロメート処理、クロムメッキ、ニッケルク
ロムメッキ又は亜鉛ニッケルメッキ等でもよい。
[Modification] In the second to fourth embodiments, the present invention is applied to the two-pole spark plug 1, but the present invention may be applied to a multi-pole spark plug having three or more poles. Although nickel plating is used in the first to fourth embodiments, nickel plating chromate treatment, chrome plating, nickel chrome plating, zinc nickel plating or the like may be used.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第1実施例にかかる平行電極型スパ
ークプラグを示した側面図である。
FIG. 1 is a side view showing a parallel electrode type spark plug according to a first embodiment of the present invention.

【図2】 本発明の第1実施例にかかる主体金具を示し
た断面図である。
FIG. 2 is a cross-sectional view showing a metal shell according to the first embodiment of the present invention.

【図3】 第2図の主要部を示した断面図である。FIG. 3 is a cross-sectional view showing a main part of FIG.

【図4】 本発明の第1実施例の製造方法を示した工程
図である。
FIG. 4 is a process drawing showing the manufacturing method of the first embodiment of the present invention.

【図5】 本発明の第1実施例にかかるスパークギャッ
プの微調整を行う工程を示す側面図である。
FIG. 5 is a side view showing a step of finely adjusting the spark gap according to the first embodiment of the present invention.

【図6】 本発明の第2実施例の製造方法を示した工程
図である。
FIG. 6 is a process drawing showing the manufacturing method of the second exemplary embodiment of the present invention.

【図7】 本発明の第2実施例にかかる接地電極の曲げ
加工を行う曲げ成形機を示した断面図である。
FIG. 7 is a sectional view showing a bending machine for bending a ground electrode according to a second embodiment of the present invention.

【図8】 本発明に第2実施例にかかる接地電極の打ち
抜き加工を行う打ち抜き成形機を示した断面図である。
FIG. 8 is a cross-sectional view showing a punching machine for punching a ground electrode according to a second embodiment of the present invention.

【図9】 本発明の第2実施例にかかる主要部を示す正
面図である。
FIG. 9 is a front view showing a main part according to a second embodiment of the present invention.

【図10】 本発明の第3実施例にかかる接地電極の曲
げ加工を行う曲げ成形機を示した断面図である。
FIG. 10 is a sectional view showing a bending machine for bending a ground electrode according to a third embodiment of the present invention.

【図11】 本発明の第3実施例にかかる接地電極の打
ち抜き加工を行う打ち抜き成形機を示した断面図であ
る。
FIG. 11 is a sectional view showing a punching machine for punching a ground electrode according to a third embodiment of the present invention.

【図12】 従来の易加工表面処理製造方法を行う工程
図である。
FIG. 12 is a process diagram of a conventional easy-to-process surface treatment manufacturing method.

【図13】 従来の第1の難加工表面処理製造方法を行
う工程図である。
FIG. 13 is a process drawing for performing the first conventional difficult-to-process surface treatment manufacturing method.

【図14】 従来の第2の難加工表面処理製造方法を行
う工程図である。
FIG. 14 is a process drawing of the second conventional difficult-to-process surface treatment manufacturing method.

【符号の説明】[Explanation of symbols]

1 平行電極型スパークプラグ 2 中軸 4 主体金具 11 接地電極 12 スパークギャップ 13 放電端面 1 parallel electrode type spark plug 2 center rod 4 metal shell 11 ground electrode 12 spark gap 13 discharge end face

