JPH08233976A - Traveling device for inspecting inside of pipe conduit - Google Patents
Traveling device for inspecting inside of pipe conduitInfo
- Publication number
- JPH08233976A JPH08233976A JP7038096A JP3809695A JPH08233976A JP H08233976 A JPH08233976 A JP H08233976A JP 7038096 A JP7038096 A JP 7038096A JP 3809695 A JP3809695 A JP 3809695A JP H08233976 A JPH08233976 A JP H08233976A
- Authority
- JP
- Japan
- Prior art keywords
- pipe conduit
- inspection
- scanning mechanism
- pipe
- conduit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Manipulator (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、原子力プラント主冷却
系配管等の管内の検査に適用される管路内走行検査装置
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an in-pipe running inspection device applied to an inspection of pipes such as main cooling system pipes of a nuclear power plant.
【0002】[0002]
【従来の技術】従来の管路内走行検査装置は、図6に示
すように、駆動輪102押付用のガスシリンダ103を
パンタグラフ104の交叉部軸心位置へ対向配設してな
る、往路及び復路案内用の二台の走行車(4WD・4W
S方式)100間に検査ユニットとしての検査車101
を連結したタンデム方式である。2. Description of the Related Art As shown in FIG. 6, a conventional in-pipe running inspection apparatus has a gas cylinder 103 for pushing a drive wheel 102, which is disposed opposite to the axial center position of a cross section of a pantograph 104. Two traveling vehicles (4WD and 4W) for returning guidance
Inspection system 101 as an inspection unit between S system 100
It is a tandem system in which
【0003】[0003]
【発明が解決しようとする課題】ところで、原子力プラ
ントの主冷却系配管内へのアクセスルートとしては、蒸
気発生器のマンホール側からが最も簡便である。ところ
が、マンホール口径が約Φ400mmであるのに対し、
主冷却系配管の内径が約Φ700〜Φ800mmである
ため、押付追従が配管口径(D)±10%D程度しか許
容できない従来の管路内走行検査装置ではアクセス不可
能であるという問題点があった。The access route into the main cooling system piping of a nuclear power plant is most convenient from the manhole side of the steam generator. However, while the manhole diameter is about Φ400 mm,
Since the inner diameter of the main cooling system pipe is about Φ700 to Φ800 mm, there is a problem that it cannot be accessed by the conventional in-pipe running inspection device which can only allow the pipe diameter (D) ± 10% D to follow the pressing. It was
【0004】そこで、本発明の目的は、多種口径への追
従走行検査が可能で原子力プラントの主冷却系配管に最
適な管路内走行検査装置を提供することにある。Therefore, an object of the present invention is to provide an in-pipe running inspection device which is capable of performing running inspections of various diameters and which is optimum for main cooling system piping of a nuclear power plant.
【0005】[0005]
【課題を解決するための手段】上記目的を達成するため
に、本発明に係る管路内走行検査装置は、四面体の稜角
位置に駆動輪を配設し、中心部より放射状に張り出した
フレームを各2組パンタグラフ状に屈曲可能に交叉さ
せ、各2組のパンタグラフ機構のそれぞれ両側へシリン
ダを配設,連結して大幅開閉可能とし、当該連結部のパ
ンタグラフ先端部管路軸心位置へ検査用センサ走査機構
部の旋回駆動部を挿設,固定して管路軸心方向へ追動可
能とした走行装置と、反対向きに配設した2組の検査用
センサ部をそれぞれ管路軸心方向に各2組反対向きに並
設した多段テレスコピックシリンダで管路法線方向へ伸
縮可能とすると共に、前記シリンダをジンバル機構部材
で支承して管路軸心方向と曲管路曲率半径方向へ調心,
歳差運動可能とした検査用センサ走査機構部と、を備え
たことを特徴とする。In order to achieve the above object, the in-pipe running inspection device according to the present invention is a frame in which drive wheels are arranged at the ridge angle positions of a tetrahedron and radially project from the center. 2 sets of pantographs are bent so that they can be bent, and cylinders are arranged on both sides of each of the 2 sets of pantograph mechanisms to connect them to each other to make it possible to open and close significantly. A traveling device that can be driven in the pipeline axis direction by inserting and fixing the swivel drive section of the sensor scanning mechanism section, and two sets of inspection sensor sections that are arranged in opposite directions, respectively. The two stages each of which are arranged side by side in opposite directions make it possible to expand and contract in the normal direction of the pipeline, and the gimbal mechanism member supports the cylinders in the axial direction of the pipeline and the radius of curvature of the curved pipeline. Alignment,
And an inspection sensor scanning mechanism capable of precession.
