JPH08234035A - Manufacture of conductive structure - Google Patents

Manufacture of conductive structure

Info

Publication number
JPH08234035A
JPH08234035A JP27558895A JP27558895A JPH08234035A JP H08234035 A JPH08234035 A JP H08234035A JP 27558895 A JP27558895 A JP 27558895A JP 27558895 A JP27558895 A JP 27558895A JP H08234035 A JPH08234035 A JP H08234035A
Authority
JP
Japan
Prior art keywords
conductive
daughter
substrate
waveguide
positive mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27558895A
Other languages
Japanese (ja)
Inventor
Hans Kragl
クラーグル ハンス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of JPH08234035A publication Critical patent/JPH08234035A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/04Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching
    • H05K3/045Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching by making a conductive layer having a relief pattern, followed by abrading of the raised portions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3842Manufacturing moulds, e.g. shaping the mould surface by machining
    • B29C33/3857Manufacturing moulds, e.g. shaping the mould surface by machining by making impressions of one or more parts of models, e.g. shaped articles and including possible subsequent assembly of the parts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1221Basic optical elements, e.g. light-guiding paths made from organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • H05K3/0014Shaping of the substrate, e.g. by moulding
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12109Filter
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12133Functions
    • G02B2006/12145Switch
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09009Substrate related
    • H05K2201/09118Moulded substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/01Tools for processing; Objects used during processing
    • H05K2203/0104Tools for processing; Objects used during processing for patterning or coating
    • H05K2203/0108Male die used for patterning, punching or transferring

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Structure Of Printed Boards (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture a conductive structure at a low cost in particular by providing a conductive layer covering the surface of a daughter structure on the plane exceeding the size of a cut section on the lower face of the daughter structure. SOLUTION: A hardenable liquid material or a plastically deformable material is provided on a parent structure 10, and it is continuously hardened in a first process. The hardened material or the plastically deformable material is separated from the parent structure 10, and a daughter structure 20 having at least one excision section 19 is formed on the lower face. A conductive layer 25 covering the surface of the daughter structure 20 at the excision section 19 is provided on the plane exceeding the size of the excision section 19 on the lower face of the daughter structure 20 in a second process. The conductive layer 25 is removed from the surface of the lower face of the daughter structure 20, and a conductive structure 18 is formed in the excision section 19 in a third process. The parent structure 10 is made of a particularly stable material, preferably a material capable of being deposited by plating, e.g. a metal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、請求項1の上位概
念部による導電構造の製造方法から出発する。
The invention starts from a method for manufacturing a conductive structure according to the preamble of claim 1.

【0002】[0002]

【従来の技術】ドイツ国特許出願公開第4232608
号明細書から、光集積回路(IC)用カバーの製造方法
が公知である。その際、光構造要素がポジチブモールド
中へ挿入され、ポリマープラスチックが注入される。プ
ラスチックが硬化した後、ポシチブモールドを取り除
き、生じたカバーを基板にかぶせる。光構成要素のかわ
りに、熱集積アクチュエータを設け、熱アクチュエータ
の下方に存在する光導波管の温度を変えるのに使用す
る。熱アクチュエータを、マスク技術により担体材料を
導電材料で被覆することにより製造することは従来普通
に行なわれる。
2. Description of the Related Art German Patent Application Publication No. 4232608
From the specification, a method for manufacturing a cover for an optical integrated circuit (IC) is known. The optical structure element is then inserted into the positive mold and the polymeric plastic is injected. After the plastic has hardened, the positive mold is removed and the resulting cover is placed on the substrate. Instead of an optical component, a thermally integrated actuator is provided and used to change the temperature of the optical waveguide below the thermal actuator. It is customary to manufacture thermal actuators by coating the carrier material with a conductive material by means of mask technology.

【0003】[0003]

【発明の長所】これに対して、請求項1の特徴部に記載
されている特徴を有する本発明による方法は、導電構造
体がとくに廉価に、少ない費用で製造されるという利点
を有する。
On the other hand, the method according to the invention with the features of the characterizing part of claim 1 has the advantage that the conductive structure is manufactured in a particularly inexpensive and inexpensive manner.

【0004】請求項2以降に記載された手段により、請
求項1に記載された方法の有利な構成および改善が可能
である。
Advantageous constructions and improvements of the method according to claim 1 are possible by means of the measures stated in claim 2 and thereafter.

【0005】親構造の材料として金属を使用するのが特
に有利である。それというのも金属は熱にとくに安定で
あり、高度の再使用可能性を有するからである。
It is particularly advantageous to use a metal as the material of the parent structure. This is because metals are particularly stable to heat and have a high degree of reusability.

【0006】もう1つの利点は、導電層の除去を機械的
に行なうことであり、これは同様に廉価に、あまり費用
のかからない方法であって、導電層を切除部の面でのみ
除去するのに特に好適であるからである。
Another advantage is that the removal of the conductive layer is mechanical, which is likewise an inexpensive and less expensive method of removing the conductive layer only in the plane of the cutout. This is because it is particularly suitable for

【0007】導電層の層厚の増加は、良好な導電率が達
成されるという利点を伴う。さらに、導電層は、層厚の
増加前に非常に薄くすることができ、これにより一方で
非常に短い被覆工程が達成され、他方で導電層を時間お
よび材料を節約して除去することが達成される。
The increase of the layer thickness of the conductive layer has the advantage that good conductivity is achieved. Furthermore, the conductive layer can be made very thin before the increase of the layer thickness, which on the one hand achieves a very short coating process and on the other hand a time and material saving removal of the conductive layer. To be done.

【0008】蒸着により導電層を設けるのは、この方法
がとくに廉価であるので、有利であることが判明した。
It has been found advantageous to provide the conductive layer by vapor deposition, since this method is particularly inexpensive.

【0009】さらに、切除部を形成する際同時に娘構造
に、付加的に突出する導波管形成要素を有するポジチブ
モールド二娘構造を調整するために使用されるみぞをつ
くり、該みぞを引き続き液状プラスチックで被覆する際
に生じる基板に導波管路を形成する場合に、導電構造
を、有効な調整装置なしに、生じる導波管路に対するそ
の相対的位置が調整可能であるという利点が生じる。
Furthermore, at the same time that the cutout is formed, the daughter structure is provided with a groove which is used for adjusting a positive mold two-daughter structure with additionally projecting waveguide-forming elements, which groove is subsequently liquefied. When forming a waveguide in a substrate that results when coated with plastic, the advantage arises that the electrically conductive structure can be adjusted in its relative position with respect to the resulting waveguide without an effective adjustment device.

【0010】ポジチブモールド上になお突出するファイ
バ調整要素が存在する場合には、基板中に、有利に結合
すべきガラスファイバを収容するために使用するのに適
当なファイバ調整みぞが生じる。
If there are still protruding fiber conditioning elements on the positive mold, then a suitable fiber conditioning groove is formed in the substrate for use in accommodating the glass fibers to be bonded.

【0011】ポジチブモールド上に突出する押し込み要
素が設けられていて、該要素が生じる基板中に、導電材
料を収容するために使用される導線みぞを形成する場
合、導電構造の、電流を案内するためのことに良好な利
用性が生じる。
When a pushing element is provided which projects above the positive mould, and in which the substrate in which it is produced forms a wire groove used for containing a conductive material, it guides the current flow of the conductive structure. This results in good availability.