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 (a)外周面にネジを施した筒状の主体
金具の先端面に接続した単数又は複数の接地電極を最終
形状とほぼ同等の状態に仮曲げを行う第1工程と、
(b)前記主体金具に高温耐食性の難加工表面処理を施
す第2工程と、(c)該主体金具に中軸付絶縁体を組み
付けることによって前記接地電極と中軸との間でスパー
クギャップを形成する第3工程と、を備えたスパークプ
ラグの製造方法。
1. A first step of temporarily bending a single or a plurality of ground electrodes connected to a front end surface of a tubular metallic shell having an outer peripheral surface with a screw, into a state substantially equivalent to a final shape,
(B) A second step of subjecting the metal shell to a high-temperature corrosion-resistant difficult-to-process surface treatment, and (c) a spark gap is formed between the ground electrode and the center shaft by assembling the metal shell insulator with the metal shell. A method of manufacturing a spark plug, comprising: a third step.
【請求項2】 (a)外周面にネジを施した筒状の主体
金具の先端面に接続した複数の接地電極を最終形状に仮
曲げを行う第1工程と、(b)前記主体金具に高温耐食
性の難加工表面処理を施す第2工程と、(c)前記接地
電極を切断し、放電端面を形成する第3工程と、(d)
該主体金具に中軸付絶縁体を組み付けることによって前
記放電端面と該中軸の先端側面部とでスパークギャップ
が形成される第4工程と、を備えたスパークプラグの製
造方法。
2. A first step of: (a) temporarily bending a plurality of ground electrodes connected to the front end surface of a tubular metal shell having an outer peripheral surface with a screw into a final shape; and (b) the metal shell. A second step of applying a difficult-to-process surface treatment having high-temperature corrosion resistance, (c) a third step of cutting the ground electrode to form a discharge end surface, and (d)
A method of manufacturing a spark plug, comprising: a fourth step in which a spark gap is formed between the discharge end surface and a tip side surface portion of the center shaft by assembling an insulator with a center shaft into the metal shell.
【請求項3】 (a)外周面にネジを施した筒状の主体
金具の先端面に接続した複数の接地電極を最終形状に仮
曲げを行う第1工程と、(b)前記接地電極を切断し、
放電端面を形成する第2工程と、(c)前記主体金具に
高温耐食性の難加工表面処理を施す第3工程と、(d)
該主体金具に中軸付絶縁体を組み付けることによって前
記放電端面と該中軸の先端側面部とでスパークギャップ
が形成される第4工程と、を備えたスパークプラグの製
造方法。
3. A first step of: (a) temporarily bending a plurality of ground electrodes connected to the front end surface of a tubular metal shell having an outer peripheral surface with a screw into a final shape; and (b) the ground electrode. Disconnect,
A second step of forming a discharge end surface, (c) a third step of subjecting the metal shell to a high-temperature corrosion-resistant difficult-to-process surface treatment, and (d)
A method of manufacturing a spark plug, comprising: a fourth step in which a spark gap is formed between the discharge end surface and a tip side surface portion of the center shaft by assembling an insulator with a center shaft into the metal shell.
【請求項4】 請求項1から3において、高温耐食性の
難加工表面処理がクロムメッキ、ニッケルメッキ、ニッ
ケルメッキクロメート処理、ニッケルクロムメッキ又は
亜鉛ニッケルメッキのうち少なくとも一種類であること
を特徴とするスパークプラグの製造方法。
4. The high-temperature corrosion resistant difficult-to-process surface treatment according to claim 1, wherein the surface treatment is at least one of chromium plating, nickel plating, nickel plating chromate treatment, nickel chromium plating, and zinc nickel plating. Spark plug manufacturing method.
JP6170695A 1995-02-24 1995-02-24 Manufacture of spark plug Pending JPH08236263A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6170695A JPH08236263A (en) 1995-02-24 1995-02-24 Manufacture of spark plug

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6170695A JPH08236263A (en) 1995-02-24 1995-02-24 Manufacture of spark plug

Publications (1)

Publication Number Publication Date
JPH08236263A true JPH08236263A (en) 1996-09-13

Family

ID=13178954

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6170695A Pending JPH08236263A (en) 1995-02-24 1995-02-24 Manufacture of spark plug

Country Status (1)

Country Link
JP (1) JPH08236263A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216931A (en) * 2001-01-18 2002-08-02 Denso Corp Manufacturing method of spark plug
JP2003068423A (en) * 2001-08-29 2003-03-07 Ngk Spark Plug Co Ltd Spark plug and its manufacturing method
US6750597B1 (en) 1999-08-26 2004-06-15 Ngk Spark Plug, Co., Ltd. Method for manufacturing spark plug and spark plug
US6819033B2 (en) 2001-08-22 2004-11-16 Denso Corporation Spark plug and method of manufacturing same
WO2010087076A1 (en) * 2009-02-02 2010-08-05 日本特殊陶業株式会社 Spark plug and process for producing same
DE102012100872A1 (en) 2011-02-05 2012-08-09 Ngk Spark Plug Co., Ltd. Method for producing a spark plug
JP2014170658A (en) * 2013-03-04 2014-09-18 Ngk Spark Plug Co Ltd Manufacturing method for ignition plug
JP2014218704A (en) * 2013-05-09 2014-11-20 日本特殊陶業株式会社 Method for manufacturing main metallic body for spark plug and method for manufacturing spark plug
JP2015138706A (en) * 2014-01-23 2015-07-30 日本特殊陶業株式会社 Main metal fitting manufacturing method, spark plug manufacturing method, and main metal fitting manufacturing apparatus