【0006】[0006]
【作用】狭隘開口部より搬入する場合は、走行装置のシ
リンダを伸長操作して交叉パンタグラフ状部の閉作動に
より駆動輪を最閉状態にし、かつ検査用センサ走査機構
部を駆動輪に対し直交位置旋回設定した後、多段テレス
コピックシリンダを収縮操作して検査用センサ部を最縮
状態にする。搬入後に大口径配管内を走行検査する場合
は、走行装置のシリンダを収縮操作して交叉パンタグラ
フ状部の開作動により駆動輪を配管内面へ押圧保持状態
にして追従走行し、かつ検査用センサ部を多段テレスコ
ピックシリンダの伸長操作で配管内面両側へ押圧調心追
従させて旋回駆動部で旋回走査し、曲管部では中心部の
ジンバル機構部材にて歳差運動旋回走査する。When loading from a narrow opening, the cylinder of the traveling device is extended to close the cross pantograph-like portion to bring the drive wheel into the closed state, and the inspection sensor scanning mechanism is orthogonal to the drive wheel. After setting the position rotation, the multistage telescopic cylinder is contracted to bring the inspection sensor unit to the most contracted state. When inspecting the inside of a large-diameter pipe after carrying it in, the cylinder of the traveling device is contracted to open the cross pantograph-shaped part so that the drive wheels can be pressed and held against the inner surface of the pipe, and the inspection sensor part can be followed. By the extension operation of the multistage telescopic cylinder, the center of the gimbal mechanism member at the center of the curved tube section is subjected to precession swivel scanning by causing the swivel drive section to press and align both sides of the inner surface of the pipe.
【0007】[0007]
【実施例】以下、本発明の一実施例を図1〜図4を用い
て説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS.
【0008】図1において、1は走行装置で、7は該走
行装置1に連結された検査用センサ走査機構部(検査ユ
ニット)である。In FIG. 1, 1 is a traveling device, and 7 is an inspection sensor scanning mechanism unit (inspection unit) connected to the traveling device 1.
【0009】走行装置1は、四面体の稜角位置に駆動装
置(モータ,減速機等)内蔵の駆動輪1a〜1bが配設
され、中心部のコア部材3より放射状に張り出したステ
アリング駆動部(モータ,減速機等)内蔵のフレーム2
a〜2dにより交叉屈曲可能に支承され、反対向きした
各2組のフレーム2aと2b及び2cと2dが各支持部
材3a,3bと屈曲可能に連結された2組のリンク4a
と4b及び4cと4dによって交叉パンタグラフ状に開
閉可能に連結されてなる。The traveling device 1 is provided with drive wheels 1a-1b with built-in drive devices (motors, speed reducers, etc.) at the ridge angle positions of a tetrahedron, and a steering drive portion (radially protruding from a core member 3 in the central portion). Frame 2 with built-in motor, speed reducer, etc.
Two sets of frames 4a, 2b and 2c, 2d, which are supported by a to 2d so as to be crossable and bendable, and which are opposed to each other, are bendably connected to the respective support members 3a, 3b.
And 4b and 4c and 4d are openably and closably connected in a cross pantograph shape.
【0010】前記リンク4aと4b及び4cと4dのそ
れぞれの両側には、図2にも示すように、中心位置で4
ヶ所のピン等で固持された保持部材5に保持されたガス
シリンダ6aと6b及び6cと6dが配設され、前記支
持部材3a及び3bとそれぞれ伸縮可能に連結され、前
記支持部材3a側には検査用センサ走査機構部7の旋回
駆動部8が挿設,固定され、管路軸心方向へ追動可能と
している。On both sides of each of the links 4a and 4b and 4c and 4d, as shown in FIG.