【0012】硬化可能なポリマー接着剤の使用下に回路
ボード部品上に基板を載せるのは、共通の1作業工程で
基板と回路ボード部品とを機械的に強固に接合し、同時
に導波管路をポリマー接着剤で充填して、導波管として
使用されるという利点が生じる。
Placing a substrate on a circuit board component with the use of a curable polymer adhesive involves mechanically and firmly joining the substrate and the circuit board component in one common working step, while at the same time providing a waveguide. Is filled with a polymer adhesive, which has the advantage of being used as a waveguide.

【0013】導電構造を熱伝導構造として構成すると、
集積化光学の分野での導電構造体に対する特に好適な適
用分野が生じる。ダクト状構造の配置は、接着工程にお
いて生じる収縮を補償しうるという利点を伴う。
When the conductive structure is configured as a heat conductive structure,
A particularly suitable field of application arises for conducting structures in the field of integrated optics. The arrangement of duct-like structures has the advantage that it can compensate for the shrinkage that occurs during the bonding process.

【0014】本発明の1実施例を図示し、下記に詳述す
る。
One embodiment of the present invention is illustrated and described in detail below.

【0015】[0015]

【実施例】すべての図において、統一的番号付けが使用
された。図1には、直方体形デイスクの形を有する親構
造10が示されている。親構造10の上面には、棟線が
親構造10の表面の側線に対して平行に延びる第1の棟
状突起11、棟線が親構造10の上面の、第1の棟状突
起11に向き合う側で該突起に対してほぼ平行に延びる
第2の棟状突起12、ならびに棟線が第1の棟状突起1
1の棟線および第2の棟状突起12の棟線に対してほぼ
垂直に延びる第3の棟状突起15が配置されている。そ
の際、第3の棟状突起15は第1の棟状突起11の一端
を第2の棟状突起12の一端と結合する。それで、3つ
の棟状突起11,12,15は親構造10の上面に配置
された”U”字形を形成する。第1の棟状突起11と第
2の棟状突起12の間には、第1の縦長直方体形突起1
3および第2の縦長直方体形突起14が配置されてい
て、その際双方の縦長直方体形突起13,14の縦軸は
第1の棟状突起11の棟線に対してほぼ平行に延びる。
双方の縦長棟状突起13,14の間には、長方形の断面
を有するメアンダー形突起16が延びていて、該突起は
その一端で第1の縦長直方体形突起13の一端と結合
し、他端で第2の縦長直方体形突起14の一端と結合し
ている。棟状突起11,12,15は、その高さが双方
の縦長直方体形突起13,14およびメアンダー状突起
16の高さよりも高い。メアンダー状突起16の横断面
は縦長の直方体形突起13,14の横断面より小さい。
この親構造10は、とくに安定な、望ましくはめっきで
析出可能の材料、たとえば金属から構成されている。そ
れというのもこれはしばしば親構造10の表面に成形す
べき娘構造の製造のために使用されるからである。さら
に、親構造10の材料は成形のために使用される材料お
よび成形の際に生じる環境条件(温度、光の入射等)に
対し抵抗力を有すべきである。他面において、親構造の
材料はその上に突起11,12,13,14,15,1
6をとくに正確かつ耐久性的に製造するのに適当である
べきである。
EXAMPLES Uniform numbering was used in all figures. FIG. 1 shows a parent structure 10 having the shape of a rectangular parallelepiped disk. On the upper surface of the parent structure 10, a ridgeline extends in parallel to a lateral line on the surface of the parent structure 10, and the ridgeline forms a first ridgelike projection 11 on the upper surface of the parent structure 10. The second ridge-shaped projection 12 extending substantially parallel to the protrusion on the side facing each other, and the ridge-line is the first ridge-shaped projection 1
A third ridge 15 extending substantially perpendicular to the first ridgeline and the ridgeline of the second ridge 12 is arranged. At this time, the third ridge 15 joins one end of the first ridge 11 with one end of the second ridge 12. Thus, the three ridges 11, 12, 15 form a "U" shape located on the upper surface of the parent structure 10. Between the first ridge-shaped projection 11 and the second ridge-shaped projection 12, the first vertically elongated rectangular parallelepiped-shaped projection 1 is formed.
3 and a second elongated rectangular parallelepiped projection 14 are arranged, the longitudinal axes of both elongated rectangular parallelepiped projections 13 and 14 extending substantially parallel to the ridgeline of the first ridge-like projection 11.
A meander-shaped protrusion 16 having a rectangular cross section extends between the vertically elongated ridge-shaped protrusions 13 and 14, and the protrusion is joined at one end thereof to one end of the first vertically-oriented rectangular parallelepiped protrusion 13 and the other end thereof. Is connected to one end of the second vertically elongated rectangular parallelepiped protrusion 14. The heights of the ridge-shaped projections 11, 12, 15 are higher than the heights of the vertically long rectangular parallelepiped projections 13, 14 and the meander-shaped projections 16 of both. The cross section of the meander-shaped projection 16 is smaller than the cross section of the vertically long rectangular parallelepiped projections 13 and 14.
The parent structure 10 is composed of a particularly stable, preferably depositable material such as a metal. This is because it is often used for the production of daughter structures to be molded on the surface of the parent structure 10. Furthermore, the material of the parent structure 10 should be resistant to the materials used for molding and the environmental conditions (temperature, light incidence, etc.) that occur during molding. On the other hand, the material of the parent structure has projections 11, 12, 13, 14, 15, 1 on it.
It should be suitable for producing 6 in a particularly accurate and durable manner.

【0016】図2のa)には、記述した親構造10の側
面図が示されている。さらに、図2のa)には娘構造2
0の側面図が示されており、娘構造はその下面に第1の
逆棟状みぞ21ならびに第2の逆棟状みぞ22を有す
る。詳細に説明するために、娘構造20の下面の平面図
が示されている図2のb)を指示する。第1の逆棟状み
ぞ21および第2の逆棟状みぞ22の棟線は、互いにお
よび平らな直方体形デイスクの形を有する娘構造20の
側線に対してほぼ平行に延びている。第1の逆棟状みぞ
21および第2の逆棟状みぞ22の棟線に対して垂直に
第3の逆棟状みぞ45の棟線が延びていて、このみぞ4
5が第1の逆棟状みぞ21の一端を第2の逆棟状みぞ2
2の一端と結合する。逆棟状みぞ21,22,45のこ
の”U”字形配置内に、縦長の直方体形凹部23および
これに対してほぼ平行な、第2の縦長の直方体形凹部2
4が延びている。双方の縦長直方体形凹部23,24
は、第1の逆棟状みぞ21の棟線に対してほぼ平行に延
び、その際第3の逆棟状みぞ45に面している、双方の
縦長直方体形凹部23,24の端部はメアンダー状凹部
17と結合している。縦長直方体形凹部23,24およ
びメアンダー状凹部17は、一緒に切除部19を形成す
る。
A side view of the described parent structure 10 is shown in FIG. 2a). In addition, the daughter structure 2 is shown in FIG.
0 side view is shown, the daughter structure having a first inverted ridged groove 21 as well as a second inverted ridged groove 22 on its underside. For the sake of detailed description, reference is made to FIG. 2 b) in which a plan view of the underside of the daughter structure 20 is shown. The ridgelines of the first inverted ridged groove 21 and the second inverted ridged groove 22 extend substantially parallel to each other and to the lateral lines of the daughter structure 20 having the shape of a flat rectangular parallelepiped disc. The ridge line of the third reverse ridge groove 45 extends perpendicularly to the ridge lines of the first reverse ridge groove 21 and the second reverse ridge groove 22.
5 has one end of the first reverse ridge groove 21 and the second reverse ridge groove 2
Combine with one end of 2. Within this "U" -shaped arrangement of the inverted ridges 21, 22, 45, a vertically elongated rectangular parallelepiped recess 23 and a second vertically elongated rectangular parallelepiped recess 2 substantially parallel thereto.
4 is extended. Both vertically elongated rectangular parallelepiped recesses 23, 24
Is substantially parallel to the ridgeline of the first inverted ridged groove 21 and faces the third inverted ridged groove 45, the ends of the two vertically elongated rectangular parallelepiped recesses 23, 24 being It is connected to the meander-shaped recess 17. The elongated rectangular parallelepiped recesses 23 and 24 and the meander-shaped recess 17 together form a cutout 19.

