JPH08233976A - Traveling device for inspecting inside of pipe conduit - Google Patents

Traveling device for inspecting inside of pipe conduit

Info

Publication number
JPH08233976A
JPH08233976A JP7038096A JP3809695A JPH08233976A JP H08233976 A JPH08233976 A JP H08233976A JP 7038096 A JP7038096 A JP 7038096A JP 3809695 A JP3809695 A JP 3809695A JP H08233976 A JPH08233976 A JP H08233976A
Authority
JP
Japan
Prior art keywords
pipe conduit
inspection
scanning mechanism
pipe
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7038096A
Other languages
Japanese (ja)
Other versions
JP3046921B2 (en
Inventor
Etsuo Nagaoka
悦雄 永岡
Masahiko Inoue
雅彦 井上
Tomoyoshi Maruyama
智義 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP7038096A priority Critical patent/JP3046921B2/en
Publication of JPH08233976A publication Critical patent/JPH08233976A/en
Application granted granted Critical
Publication of JP3046921B2 publication Critical patent/JP3046921B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Manipulator (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE: To provide a traveling device for inspecting the inside of a pipe conduit which is available for follow-up traveling inspections for various types of diameters and is most suitable for the piping of a main cooling system in a nuclear power plant. CONSTITUTION: A running device 1 is set up which can be widely opened and closed by installing drive wheels 1a to 1d in edge angle positions of a tetrahedron, crossing frames 2a to 2d radially projecting from the center like two pairs of pantographs so that the frames can be bent freely and installing and connecting gas cylinders 6a to 6d on both sides of each of the two respective pairs of the pantographs mechanisms and can make a following movement toward the axis of a pipe conduit at a tip of the pantographs of the connections by inserting and fixing a circling drive part 8 of a sensor scanning mechanism part 7 for a test into the axial center of the pipe conduit. Moreover, the device is made extendible and shrinkable toward the normal direction of the pipe conduit by two respective pairs of multistage telescopic gas cylinders 10a to 10d where two sets of sensor components 9a and 9b for a test installed back to back are laid out back to back in the direction of the axial center of the pipe conduit and, at the same time, is equipped with the sensor scanning mechanism part 7 for a test which is available for alignment and precession in the directions of the axial center of the pipe conduit and the curvature radius of a bending pipe conduit by supporting the cylinders with gimbals mechanism members 11a and 11b.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、原子力プラント主冷却
系配管等の管内の検査に適用される管路内走行検査装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-pipe running inspection device applied to an inspection of pipes such as main cooling system pipes of a nuclear power plant.

【0002】[0002]

【従来の技術】従来の管路内走行検査装置は、図6に示
すように、駆動輪102押付用のガスシリンダ103を
パンタグラフ104の交叉部軸心位置へ対向配設してな
る、往路及び復路案内用の二台の走行車(4WD・4W
S方式)100間に検査ユニットとしての検査車101
を連結したタンデム方式である。
2. Description of the Related Art As shown in FIG. 6, a conventional in-pipe running inspection apparatus has a gas cylinder 103 for pushing a drive wheel 102, which is disposed opposite to the axial center position of a cross section of a pantograph 104. Two traveling vehicles (4WD and 4W) for returning guidance
Inspection system 101 as an inspection unit between S system 100
It is a tandem system in which

【0003】[0003]

【発明が解決しようとする課題】ところで、原子力プラ
ントの主冷却系配管内へのアクセスルートとしては、蒸
気発生器のマンホール側からが最も簡便である。ところ
が、マンホール口径が約Φ400mmであるのに対し、
主冷却系配管の内径が約Φ700〜Φ800mmである
ため、押付追従が配管口径(D)±10%D程度しか許
容できない従来の管路内走行検査装置ではアクセス不可
能であるという問題点があった。
The access route into the main cooling system piping of a nuclear power plant is most convenient from the manhole side of the steam generator. However, while the manhole diameter is about Φ400 mm,
Since the inner diameter of the main cooling system pipe is about Φ700 to Φ800 mm, there is a problem that it cannot be accessed by the conventional in-pipe running inspection device which can only allow the pipe diameter (D) ± 10% D to follow the pressing. It was