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6750597B1 (en) 1999-08-26 2004-06-15 Ngk Spark Plug, Co., Ltd. Method for manufacturing spark plug and spark plug
JP4505993B2 (en) * 2001-01-18 2010-07-21 株式会社デンソー Manufacturing method of spark plug
JP2002216931A (en) * 2001-01-18 2002-08-02 Denso Corp Manufacturing method of spark plug
US6819033B2 (en) 2001-08-22 2004-11-16 Denso Corporation Spark plug and method of manufacturing same
JP4547116B2 (en) * 2001-08-29 2010-09-22 日本特殊陶業株式会社 Spark plug and manufacturing method thereof
JP2003068423A (en) * 2001-08-29 2003-03-07 Ngk Spark Plug Co Ltd Spark plug and its manufacturing method
CN102165654A (en) * 2009-02-02 2011-08-24 日本特殊陶业株式会社 Spark plug and process for producing same
US20110148275A1 (en) * 2009-02-02 2011-06-23 Ngk Spark Plug Co., Ltd Spark plug and process for producing same
WO2010087076A1 (en) * 2009-02-02 2010-08-05 日本特殊陶業株式会社 Spark plug and process for producing same
US8427038B2 (en) 2009-02-02 2013-04-23 Ngk Spark Plug Co., Ltd. Spark plug and process for producing same
JP5216088B2 (en) * 2009-02-02 2013-06-19 日本特殊陶業株式会社 Spark plug and manufacturing method thereof
DE102012100872A1 (en) 2011-02-05 2012-08-09 Ngk Spark Plug Co., Ltd. Method for producing a spark plug
US8419491B2 (en) 2011-02-05 2013-04-16 Ngk Spark Plug Co., Ltd. Method for manufacturing a spark plug for preventing deformation caused by cutting a center electrode
DE102012100872B4 (en) 2011-02-05 2018-11-29 Ngk Spark Plug Co., Ltd. Method for producing a spark plug
JP2014170658A (en) * 2013-03-04 2014-09-18 Ngk Spark Plug Co Ltd Manufacturing method for ignition plug
JP2014218704A (en) * 2013-05-09 2014-11-20 日本特殊陶業株式会社 Method for manufacturing main metallic body for spark plug and method for manufacturing spark plug
JP2015138706A (en) * 2014-01-23 2015-07-30 日本特殊陶業株式会社 Main metal fitting manufacturing method, spark plug manufacturing method, and main metal fitting manufacturing apparatus

Similar Documents

Publication Publication Date Title
JP4147704B2 (en) Manufacturing method of metal shell for spark plug
EP0474351A1 (en) An outer electrode for spark plug and a method of manufacturing thereof
JPH08236263A (en) Manufacture of spark plug
US6177647B1 (en) Electrode for plasma arc torch and method of fabrication
JP4220218B2 (en) Manufacturing method of center electrode for spark plug
JPH0620577B2 (en) Method for manufacturing spark plug terminal nut by plastic working
EP0634243B1 (en) Electrode tube for electrical discharge machining and manufacturing method thereof
JP2787971B2 (en) Manufacturing method of multi-pole spark plug
JPH07119421A (en) Manufacture of na-sealed hollow engine valve
JP4064114B2 (en) Manufacturing method of spark plug
EP2722946B1 (en) Spark plug
JP3492475B2 (en) Spark plug manufacturing method
JP3798076B2 (en) Manufacturing method of multipolar spark plug
JP6812329B2 (en) How to make a spark plug
JPH11154582A (en) Manufacture of spark plug
JP3454596B2 (en) Method of manufacturing composite electrode for spark plug
JP3847853B2 (en) Manufacturing method of multipolar spark plug
JPH0992441A (en) Manufacture of side electrode for spark plug
JP2003019538A (en) Method for manufacturing main piece for spark plug
JP7188119B2 (en) SPARK PLUG FOR INTERNAL COMBUSTION ENGINE AND MANUFACTURING METHOD THEREOF
JP3196857B2 (en) Processing method of plug tip
JP3196432B2 (en) Spark plug manufacturing method
JP2001155840A (en) Method of manufacturing spark plug
SU933154A1 (en) Method of producing bimelallic wire
JP6725566B2 (en) Hollow material manufacturing method