【0017】それで、娘構造20はその下面に、親構造
10の上面の表面の正確に逆の肖像を有する。この場
合、娘構造20は、親構造10上に硬化可能の液状材
料、とくにプラスチックを望ましくは射出成形法で設
け、硬化した後プラスチックを再び親構造から除去する
ことにより製造される。その際、棟状突起11,12,
15縦長の直方体形突起13,14ならびにメアンダー
状突起16は相応する凹部23,24,17ならびにノ
ッチ21,22,45に模写される。材料ないしはプラ
スチックとしては、たとえば射出成形可能プラスチッ
ク、たとえばポリカーボネートが適当である。材料は流
し込または射出成形または他の適当な方法で設けられ
る。同様に、塑性変形可能な材料を親構造10に押付
け、これにより突起11,12,13,14,15,1
6が材料の表面に型押しされる。次に、塑性変形可能材
料を娘構造20として親構造10から取り外す。
Thus, the daughter structure 20 has, on its underside, exactly the opposite view of the upper surface of the parent structure 10. In this case, the daughter structure 20 is produced by providing a curable liquid material, in particular plastic, preferably on the parent structure 10 preferably by injection molding and, after curing, removing the plastic from the parent structure again. At that time, the ridge-shaped projections 11, 12,
The 15 elongated rectangular parallelepiped projections 13, 14 and the meander-shaped projections 16 are reproduced in the corresponding recesses 23, 24, 17 and notches 21, 22, 45. Suitable materials or plastics are, for example, injection-moldable plastics, for example polycarbonate. The material is provided by casting or injection molding or other suitable method. Similarly, a plastically deformable material is pressed against the parent structure 10 and this causes the protrusions 11, 12, 13, 14, 15, 15.
6 is stamped on the surface of the material. Next, the plastically deformable material is removed from the parent structure 10 as the daughter structure 20.

【0018】図3には、娘構造20の側面図が示されて
いる。娘構造20の、今上方へ向いている下面には導電
層25が設けられている。この場合、導電層25は娘構
造20の上方にある下面の全表面を覆い、第1の逆棟状
みぞ21、第2逆棟状みぞ22、双方の縦長の、直方体
形凹部23,24ならびに図3に示されていない第3の
逆棟状みぞ45およびメアンダー状凹部17をも覆う。
A side view of the daughter structure 20 is shown in FIG. A conductive layer 25 is provided on the lower surface of the daughter structure 20, which is now facing upward. In this case, the conductive layer 25 covers the entire surface of the lower surface above the daughter structure 20, and the first reverse ridge groove 21, the second reverse ridge groove 22, both longitudinally elongated rectangular parallelepiped recesses 23, 24 and It also covers the third inverted ridge groove 45 and the meander-shaped recess 17, which are not shown in FIG.

【0019】逆棟状みぞ21,22,45および切除部
19を有する娘構造20の下面には、親構造10から分
離した後、第2工程で導電層25を設けた。これは、た
とえば金属を蒸着することにより行なった。その際、導
電層25はほぼ一定の層厚で娘構造20の下面の全壁上
に付着する。
On the lower surface of the daughter structure 20 having the inverted ridge-shaped grooves 21, 22, 45 and the cut portion 19, the conductive layer 25 was provided in the second step after being separated from the parent structure 10. This was done, for example, by depositing a metal. At this time, the conductive layer 25 is deposited on the entire lower surface wall of the daughter structure 20 with a substantially constant layer thickness.

【0020】図4のa)およびb)は第3工程後の娘構
造20のそれぞれ側面図と平面図を示す。ここで、娘構
造20は第1の逆棟状ノッチ21中に第1の導電被覆2
6を有する。相応に、第2の縦長直方体形凹部24は第
2の導電被覆27を有し、第1の縦長直方体形凹部23
は第3の導電被覆28を有し、第2の逆棟状ノッチ22
は第4の導電被覆29を有しならびにメアンダー状凹部
17は第5の導電被覆58を有し、第3逆棟状ノッチ4
5は第6導電被覆59を有する。第2導電被覆27、第
3の導電被覆および第の5導電被覆58は、一緒に切除
部19内にある導電構造18を形成する。
4a) and 4b) show a side view and a plan view, respectively, of the daughter structure 20 after the third step. Here, the daughter structure 20 includes the first conductive coating 2 in the first inverted ridge-shaped notch 21.
6. Correspondingly, the second vertically elongated rectangular parallelepiped recess 24 has a second conductive coating 27, and the first vertically elongated rectangular parallelepiped recess 23 is formed.
Has a third conductive coating 28 and has a second inverted ridged notch 22
Has a fourth conductive coating 29 and the meander-shaped recess 17 has a fifth conductive coating 58,
5 has a sixth conductive coating 59. The second conductive coating 27, the third conductive coating and the fifth conductive coating 58 together form the conductive structure 18 within the cutout 19.

【0021】娘構造20の下面の導電層25による全面
被覆に続く第3工程で、導電層25を有する娘構造20
からなる図3に示した配置の表面から、娘構造20の下
面の表面に対して平行に導電層25を除去した。この場
合、加工方向は娘構造20の表面にたいして直角に延び
るので、逆棟状突起21,22,45および切除部19
から突出する導電層25の部分だけが娘構造20の表面
から取り去られる。娘構造20のもう1つの機能に対す
る上記の導電層部分は重要でなく、副次的効果と考察さ
れるが、第3工程はなかんずく、導電構造18を切除部
19中に形成するのに使用される。この場合に生じる導
電構造18は、たとえば導電構造18を流れる電流から
熱を発生させるのに使用され、それで熱アクチュエータ
として使用される。かかる熱アクチュエータのとくべつ
な適用分野としては、光導波管を異なる温度に暴露し
て、その導波管特性を調節する集積化光学が挙げられ
る。
The daughter structure 20 having the conductive layer 25 is formed in the third step following the overall covering of the lower surface of the daughter structure 20 with the conductive layer 25.
The conductive layer 25 was removed parallel to the surface of the lower surface of the daughter structure 20 from the surface of the arrangement shown in FIG. In this case, since the processing direction extends at a right angle to the surface of the daughter structure 20, the reverse ridge-shaped projections 21, 22, 45 and the cut portion 19 are formed.
Only the portion of the conductive layer 25 protruding from is removed from the surface of the daughter structure 20. The conductive layer portion above for another function of the daughter structure 20 is not important and is considered a side effect, but the third step is above all used to form the conductive structure 18 in the cutout 19. It The resulting conductive structure 18 is used, for example, to generate heat from an electric current flowing through the conductive structure 18 and is thus used as a thermal actuator. A particular application of such thermal actuators is integrated optics, where the optical waveguide is exposed to different temperatures to adjust its waveguide properties.