【0004】そこで、本発明の目的は、多種口径への追
従走行検査が可能で原子力プラントの主冷却系配管に最
適な管路内走行検査装置を提供することにある。
Therefore, an object of the present invention is to provide an in-pipe running inspection device which is capable of performing running inspections of various diameters and which is optimum for main cooling system piping of a nuclear power plant.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明に係る管路内走行検査装置は、四面体の稜角
位置に駆動輪を配設し、中心部より放射状に張り出した
フレームを各2組パンタグラフ状に屈曲可能に交叉さ
せ、各2組のパンタグラフ機構のそれぞれ両側へシリン
ダを配設,連結して大幅開閉可能とし、当該連結部のパ
ンタグラフ先端部管路軸心位置へ検査用センサ走査機構
部の旋回駆動部を挿設,固定して管路軸心方向へ追動可
能とした走行装置と、反対向きに配設した2組の検査用
センサ部をそれぞれ管路軸心方向に各2組反対向きに並
設した多段テレスコピックシリンダで管路法線方向へ伸
縮可能とすると共に、前記シリンダをジンバル機構部材
で支承して管路軸心方向と曲管路曲率半径方向へ調心,
歳差運動可能とした検査用センサ走査機構部と、を備え
たことを特徴とする。
In order to achieve the above object, the in-pipe running inspection device according to the present invention is a frame in which drive wheels are arranged at the ridge angle positions of a tetrahedron and radially project from the center. 2 sets of pantographs are bent so that they can be bent, and cylinders are arranged on both sides of each of the 2 sets of pantograph mechanisms to connect them to each other to make it possible to open and close significantly. A traveling device that can be driven in the pipeline axis direction by inserting and fixing the swivel drive section of the sensor scanning mechanism section, and two sets of inspection sensor sections that are arranged in opposite directions, respectively. The two stages each of which are arranged side by side in opposite directions make it possible to expand and contract in the normal direction of the pipeline, and the gimbal mechanism member supports the cylinders in the axial direction of the pipeline and the radius of curvature of the curved pipeline. Alignment,
And an inspection sensor scanning mechanism capable of precession.

【0006】[0006]

【作用】狭隘開口部より搬入する場合は、走行装置のシ
リンダを伸長操作して交叉パンタグラフ状部の閉作動に
より駆動輪を最閉状態にし、かつ検査用センサ走査機構
部を駆動輪に対し直交位置旋回設定した後、多段テレス
コピックシリンダを収縮操作して検査用センサ部を最縮
状態にする。搬入後に大口径配管内を走行検査する場合
は、走行装置のシリンダを収縮操作して交叉パンタグラ
フ状部の開作動により駆動輪を配管内面へ押圧保持状態
にして追従走行し、かつ検査用センサ部を多段テレスコ
ピックシリンダの伸長操作で配管内面両側へ押圧調心追
従させて旋回駆動部で旋回走査し、曲管部では中心部の
ジンバル機構部材にて歳差運動旋回走査する。
When loading from a narrow opening, the cylinder of the traveling device is extended to close the cross pantograph-like portion to bring the drive wheel into the closed state, and the inspection sensor scanning mechanism is orthogonal to the drive wheel. After setting the position rotation, the multistage telescopic cylinder is contracted to bring the inspection sensor unit to the most contracted state. When inspecting the inside of a large-diameter pipe after carrying it in, the cylinder of the traveling device is contracted to open the cross pantograph-shaped part so that the drive wheels can be pressed and held against the inner surface of the pipe, and the inspection sensor part can be followed. By the extension operation of the multistage telescopic cylinder, the center of the gimbal mechanism member at the center of the curved tube section is subjected to precession swivel scanning by causing the swivel drive section to press and align both sides of the inner surface of the pipe.

【0007】[0007]

【実施例】以下、本発明の一実施例を図1〜図4を用い
て説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.

【0008】図1において、1は走行装置で、7は該走
行装置1に連結された検査用センサ走査機構部(検査ユ
ニット)である。
In FIG. 1, 1 is a traveling device, and 7 is an inspection sensor scanning mechanism unit (inspection unit) connected to the traveling device 1.

【0009】走行装置1は、四面体の稜角位置に駆動装
置(モータ,減速機等)内蔵の駆動輪1a〜1bが配設
され、中心部のコア部材3より放射状に張り出したステ
アリング駆動部(モータ,減速機等)内蔵のフレーム2
a〜2dにより交叉屈曲可能に支承され、反対向きした
各2組のフレーム2aと2b及び2cと2dが各支持部
材3a,3bと屈曲可能に連結された2組のリンク4a
と4b及び4cと4dによって交叉パンタグラフ状に開
閉可能に連結されてなる。
The traveling device 1 is provided with drive wheels 1a-1b with built-in drive devices (motors, speed reducers, etc.) at the ridge angle positions of a tetrahedron, and a steering drive portion (radially protruding from a core member 3 in the central portion). Frame 2 with built-in motor, speed reducer, etc.
Two sets of frames 4a, 2b and 2c, 2d, which are supported by a to 2d so as to be crossable and bendable, and which are opposed to each other, are bendably connected to the respective support members 3a, 3b.
And 4b and 4c and 4d are openably and closably connected in a cross pantograph shape.