【0022】図5には、ポジチブモールド30上の娘構
造20の斜視図が示さている。この場合、ポジチブモー
ルド30はその外部寸法が娘構造の外部寸法より大き
く、同様に直方体形デイスクの形を有する。ポジチブモ
ールド30の上面には、一端が第1の棟状ファイバ調整
要素37に移行する第1の縦長直方体形導波管形成要素
32が延びている。第1の縦長直方体形導波管形成要素
32に対してほぼ平行に、第2の縦長直方体形導波管形
成要素33が延び、第1のファイバ調整要素37に面し
た端部には第2の棟状ファイバ調整要素38を有する。
このものは、第2の縦長直方体形導波管成形要素33の
相対する端部が、第3の棟状ファイバ調整要素41に移
行する。同様に、第1の縦長直方体形導波管形成要素3
2は第3の棟状ファイバ調整要素41に面した端部が第
4の棟状ファイバ調整要素42に移行する。棟状ファイ
バ調整要素37,38,41,42はそれぞれ直接、ポ
シチブモールド30の互いに相対する縁に接している。
第2の縦長直方体形導波管形成要素33の、第1の縦長
直方体形導波管形成要素32と反対側の面には、第1の
棟状調整要素34が設けられていて、その棟線は第2縦
長直方体形導波管形成要素33の縦軸に対してほぼ平行
に延びる。さらに、第2の縦長直方体形導波管形成要素
33の同じ側には、第2の角屋根状調整要素35が配置
されていて、その一方の脚は第1の棟状調整要素34の
棟線と整列し、その第2の脚はこの棟線に対してほぼ直
角に延びている。双方の縦長直方体形導波管形成要素3
2,33の間の中心線に対して鏡映対称に、ポジチブモ
ールド30上には第3の棟状調整要素31および第4の
角屋根状調整要素36がポジチブモールド30の表面上
に取り付けられている。調整要素31,34,35,3
6の互いに結合する棟線は”U”字形を形成する。さら
に、断面が直方体形のL字状突起39は、第3の棟状調
整要素31の、第4の角屋根状調整要素36の反対側に
取り付けられており、その際L字状突起39の一方の脚
は縦長直方体形導波管形成要素32,33に対してほぼ
直角に、他方の脚はほぼ平行に延びている。縦長直方体
形導波管形成要素32,33に対してほぼ平行なL字状
突起39の脚は、第3の棟状調整要素31と第1の縦長
直方体形導波管形成要素32との間の空間に突出し、そ
の自由端に第1の直方体形突起43を有し、該突起はそ
の高さが第1の縦長直方体形導波管形成要素32の高さ
よりも大きい。第1の直方体形突起43を有するこのL
字状突起39に対しても、双方の縦長直方体形導波管形
成要素3233の間の中心線に対して鏡像的に配置され
た、第2の直方体形突起44を有する第2のL字状突起
40が存在する。娘構造20は、導電構造18および逆
棟状みぞ21,22,45が存在する下面が、下方、ポ
ジチブモールド30の上面を指向する。
FIG. 5 shows a perspective view of the daughter structure 20 on the positive mold 30. In this case, the positive mold 30 has an outer dimension larger than that of the daughter structure and likewise has the shape of a rectangular disk. On the upper surface of the positive mold 30, a first vertically elongated rectangular parallelepiped waveguide forming element 32 extending at one end to the first ridge-shaped fiber adjusting element 37 extends. A second elongated rectangular parallelepiped waveguide forming element 33 extends substantially parallel to the first elongated rectangular parallelepiped waveguide forming element 32, with a second end at the end facing the first fiber tuning element 37. Ridge-shaped fiber adjusting element 38.
In this, the opposite ends of the second vertically elongated rectangular parallelepiped waveguide shaping element 33 are transferred to the third ridge-shaped fiber adjusting element 41. Similarly, the first vertically elongated rectangular parallelepiped waveguide forming element 3
In No. 2, the end facing the third ridge-shaped fiber adjusting element 41 is transferred to the fourth ridge-shaped fiber adjusting element 42. Each of the ridged fiber adjustment elements 37, 38, 41, 42 directly contacts the opposite edges of the positive mold 30.
A first ridge-shaped adjusting element 34 is provided on the surface of the second vertically long rectangular parallelepiped waveguide forming element 33 opposite to the first vertically long rectangular parallelepiped waveguide forming element 32. The line extends substantially parallel to the longitudinal axis of the second vertically elongated rectangular parallelepiped waveguide forming element 33. Further, on the same side of the second vertically long rectangular parallelepiped waveguide forming element 33, a second corner roof-like adjusting element 35 is arranged, one leg of which is the ridge of the first ridge-like adjusting element 34. Aligned with the line, its second leg extends substantially at a right angle to this ridgeline. Longitudinal rectangular parallelepiped waveguide forming element 3
A third ridge-like adjusting element 31 and a fourth corner roof-like adjusting element 36 are mounted on the positive mold 30 on the surface of the positive mold 30 in mirror symmetry with respect to the center line between the two and 33. ing. Adjusting elements 31, 34, 35, 3
The six interconnecting ridgelines form a "U" shape. Furthermore, the L-shaped projection 39, which has a rectangular parallelepiped cross section, is mounted on the side of the third ridge-shaped adjustment element 31 opposite the fourth corner roof-shaped adjustment element 36, in which case the L-shaped projection 39 One leg extends substantially at right angles to the elongated rectangular parallelepiped waveguide forming elements 32 and 33, and the other leg extends substantially in parallel. The leg of the L-shaped projection 39 that is substantially parallel to the elongated rectangular parallelepiped waveguide forming elements 32 and 33 is provided between the third ridge-shaped adjustment element 31 and the first elongated rectangular parallelepiped waveguide forming element 32. Has a first rectangular parallelepiped projection 43 at its free end, the height of which is greater than the height of the first vertically elongated rectangular parallelepiped waveguide forming element 32. This L having a first rectangular parallelepiped projection 43
Also for the V-shaped projection 39, there is a second L-shaped projection having a second rectangular parallelepiped projection 44, which is arranged in a mirror image with respect to the center line between both the longitudinal rectangular parallelepiped waveguide forming elements 3233. There is a protrusion 40. In the daughter structure 20, the lower surface on which the conductive structure 18 and the inverted ridge grooves 21, 22, 45 are present is directed downward, the upper surface of the positive mold 30.

【0023】娘構造20を上述したポジチブモールド上
に載せ、その際逆棟状みぞ21,22,45は調整要素
31,34,35,36上に存在する。調整要素31,
34,35,36および逆棟状みぞ21,22,45の
互いにほぼ対応する形により、娘構造20はその位置が
縦長直方体形導波管形成要素32,33に対して調整さ
れる。
The daughter structure 20 is mounted on the positive mold described above, the inverted ridges 21, 22, 45 being present on the adjusting elements 31, 34, 35, 36. Adjusting element 31,
Due to the substantially corresponding shapes of 34, 35, 36 and the inverted ridges 21, 22, 45, the daughter structure 20 is adjusted in its position with respect to the elongated rectangular parallelepiped waveguide forming elements 32, 33.

【0024】図6のa)には、娘構造20が載っている
ポジチブモールド30の断面図が示されている。第3の
棟状調整要素31はその棟頂が第2の逆棟状みぞ22中
へ突出し、その際第4の導電被覆29に接触する。同様
に、第1の棟状調整要素34はその棟頂が第1の逆棟状
みぞ21中へ突出し、その際導電被覆26と接触する。
さらに、娘構造20の下面は直方体形突起43,44上
に載る。ポジチブモールド30上のこの全配置は、別の
硬化可能な液状材料、たとえばプラスチックで被覆さ
れ、該プラスッチクは配置のそれぞれの隙間を充填す
る。硬化した材料は、娘構造20と一緒に基板50を形
成する。そのため図6のb)は、基板50の下面の平面
図を示す。ポジチブモールド30の上面から基板50を
分離する際、第1の逆棟状凹部55が形成する。同様
に、第1の棟状調整要素34は基板50に第2棟状凹部
56が生じる。第4の角屋根状調整要素36により、基
板50に第3の逆角屋根状凹部72が生じ、第2の角屋
根状調整要素35により基板50中に第4の逆角屋根状
凹部73が生じる。第2の直方体形突起44は、基板5
0中に第1の孔53を形成し、同様に第1の直方体形突
起43は基板50中に第2の孔54を形成する。第1縦
長直方体形導波管成形要素32により基板50中に、第
2の縦長直方体形導波管形成要素33が形成する第2の
導波管路52に対して平行な第1の導波管路51が生じ
る。さらに、ファイバ調整要素37,38,41,42
は、基板50中にこれに相応するファイバ調整みぞ5
7,70,71を形成する。
FIG. 6a) shows a cross-sectional view of the positive mold 30 on which the daughter structure 20 is mounted. The third ridge-shaped adjusting element 31 projects at its ridge into the second inverted ridge-shaped groove 22, whereupon it contacts the fourth conductive coating 29. Similarly, the first ridged adjusting element 34 projects at its top into the first inverted ridged groove 21, in which case it makes contact with the electrically conductive coating 26.
Further, the lower surface of the daughter structure 20 rests on the rectangular parallelepiped projections 43 and 44. This entire arrangement on the positive mold 30 is coated with another curable liquid material, for example plastic, the plastic filling the respective gaps of the arrangement. The cured material forms a substrate 50 with the daughter structure 20. Therefore, FIG. 6 b) shows a plan view of the lower surface of the substrate 50. When the substrate 50 is separated from the upper surface of the positive mold 30, the first inverted ridge-shaped recess 55 is formed. Similarly, the first ridge-shaped adjusting element 34 has a second ridge-shaped recess 56 in the substrate 50. The fourth corner roof-shaped adjustment element 36 causes a third inverted roof-shaped recess 72 in the substrate 50, and the second corner roof-shaped adjustment element 35 forms a fourth inverted roof-shaped recess 73 in the substrate 50. Occurs. The second rectangular parallelepiped projection 44 is formed on the substrate 5
A first hole 53 is formed in the substrate 0, and similarly, the first rectangular parallelepiped protrusion 43 forms a second hole 54 in the substrate 50. The first waveguide parallel to the second waveguide 52 formed by the second vertical rectangular parallelepiped waveguide forming element 33 in the substrate 50 by the first vertical rectangular parallelepiped waveguide forming element 32. A conduit 51 is created. Furthermore, the fiber adjustment elements 37, 38, 41, 42
Is the corresponding fiber adjustment groove 5 in the substrate 50.
7, 70, 71 are formed.

【0025】娘構造20を有するポジチブモールド30
からなる配置上に硬化可能な液状材料を再流し込み、再
射出または類似の適当な方法によって設け、引き続き硬
化し、生じた基板50をポジチブモールド30から分離
することにより基板50が製造され、該基板はその内部
に導電構造18およびその下面に2つの導波管路51,
52を有する。この場合、導電構造18は導波管路5
1,52のすぐ近くに存在する。ポジチブモールド30
は、たとえば金属、とくにニッケルから製造されてお
り、これは同時に多くの適用形に対し高い耐久性および
その上面に存在する構造の良好な製造可能性を許容す
る。
Positive mold 30 with daughter structure 20
Substrate 50 is manufactured by reflowing a curable liquid material onto the arrangement consisting of, re-injecting or otherwise applying by suitable method, followed by curing, and separating the resulting substrate 50 from positive mold 30. Has a conductive structure 18 inside and two waveguides 51 on its underside,
52. In this case, the conductive structure 18 is the waveguide 5
It exists in the immediate vicinity of 1,52. Positive mold 30
Are manufactured, for example, from metal, in particular nickel, which at the same time allows for high durability for many applications and good manufacturability of the structure present on its upper surface.

【0026】図7は、回路ボード部品(60)上の基板
50を示す。孔53は導電材料65で充填されている。
第2の棟状凹部56は、ポリマー接着剤からなる充填剤
64で充填されている。同様に、第1の棟状凹部55は
ポリマー接着剤で充填されているが、これは図7には明
白に示されていない。第1導波路51は同様にポリマー
接着剤で充填されており、これにより第1の導波管62
は第1の導波管路51中に存在する。同様に、第2の導
波管路52はポリマー接着剤で充填されており、これに
より第2の導波管63が生じている。第2のL字状突起
40により、基板50の製造工程においてこのれに第2
のリード線みぞ49が形成され、該みぞは同様に導電材
料で充填されていて、第2のリード線67を形成する。
第2のリード線67は第1の孔53内の導電材料65と
導電結合されている。これと類似に、第2の孔54内の
導電材料65も、第1のリード線みぞ48を他の導電材
料で充填することにより生じた第1のリード線66と導
電結合している。第1のリード線みぞ48は、同様にカ
バー50を製造する際に第1のL字状突起39により生
じた。第1の導波管路51の縦軸の延長線上に基板50
は、基板50の製造工程においてファイバ調整要素37
により生じたファイバ調整みぞ57を有する。基板50
と回路ボード部品60との間の継目に対して鏡映対称
に、回路ボード部品60は第2ファイバ調整みぞ61を
有する。双方のファイバ調整みぞ57,61は一緒にな
って調整孔68を形成する。図に示されていないもう1
つのかかる調整孔68は、基板50中に既に他の調整み
ぞ69,70,71が存在する、導波管62,63の残
端部に存在する。さらに、回路ボード部品60は回路ボ
ード部品60の下面から第2導波管63に通じる導溝状
構造75を有する。
FIG. 7 shows the substrate 50 on the circuit board component (60). The hole 53 is filled with a conductive material 65.
The second ridge-shaped recess 56 is filled with a filler 64 made of a polymer adhesive. Similarly, the first ridge 55 is filled with a polymer adhesive, which is not explicitly shown in FIG. The first waveguide 51 is also filled with a polymer adhesive, which allows the first waveguide 62 to
Exists in the first waveguide 51. Similarly, the second waveguide 52 is filled with a polymer adhesive, which results in a second waveguide 63. By the second L-shaped projection 40, the second
Lead groove 49 is formed, which is also filled with a conductive material to form a second lead 67.
The second lead wire 67 is conductively coupled to the conductive material 65 in the first hole 53. Similarly, the conductive material 65 in the second hole 54 is also conductively coupled to the first lead wire 66 created by filling the first lead groove 48 with another conductive material. The first lead groove 48 was also created by the first L-shaped projection 39 during the manufacture of the cover 50. The substrate 50 is provided on the extension of the vertical axis of the first waveguide 51.
Is a fiber adjustment element 37 in the manufacturing process of the substrate 50.
The fiber adjustment groove 57 produced by Board 50
In a mirror symmetry with respect to the seam between the circuit board part 60 and the circuit board part 60, the circuit board part 60 has a second fiber adjustment groove 61. Both fiber adjustment grooves 57, 61 together form an adjustment hole 68. Another not shown in the figure
One such adjustment hole 68 is present at the remaining end of the waveguide 62, 63 where the other adjustment grooves 69, 70, 71 are already present in the substrate 50. Further, the circuit board component 60 has a guiding groove-like structure 75 that communicates with the second waveguide 63 from the lower surface of the circuit board component 60.