【0010】前記リンク4aと4b及び4cと4dのそ
れぞれの両側には、図2にも示すように、中心位置で4
ヶ所のピン等で固持された保持部材5に保持されたガス
シリンダ6aと6b及び6cと6dが配設され、前記支
持部材3a及び3bとそれぞれ伸縮可能に連結され、前
記支持部材3a側には検査用センサ走査機構部7の旋回
駆動部8が挿設,固定され、管路軸心方向へ追動可能と
している。
On both sides of each of the links 4a and 4b and 4c and 4d, as shown in FIG.
Gas cylinders 6a and 6b and 6c and 6d, which are held by a holding member 5 that is fixedly held by pins or the like at various locations, are arranged and connected to the supporting members 3a and 3b so as to be expandable and contractible, and on the side of the supporting member 3a. The swivel drive unit 8 of the inspection sensor scanning mechanism unit 7 is inserted and fixed so that it can be driven in the axial direction of the pipeline.

【0011】検査用センサ走査機構部7は、図3及び図
4にも示すように、反対向きに配設した2組の検査用セ
ンサ部9a,9bをそれぞれ管路軸心方向に各2組反対
向きに並設した多段(3段以上)テレスコピックガスシ
リンダ10aと10b及び10cと10dで管路法線方
向へ伸縮可能とし、前記ガスシリンダ10a〜10dを
ジンバル機構部材11a,11bで支承して管路軸心方
向と曲管路曲率半径方向へ調心,歳差運動可能にしてい
る(図中矢印参照)。尚、ジンバル機構部材11aは前
記ガスシリンダ10a〜10dの歳差運動角度領域を拡
げるため反対向きした眼鏡フレーム状としている。
As shown in FIGS. 3 and 4, the inspection sensor scanning mechanism section 7 includes two sets of inspection sensor sections 9a and 9b arranged in opposite directions, two sets each in the axial direction of the pipeline. The multi-stage (3 or more stages) telescopic gas cylinders 10a and 10b and 10c and 10d arranged side by side in opposite directions can be expanded and contracted in the normal direction of the pipeline, and the gas cylinders 10a to 10d are supported by gimbal mechanism members 11a and 11b. Centering and precession are possible in the axial direction of the conduit and the radius of curvature of the curved conduit (see arrow in the figure). The gimbal mechanism member 11a has a shape of spectacle frame facing in the opposite direction in order to widen the precession movement angle region of the gas cylinders 10a to 10d.

【0012】前記検査用センサ部9a,9bは、検査用
センサ12a,12bをジンバル機構部材11c,11
dで管路面へ係合するように支承し、ジンバル機構部材
11cに設けた四つのガイドローラ13で管路軸心方向
へ調心,周方向走査容易としている。又、ガイドローラ
13は、走査距離計14と係合している。
The inspection sensor portions 9a and 9b are provided with the inspection sensors 12a and 12b as gimbal mechanism members 11c and 11b.
It is supported so as to be engaged with the conduit surface at d, and four guide rollers 13 provided on the gimbal mechanism member 11c facilitate alignment in the axial direction of the conduit and easy circumferential scanning. Further, the guide roller 13 is engaged with the scanning distance meter 14.

【0013】前記検査用センサ走査機構部7のジンバル
機構部材11aの先端部には、一部外形図示している目
視点検用ユニット15が取り付けられて走査面の目視点
検が行えるようにしている。
The gimbal mechanism member 11a of the inspection sensor scanning mechanism portion 7 has a visual inspection unit 15 attached to the tip of the gimbal mechanism member 11a so that a visual inspection of the scanning surface can be performed.

【0014】このように構成されるため、本管路内走行
検査装置を狭隘開口部より搬入する場合は、走行装置1
のガスシリンダ6a〜6dを伸長操作して交叉パンタグ
ラフ状部を二点鎖線に示すように全閉状態とすると共
に、検査用センサ走査機構部7を管路軸心前方へ突出状
態にし、かつ検査用センサ走査機構部7を旋回駆動部8
にて駆動輪1a〜1bに対し直交位置旋回設定した後、
多段テレスコピックガスシリンダ10a〜10bを収縮
操作して検査用センサ部9a,9bを最縮状態にする。
Due to this structure, the traveling device 1 is used when the traveling inspection device in the main pipeline is carried in through the narrow opening.
The gas cylinders 6a to 6d are extended so that the cross pantograph-like portion is fully closed as shown by the chain double-dashed line, and the inspection sensor scanning mechanism portion 7 is made to project to the front of the pipe axis and the inspection is performed. Sensor scanning mechanism section 7 for turning drive section 8
After setting the orthogonal position turning with respect to the drive wheels 1a to 1b with,
The multistage telescopic gas cylinders 10a to 10b are contracted to bring the inspection sensor units 9a and 9b into the most contracted state.

【0015】又、搬入後に大口径配管内で走行検査する
場合は、走行装置1のガスシリンダ6a〜6dを伸長操
作して交叉パンタグラフ状部の開作動により駆動輪1a
〜1bを配管内面へ押圧保持状態にして追従走行し、か
つ検査用センサ部9a,9bを多段テレスコピックガス
シリンダ10a〜10bの伸長操作で配管内面両側へ押
圧調心追従させて旋回駆動部8で旋回走査し、曲管部で
は中心部のジンバル機構部材11a,11bにて歳差運
動旋回走査する。
When carrying out a traveling inspection in a large-diameter pipe after loading, the drive wheels 1a are operated by extending the gas cylinders 6a to 6d of the traveling device 1 to open the cross pantograph-shaped portion.
˜1b are pressed and held on the inner surface of the pipe to follow, and the inspection sensor units 9a and 9b are pressed and aligned on both sides of the inner surface of the pipe by the extension operation of the multistage telescopic gas cylinders 10a to 10b. In the curved tube portion, the gimbal mechanism members 11a and 11b at the central portion of the curved tube portion perform the precession rotational scan.

【0016】[0016]

【発明の効果】以上説明したように本発明によれば、駆
動輪をパンダグラフ機構で大きく開閉させると共に検査
用センサ部を多段テレスコピックシリンダで大きく伸縮
させるように構成したので、狭隘開口部よりの搬入をも
可能とし、多種口径への追従走行検査を可能としてい
る。
As described above, according to the present invention, the drive wheel is opened and closed by the pandagraph mechanism, and the inspection sensor unit is expanded and contracted by the multistage telescopic cylinder. It can be carried in, and it is possible to perform follow-up running inspections of various diameters.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す管路内走行検査装置の
全体側面図である。
FIG. 1 is an overall side view of an in-pipe running inspection device showing an embodiment of the present invention.

【図2】同じく図1のA−A線矢視図である。FIG. 2 is a view taken along the line AA of FIG.

【図3】同じく検査用センサ走査機構部の正面図であ
る。
FIG. 3 is a front view of the inspection sensor scanning mechanism section.

【図4】同じく検査用センサ走査機構部の要部側面図で
ある。
FIG. 4 is a side view of an essential part of the inspection sensor scanning mechanism portion.

【図5】従来の管路内走行装置の全体鳥瞰図である。FIG. 5 is an overall bird's-eye view of a conventional traveling device in a pipeline.

【符号の説明】[Explanation of symbols]

1 走行装置 1a〜1d 駆動輪 2a〜2d フレーム 3a,3b 支持部材 4a〜4b リンク 5 保持部材 6a〜6b ガスシリンダ 7 検査用センサ走査機構部 8 旋回駆動部 9a,9b 検査用センサ部 10a〜10d 多段テレスコピックガスシリンダ 11a〜11c ジンバル機構部材 DESCRIPTION OF SYMBOLS 1 Traveling device 1a-1d Drive wheel 2a-2d Frame 3a, 3b Supporting member 4a-4b Link 5 Holding member 6a-6b Gas cylinder 7 Inspection sensor scanning mechanism part 8 Revolving drive part 9a, 9b Inspection sensor part 10a-10d Multi-stage telescopic gas cylinder 11a-11c Gimbal mechanism member