【0027】電流を基板50内の導電構造18に導くた
めには、導体66,67が使用される。このため、L字
状突起39,40および所属する直方体形突起により生
じた基板中のこれら突起に対する逆構造をたとえば金属
で充填した。これらの構造を金属で充填するために、導
電構造18の製造方法と類似に、同様に金属層を蒸着
し、逆構造から突出する金属層部分を切除することが可
能である。基板50は硬化可能な液状ポリマー接着剤の
間挿下に回路ボード部品に接着される。
Conductors 66, 67 are used to conduct current to the conductive structures 18 in the substrate 50. For this reason, the L-shaped projections 39, 40 and the inverse structure to the projections in the substrate caused by the associated rectangular parallelepiped projections were filled with metal, for example. In order to fill these structures with metal, it is possible to deposit metal layers in a similar manner and to cut away the metal layer portions protruding from the reverse structure, similar to the method of manufacturing the conductive structure 18. Substrate 50 is adhered to the circuit board component with a curable liquid polymer adhesive in between.

【0028】この場合、回路ボード部品60は同時に第
1のファイバ調整みぞ57を第2のファイバ調整みぞで
調整孔68ないしは相応に他の調整孔に補完しならびに
その際生じる光集積回路を機械的またはその他の環境に
よる影響に対して保護するのに役立つ。さらに、基板5
0と回路ボード部品とを接着する場合、ポリマー接着剤
がカバー50と回路ボード部品60との間の隙間に押し
込まれるので、ことに導波路51,52中に導波管6
2,63が生じる。それで、ポリマー接着剤は同時に基
板50と回路ボード部品60の間を機械的に固着ならび
に導波管62、63を形成するのに使用される。調整孔
68中に光ファイバが挿入可能であり、該ファイバは光
信号を導波管62,63中に導入し、該信号は基板50
の相対する側で再び、そこに挿入された光ファイバに結
合する。ダクト状構造75により、ポリマー接着剤での
接着工程の間その際生じる収縮を、外部から他のポリマ
ー接着剤をダクト状構造75により第2導波管63に導
くことにより補償することが配慮されている。それで、
接着工程の際に空所は生じない。ポリマー接着剤を幾つ
かの箇所に後充填することができるようにするために、
幾つかのかかるダクト状構造75を配置することも配慮
されている。
In this case, the circuit board component 60 simultaneously supplements the first fiber adjusting groove 57 with the second fiber adjusting groove in the adjusting hole 68 and, accordingly, in the other adjusting holes, and mechanically integrates the optical integrated circuit which results in this case. Or help protect against other environmental impacts. Further, the substrate 5
0 and the circuit board component are adhered, the polymer adhesive is pushed into the gap between the cover 50 and the circuit board component 60, so that the waveguide 6 is particularly provided in the waveguides 51 and 52.
2,63 occur. Thus, the polymer adhesive is simultaneously used to mechanically bond between the substrate 50 and the circuit board component 60 as well as to form the waveguides 62,63. An optical fiber can be inserted into the adjusting hole 68, and the fiber introduces an optical signal into the waveguides 62 and 63, and the signal is transmitted to the substrate 50.
Again, on opposite sides of the, couple into the optical fiber inserted there. Due to the duct-like structure 75, consideration is given to compensating for the shrinkage which then occurs during the bonding process with the polymer adhesive by externally guiding another polymer adhesive to the second waveguide 63 by means of the duct-like structure 75. ing. So,
No voids occur during the bonding process. In order to be able to post-fill polymer adhesive in several places,
It is also considered to arrange several such duct-like structures 75.

【0029】リード線66,67を経て電流を、ここで
熱伝導構造として使用される導電構造18に供給するこ
とにより、導波管62,63付近の温度が変化する。そ
れで、熱変化を意図的に制御することにより、導波管6
2,63の導波管特性を変えることができる。かかる構
成は、ことにデイジタル光スイッチまたは同調可能なフ
ィルターに適用される。
By supplying an electric current through the lead wires 66 and 67 to the conductive structure 18, which is used here as a heat conductive structure, the temperature near the waveguides 62 and 63 changes. Therefore, by intentionally controlling the thermal change, the waveguide 6
It is possible to change 2, 63 waveguide characteristics. Such an arrangement applies especially to digital optical switches or tunable filters.

【0030】もう1つの適用分野は、たとえば電気光学
的効果を利用するため、電場を発生するための電極とし
ての使用である。このためには、対向電極が他の方法で
取り付けられている場合に、1つだけのリード線66,
67を有する導電構造18が既に十分である。図示しか
つ記載した構造は、殊にその形および断面が他の形、た
とえば半円形断面または角の丸くされた形にも実施しう
る限り1例を示す。さらに、記載された方法は、同時に
共通の基板50に導電構造18および他の光集積構造、
たとえばブラッグ(Bragg)構造または光センサー
を集積するため使用するのに適当である。 被覆方法次
第では、導電層25は垂直壁に付着しないが、生じる導
電構造18の機能はこれにより変化しない。
Another field of application is the use as electrodes for generating electric fields, for example to take advantage of electro-optical effects. To this end, if the counter electrode is otherwise attached, only one lead 66,
The conductive structure 18 with 67 is already sufficient. The structure shown and described represents one example in particular insofar as its shape and cross section can also be implemented in other shapes, for example in semicircular cross-sections or rounded corners. In addition, the method described allows the conductive structure 18 and other integrated optical structures to be simultaneously formed on the common substrate 50.
For example, it is suitable for use for integrating Bragg structures or optical sensors. Depending on the coating method, the conductive layer 25 does not adhere to the vertical walls, but the resulting function of the conductive structure 18 is not changed thereby.

【0031】ここに例示した導電構造18の導体66,
67による接触接続の代わりに、導電構造18自体を、
その1部が生じる基板50の縁にあって、直接電流の供
給に利用されるように寸法決めすることも同様に可能で
ある。
The conductors 66 of the conductive structure 18 illustrated here,
Instead of the contact connection by 67, the conductive structure 18 itself is
It is likewise possible to dimension it at the edge of the substrate 50, of which a part occurs, to be used for direct current supply.

【0032】導波管62,63の形はここに示した例に
制限されていない。これは、適用分野により断面および
経過を著しく変えることができる。
The shapes of the waveguides 62 and 63 are not limited to the example shown here. This can vary significantly in cross-section and course depending on the field of application.

【図面の簡単な説明】[Brief description of drawings]

【図1】親構造の斜視図FIG. 1 is a perspective view of a parent structure.

【図2】(a)は形成した娘構造と親構造の側面図、
(b)は形成した娘構造の平面図
FIG. 2 (a) is a side view of the formed daughter structure and parent structure,
(B) is a plan view of the formed daughter structure

【図3】導電層を有する娘構造の側面図FIG. 3 is a side view of a daughter structure having a conductive layer.