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 四面体の稜角位置に駆動輪を配設し、中
心部より放射状に張り出したフレームを各2組パンタグ
ラフ状に屈曲可能に交叉させ、各2組のパンタグラフ機
構のそれぞれ両側へシリンダを配設,連結して大幅開閉
可能とし、当該連結部のパンタグラフ先端部管路軸心位
置へ検査用センサ走査機構部の旋回駆動部を挿設,固定
して管路軸心方向へ追動可能とした走行装置と、反対向
きに配設した2組の検査用センサ部をそれぞれ管路軸心
方向に各2組反対向きに並設した多段テレスコピックシ
リンダで管路法線方向へ伸縮可能とすると共に、前記シ
リンダをジンバル機構部材で支承して管路軸心方向と曲
管路曲率半径方向へ調心,歳差運動可能とした検査用セ
ンサ走査機構部と、を備えたことを特徴とする管路内走
行検査装置。
1. A drive wheel is arranged at a ridge angle position of a tetrahedron, and two sets of frames radially projecting from a central portion are crossed so as to be bendable in a pantograph shape, and cylinders are provided on both sides of each two sets of pantograph mechanisms. Is installed and connected to make it possible to open and close significantly, and the swivel drive part of the inspection sensor scanning mechanism is inserted and fixed at the tip of the pantograph pipe line axis of the connection part, and driven in the pipe line axis direction It is possible to expand and contract in the normal direction of the pipeline with a multi-stage telescopic cylinder in which the traveling device that is made possible and two pairs of the inspection sensor portions that are arranged in opposite directions are arranged in parallel in the axial direction of the pipeline. And a sensor scanning mechanism portion for inspection, which supports the cylinder with a gimbal mechanism member and is capable of centering and precessing in the axial direction of the conduit and the radius of curvature of the curved conduit. In-pipe running inspection device.
JP7038096A 1995-02-27 1995-02-27 In-pipe running inspection device Expired - Fee Related JP3046921B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7038096A JP3046921B2 (en) 1995-02-27 1995-02-27 In-pipe running inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7038096A JP3046921B2 (en) 1995-02-27 1995-02-27 In-pipe running inspection device

Publications (2)

Publication Number Publication Date
JPH08233976A true JPH08233976A (en) 1996-09-13
JP3046921B2 JP3046921B2 (en) 2000-05-29

Family

ID=12515953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7038096A Expired - Fee Related JP3046921B2 (en) 1995-02-27 1995-02-27 In-pipe running inspection device

Country Status (1)

Country Link
JP (1) JP3046921B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314519C (en) * 2003-05-27 2007-05-09 哈尔滨工业大学 Six single driven-wheel space moving mechanism
JP2007263579A (en) * 2006-03-27 2007-10-11 Jfe Engineering Kk Intra-pipe inspection device
CN101818842A (en) * 2010-04-02 2010-09-01 浙江师范大学 Pipeline robot walking mechanism realizing walking by using self-locking
CN101961870A (en) * 2010-08-12 2011-02-02 燕山大学 Danger rescue and pipe parallel robot
CN102644831A (en) * 2012-04-27 2012-08-22 东北石油大学 Drive travelling mechanism of peristaltic pipeline robot
CN102979988A (en) * 2012-11-24 2013-03-20 西南石油大学 Initiative-driving spiral pipeline robot
CN104407107A (en) * 2014-11-29 2015-03-11 柳州铁道职业技术学院 Intelligent sewer detection system
GB2527904A (en) * 2014-05-01 2016-01-06 Ulc Robotics Inc System and method for pipeline maintenance
US10378992B2 (en) 2016-10-19 2019-08-13 Ulc Robotics, Inc. System and method for pipeline inspection
CN110307443A (en) * 2019-07-10 2019-10-08 集美工业学校 A kind of circular pipe inner wall detection device
CN110873258A (en) * 2019-11-26 2020-03-10 四川大学 Inner wall detection device and inner wall detection system
CN111283696A (en) * 2020-03-18 2020-06-16 广州万为石化科技有限公司 Pipeline inner wall thickness measuring robot
CN114542992A (en) * 2022-02-24 2022-05-27 成都秦川物联网科技股份有限公司 Natural gas pipe network metering working condition remote monitoring system based on Internet of things
KR20220089287A (en) * 2020-12-21 2022-06-28 한국수력원자력 주식회사 Corrosion detecting system in post-tensioning duct
CN115013639A (en) * 2022-06-10 2022-09-06 山东大学 Variable-length robot for jet cleaning of inner wall of pipeline

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314519C (en) * 2003-05-27 2007-05-09 哈尔滨工业大学 Six single driven-wheel space moving mechanism
JP2007263579A (en) * 2006-03-27 2007-10-11 Jfe Engineering Kk Intra-pipe inspection device
JP4707595B2 (en) * 2006-03-27 2011-06-22 Jfeエンジニアリング株式会社 In-pipe inspection device
CN101818842A (en) * 2010-04-02 2010-09-01 浙江师范大学 Pipeline robot walking mechanism realizing walking by using self-locking
CN101961870A (en) * 2010-08-12 2011-02-02 燕山大学 Danger rescue and pipe parallel robot
CN102644831A (en) * 2012-04-27 2012-08-22 东北石油大学 Drive travelling mechanism of peristaltic pipeline robot
CN102979988A (en) * 2012-11-24 2013-03-20 西南石油大学 Initiative-driving spiral pipeline robot
GB2527904B (en) * 2014-05-01 2021-03-24 Ulc Robotics Inc System and method for pipeline maintenance
GB2527904A (en) * 2014-05-01 2016-01-06 Ulc Robotics Inc System and method for pipeline maintenance
US9869420B2 (en) 2014-05-01 2018-01-16 Ulc Robotics, Inc. System and method for pipeline maintenance
CN104407107A (en) * 2014-11-29 2015-03-11 柳州铁道职业技术学院 Intelligent sewer detection system
US10378992B2 (en) 2016-10-19 2019-08-13 Ulc Robotics, Inc. System and method for pipeline inspection
CN110307443B (en) * 2019-07-10 2020-08-18 集美工业学校 Circular pipeline inner wall detection device
CN110307443A (en) * 2019-07-10 2019-10-08 集美工业学校 A kind of circular pipe inner wall detection device
CN110873258A (en) * 2019-11-26 2020-03-10 四川大学 Inner wall detection device and inner wall detection system
CN110873258B (en) * 2019-11-26 2024-04-12 四川大学 Inner wall detection device and inner wall detection system
CN111283696A (en) * 2020-03-18 2020-06-16 广州万为石化科技有限公司 Pipeline inner wall thickness measuring robot
CN111283696B (en) * 2020-03-18 2023-01-17 广州万为石化科技有限公司 Pipeline inner wall thickness measuring robot
KR20220089287A (en) * 2020-12-21 2022-06-28 한국수력원자력 주식회사 Corrosion detecting system in post-tensioning duct
CN114542992A (en) * 2022-02-24 2022-05-27 成都秦川物联网科技股份有限公司 Natural gas pipe network metering working condition remote monitoring system based on Internet of things
CN115013639A (en) * 2022-06-10 2022-09-06 山东大学 Variable-length robot for jet cleaning of inner wall of pipeline
CN115013639B (en) * 2022-06-10 2023-04-18 山东大学 Variable-length robot for jet cleaning of inner wall of pipeline

Also Published As

Publication number Publication date
JP3046921B2 (en) 2000-05-29

Similar Documents

Publication Publication Date Title
JPH08233976A (en) Traveling device for inspecting inside of pipe conduit
EP0104655B1 (en) Ultrasonic flaw detector driving apparatus of a trackless type
CN113165710A (en) Robot for overhauling inside of pipe
CN106402576B (en) A kind of detecting robot of pipe
JPH0434449Y2 (en)
CN106051375A (en) Active steering device of pipe robot
US6104772A (en) Method and apparatus for introducing a self-propelled in-pipe manipulator into a pipeline
JPH0257974A (en) Travel apparatus in pipe
CN206177891U (en) Outside of tubes circumferential weld is swept and is looked into ware
JPS6120843A (en) Travelling instrument for inspecting inside pipe
JPH09192888A (en) Holding device for welding of bent pipe
JPH03154767A (en) Internal polishing device for pipe
JPH102888A (en) Automatic flow detection apparatus for piping
JP2617137B2 (en) In-pipe drive trolley
JPH07309228A (en) Inline traveling device
JPS61250553A (en) Trackless type scanning apparatus for inspecting pipe
CN103063688A (en) Detection device for pipe corrosion conditions
JP3600296B2 (en) Hemispherical tube sheet positioning device
JP2500739B2 (en) Self-propelled device in pipeline
JPH0518667B2 (en)
CN220152178U (en) Inner wall detection device for gas pipeline
JPH06123402A (en) Running device for inspecting inside of piping
JP2987828B2 (en) Piping method of cable protection tube and moving device for laying in tunnel
JPH03204368A (en) In-pipe running device
JPH06206538A (en) Self-propelling device in pipe line

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000222

LAPS Cancellation because of no payment of annual fees