【図4】(a)は導電層を除去した後の娘構造の側面
図、(b)は導電層を部分的に除去した後の娘構造の平
面図
FIG. 4A is a side view of the daughter structure after removing the conductive layer, and FIG. 4B is a plan view of the daughter structure after partially removing the conductive layer.

【図5】娘構造およびポジチブモールドの斜視図FIG. 5 is a perspective view of a daughter structure and a positive mold.

【図6】(a)は基板を有するポジチブモールドの断面
図、(b)は基板下面の平面図
6A is a cross-sectional view of a positive mold having a substrate, and FIG. 6B is a plan view of the lower surface of the substrate.

【図7】回路ボード部品上の基板の部分的に破開した側
面図
FIG. 7 is a partially exploded side view of a board on a circuit board component.

【符号の説明】[Explanation of symbols]

10 親構造 11,12,15 棟状突起 13,14 縦長直方体形突起 16,17 メアンダー状突起 20 娘構造 21,22,45 逆棟状みぞ 23,24 縦長直方体形凹部 25 導電層 26,27,28,58,59 導電被覆 30 ポジチブモールド 31,34,35,36 調整要素 32,33 導波管形成要素 37,38,41,42 ファイバ調整要素 43,44 直方体形突起 39,40 L字状突起 48,49 リード線みぞ 50 基板 51,52 導波管路 56 棟状凹部 53,54 孔 57,61 ファイバ調整みぞ 60 回路ボード部品 62,63 導波管 66,67 リード線 66,68 調整孔 69,70,71 調整みぞ 75 ダクト状構造 10 Parent structure 11, 12, 15 Building-like projections 13, 14 Vertically long rectangular parallelepiped projections 16, 17 Meander-like projections 20 Daughter structure 21, 22, 45 Reverse building-like groove 23, 24 Vertically long rectangular parallelepiped recess 25 Conductive layer 26, 27, 28,58,59 Conductive coating 30 Positive mold 31,34,35,36 Adjusting element 32,33 Waveguide forming element 37,38,41,42 Fiber adjusting element 43,44 Rectangular parallelepiped projection 39,40 L-shaped projection 48,49 Lead wire groove 50 Substrate 51,52 Waveguide path 56 Building recess 53,54 Hole 57,61 Fiber adjustment groove 60 Circuit board component 62,63 Waveguide 66,67 Lead wire 66,68 Adjustment hole 69 , 70, 71 Adjusting groove 75 Duct structure

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 導電構造の製造方法において、 a)第1工程において、親構造(10)上に液状の硬化
可能材料または塑性変形可能材料を設け、引き続き硬化
させ、硬化した材料を親構造から分離するかないしは塑
性変形可能材料を分離して、下面に少なくとも1つの切
除部(19)を有する娘構造(20)を製造し、 b)第2工程において、娘構造(20)の下面で切除部
(19)の大きさを超える面上に、切除部(19)にお
いて娘構造(20)の表面を覆う導電層(25)を設
け、 c)第3工程において、導電層(25)を娘構造(2
0)の下面の表面から除去し、これにより切除部(1
9)中に導電性構造(18)が形成することを特徴とす
る導電性構造体の製造方法。
1. A method of manufacturing a conductive structure, comprising the steps of: a) in the first step, a liquid curable material or a plastically deformable material is provided on the parent structure (10) and subsequently cured, and the cured material is removed from the parent structure. Separating or separating the plastically deformable material to produce a daughter structure (20) having at least one cutout (19) on the lower surface, b) in a second step, on the lower surface of the daughter structure (20) A conductive layer (25) covering the surface of the daughter structure (20) in the cut portion (19) is provided on a surface exceeding the size of the cut portion (19), and c) in the third step, the conductive layer (25) is formed. Daughter structure (2
0) from the lower surface of the lower surface of the cut portion (1)
9) A conductive structure (18) is formed in the conductive structure (18).
【請求項2】 親構造(10)の材料として金属を使用
することを特徴とする請求項1記載の導電構造体の製造
方法。
2. The method for producing a conductive structure according to claim 1, wherein a metal is used as a material of the parent structure (10).
【請求項3】 導電層(25)の除去を機械的に行なう
ことを特徴とする請求項1または2記載の、光集積回路
用導電構造の製造方法。
3. The method for manufacturing a conductive structure for an optical integrated circuit according to claim 1, wherein the conductive layer (25) is mechanically removed.
【請求項4】 導電材料(25)を除去した後、切除部
(19)内に残留する導電構造(18)の層厚をめっき
により高めることを特徴とする請求項1から3までにい
ずれか1項記載の導電構造の製造方法。
4. The layer thickness of the conductive structure (18) remaining in the cutout (19) after the removal of the conductive material (25) is increased by plating. The method for manufacturing a conductive structure according to item 1.
【請求項5】 導電層(25)を設けるのを蒸着によっ
て行なうことを特徴とする請求項1から4までのいずれ
か1項記載の導電構造の製造方法。
5. The method for producing a conductive structure according to claim 1, wherein the conductive layer (25) is provided by vapor deposition.
【請求項6】 親構造(10)上に存在する少なくとも
1つの突起(11,12,15)によりこれに相応する
少なくとも1つのみぞ(21,22,45)を娘構造
(20)に形成し、 a)第4工程で、娘構造(20)をポジチブモールド
(30)上に載せ、その際ポシチブモールド(30)は
少なくとも1つの突出する調整要素(31,34,3
5,36)を有し、該要素はその際娘構造(20)の下
面の少なくとも1つのみぞ(21,22,45)に係合
し、ポジチブモールド(30)は少なくとも1つの突出
する導波管形成要素(32,33)を有し、該要素はそ
の際導電構造(18)の近くに存在し、 b)第5工程で、ポシチブモールド(30)上に存在す
る娘構造(20)を、別の硬化可能な液状材料で被覆
し、その中に娘構造(20)を有する硬化した材料から
形成した基板(50)をポジチブモールド(30)から
分離し、その際少なくとも1つの導波管形成要素(3
2,33)が基板(50)に少なくとも1つの導波管路
(51,52)を形成することを特徴とする請求項1か
ら5までのいずれか1項記載の導電構造の製造方法。
6. At least one groove (21, 22, 45) corresponding to this is formed in the daughter structure (20) by at least one projection (11, 12, 15) present on the parent structure (10). A) In a fourth step, the daughter structure (20) is placed on the positive mold (30), the positive mold (30) including at least one protruding adjusting element (31, 34, 3).
5, 36) in which the element engages at least one groove (21, 22, 45) on the underside of the daughter structure (20) and the positive mold (30) comprises at least one protruding waveguide. A tube-forming element (32, 33), which element is then in the vicinity of the conducting structure (18), and b) in a fifth step the daughter structure (20) present on the positive mold (30), A substrate (50) coated with another curable liquid material and formed of a cured material having a daughter structure (20) therein is separated from the positive mold (30), at least one waveguide formation. Element (3
2. The method of manufacturing a conductive structure according to claim 1, characterized in that 2, 33) form at least one waveguide (51, 52) on the substrate (50).
【請求項7】 ポジチブモールド(30)上に設けられ
た、導波管形成要素(32,33)の少なくとも1つと
一体に構成されている少なくとも1つの突出するファイ
バ調整要素(37,38,41,42)により、基板
(50)製造の際に少なくとも1つのファイバ調整みぞ
(57,69,70,71)を基板(50)に形成する
ことを特徴とする請求項6記載の導電構造の製造方法。
7. At least one protruding fiber tuning element (37, 38, 41) provided integrally with at least one of the waveguide forming elements (32, 33) on the positive mold (30). , 42) forming at least one fiber adjustment groove (57, 69, 70, 71) in the substrate (50) during the production of the substrate (50). Method.
【請求項8】 ポジチブモールド(30)上に設けられ
た、娘構造(20)をポジチブモ−ルド(30)上に載
せる際に導電構造(18)に接触する少なくとも1つの
突出する押込み要素(46,47)により、基板(5
0)製造の際に少なくとも1つのリード線みぞ(48,
49)を基板(50)に形成し、ポジチブモールド(3
0)から基板(50)を分離した後リード線みぞ(4
8,49)中へ導電材料(65)を導入し、これにより
導線(66、67)を形成することを特徴とする請求項
6または7記載の導電構造の製造方法。
8. At least one protruding pushing element (46) provided on the positive mold (30) for contacting the conductive structure (18) when the daughter structure (20) is placed on the positive mold (30). , 47), the substrate (5
0) at least one lead groove (48,
49) is formed on the substrate (50), and the positive mold (3
After separating the substrate (50) from (0), the lead wire groove (4
8. A method of manufacturing a conductive structure according to claim 6, wherein a conductive material (65) is introduced into the conductive material (8, 49) to thereby form a conductive wire (66, 67).
【請求項9】第6工程で、基板(50)を回路ボード部
品(60)上に載せ、その際基板(50)と回路ボード
部品(60)の間に硬化可能の液状ポリマー接着剤を導
入し、該接着剤が基板(50)と回路ボード部品(6
0)とを接合する際に少なくとも1つの導波管路(5
1,52)満たし、これにより少なくとも1つの導波管
(62,63)が形成することを特徴とする請求項6か
ら8までのいずれか1項記載の導電構造の製造方法。
9. In the sixth step, the substrate (50) is placed on the circuit board component (60), wherein a curable liquid polymer adhesive is introduced between the substrate (50) and the circuit board component (60). The adhesive is applied to the board (50) and the circuit board component (6
0) and at least one waveguide (5
1, 52), whereby at least one waveguide (62, 63) is formed, the method for producing a conductive structure according to any one of claims 6 to 8.
【請求項10】 導電構造(18)を熱伝導構造として
製造し、その際熱伝導構造は2つの凹部(23,24)
および双方の凹部を結合する第3の凹部(17)を包含
することを特徴とする請求項1から9までのいずれか1
項記載の導電構造の製造方法。
10. The electrically conductive structure (18) is produced as a heat conducting structure, the heat conducting structure comprising two recesses (23, 24).
And a third recess (17) which joins both recesses together.
A method of manufacturing a conductive structure according to item.
【請求項11】 ポリマー接着剤を導入する前に基板
(50)および/または回路ボード部品(60)に少な
くとも1つのダクト状構造(75)を設け、該構造によ
り硬化する際にさらに接着剤を基板(50)と回路ボー
ド部品(60)との間に充填することを特徴とする請求
項9記載の方法。
11. A substrate (50) and / or a circuit board component (60) is provided with at least one duct-like structure (75) prior to the introduction of the polymer adhesive, which further cures the adhesive when cured. 10. Method according to claim 9, characterized in that it is filled between the substrate (50) and the circuit board component (60).
JP27558895A 1994-10-25 1995-10-24 Manufacture of conductive structure Pending JPH08234035A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4438053.4 1994-10-25
DE19944438053 DE4438053C2 (en) 1994-10-25 1994-10-25 Method for producing an electrically conductive structure

Publications (1)

Publication Number Publication Date
JPH08234035A true JPH08234035A (en) 1996-09-13

Family

ID=6531613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27558895A Pending JPH08234035A (en) 1994-10-25 1995-10-24 Manufacture of conductive structure

Country Status (3)

Country Link
JP (1) JPH08234035A (en)
DE (1) DE4438053C2 (en)
FR (1) FR2726123B1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE516011C2 (en) * 1996-12-19 2001-11-05 Ericsson Telefon Ab L M Tightly packed electrical connectors
EP0953210A1 (en) * 1996-12-19 1999-11-03 TELEFONAKTIEBOLAGET L M ERICSSON (publ) Flip-chip type connection with elastic contacts
SE9604678L (en) 1996-12-19 1998-06-20 Ericsson Telefon Ab L M Bumps in grooves for elastic locating
US20020139668A1 (en) * 1999-11-03 2002-10-03 Raghbir Singh Bhullar Embedded metallic deposits
CN110243506A (en) * 2018-03-08 2019-09-17 中国科学院深圳先进技术研究院 A kind of piezoresistive pressure sensor and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4363930A (en) * 1980-02-04 1982-12-14 Amp Incorporated Circuit path conductors in plural planes
US4480975A (en) * 1981-07-01 1984-11-06 Kras Corporation Apparatus for encapsulating electronic components
US4604799A (en) * 1982-09-03 1986-08-12 John Fluke Mfg. Co., Inc. Method of making molded circuit board
DE4212208A1 (en) * 1992-04-10 1993-10-14 Bosch Gmbh Robert Process for the production of optical polymer components with integrated fiber-chip coupling in impression technique
DE4232608C2 (en) * 1992-09-29 1994-10-06 Bosch Gmbh Robert Method for manufacturing a cover for an integrated optical circuit
US5343544A (en) * 1993-07-02 1994-08-30 Minnesota Mining And Manufacturing Company Integrated optical fiber coupler and method of making same

Also Published As

Publication number Publication date
FR2726123A1 (en) 1996-04-26
DE4438053A1 (en) 1996-05-02
FR2726123B1 (en) 1998-05-07
DE4438053C2 (en) 2002-05-02

Similar Documents

Publication Publication Date Title
JP3570882B2 (en) Optical element mounting board, optical module using the mounting board, and manufacturing method thereof
US6222967B1 (en) Packaging platform, optical module using the platform, and methods for producing the platform and the module
JP7413483B2 (en) TO package with earth connection
US5574806A (en) Hybrid integrated optical circuit and device for emitting light waves
US20080310799A1 (en) Hybrid optical/electronic structures fabricated by a common molding process
EP1621314A1 (en) Composite part made from plural composite pieces and method of producing the same
JP3403306B2 (en) Optical module
KR20000016280A (en) Optoelectronic device receptacle and method of making same
JPH03155995A (en) Ic module and ic card using the same
CN1218575A (en) Substrate for semiconductor chip
US6815263B2 (en) Component assembly and method for producing the same
US5970200A (en) Apparatus having optical components and a manufacturing method thereof
JPH08234035A (en) Manufacture of conductive structure
KR100834648B1 (en) Optical and electrical hybrid board and fabricating method thereof
JPH10308555A (en) Hybrid waveguide optical circuit and its manufacture
US20230268127A1 (en) Electronic component
WO2009151558A1 (en) Semiconductor laser packages
JP3343837B2 (en) Manufacturing method of electro-optical hybrid module
JP6745300B2 (en) Surface illumination device and mounting method
JP3439834B2 (en) Manufacturing method of optical parts for connection
KR101235992B1 (en) Method for manufacturing optical coupling component, and optical coupling component
JP3908810B2 (en) Optical module
JP2604054B2 (en) Method for manufacturing semiconductor device
KR860001042B1 (en) Piezoelectric filters and method of making same
JP2736966B2 (en) Method of fixing metal terminal plate to substrate and method of molding electronic component and substrate

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070509