Gas cylinders 6a and 6b and 6c and 6d, which are held by a holding member 5 that is fixedly held by pins or the like at various locations, are arranged and connected to the supporting members 3a and 3b so as to be expandable and contractible, and on the side of the supporting member 3a. The swivel drive unit 8 of the inspection sensor scanning mechanism unit 7 is inserted and fixed so that it can be driven in the axial direction of the pipeline.
【0011】検査用センサ走査機構部7は、図3及び図
4にも示すように、反対向きに配設した2組の検査用セ
ンサ部9a,9bをそれぞれ管路軸心方向に各2組反対
向きに並設した多段(3段以上)テレスコピックガスシ
リンダ10aと10b及び10cと10dで管路法線方
向へ伸縮可能とし、前記ガスシリンダ10a〜10dを
ジンバル機構部材11a,11bで支承して管路軸心方
向と曲管路曲率半径方向へ調心,歳差運動可能にしてい
る(図中矢印参照)。尚、ジンバル機構部材11aは前
記ガスシリンダ10a〜10dの歳差運動角度領域を拡
げるため反対向きした眼鏡フレーム状としている。As shown in FIGS. 3 and 4, the inspection sensor scanning mechanism section 7 includes two sets of inspection sensor sections 9a and 9b arranged in opposite directions, two sets each in the axial direction of the pipeline. The multi-stage (3 or more stages) telescopic gas cylinders 10a and 10b and 10c and 10d arranged side by side in opposite directions can be expanded and contracted in the normal direction of the pipeline, and the gas cylinders 10a to 10d are supported by gimbal mechanism members 11a and 11b. Centering and precession are possible in the axial direction of the conduit and the radius of curvature of the curved conduit (see arrow in the figure). The gimbal mechanism member 11a has a shape of spectacle frame facing in the opposite direction in order to widen the precession movement angle region of the gas cylinders 10a to 10d.
【0012】前記検査用センサ部9a,9bは、検査用
センサ12a,12bをジンバル機構部材11c,11
dで管路面へ係合するように支承し、ジンバル機構部材
11cに設けた四つのガイドローラ13で管路軸心方向
へ調心,周方向走査容易としている。又、ガイドローラ
13は、走査距離計14と係合している。The inspection sensor portions 9a and 9b are provided with the inspection sensors 12a and 12b as gimbal mechanism members 11c and 11b.
It is supported so as to be engaged with the conduit surface at d, and four guide rollers 13 provided on the gimbal mechanism member 11c facilitate alignment in the axial direction of the conduit and easy circumferential scanning. Further, the guide roller 13 is engaged with the scanning distance meter 14.
【0013】前記検査用センサ走査機構部7のジンバル
機構部材11aの先端部には、一部外形図示している目
視点検用ユニット15が取り付けられて走査面の目視点
検が行えるようにしている。The gimbal mechanism member 11a of the inspection sensor scanning mechanism portion 7 has a visual inspection unit 15 attached to the tip of the gimbal mechanism member 11a so that a visual inspection of the scanning surface can be performed.
【0014】このように構成されるため、本管路内走行
検査装置を狭隘開口部より搬入する場合は、走行装置1
のガスシリンダ6a〜6dを伸長操作して交叉パンタグ
ラフ状部を二点鎖線に示すように全閉状態とすると共
に、検査用センサ走査機構部7を管路軸心前方へ突出状
態にし、かつ検査用センサ走査機構部7を旋回駆動部8
にて駆動輪1a〜1bに対し直交位置旋回設定した後、
多段テレスコピックガスシリンダ10a〜10bを収縮
操作して検査用センサ部9a,9bを最縮状態にする。Due to this structure, the traveling device 1 is used when the traveling inspection device in the main pipeline is carried in through the narrow opening.
The gas cylinders 6a to 6d are extended so that the cross pantograph-like portion is fully closed as shown by the chain double-dashed line, and the inspection sensor scanning mechanism portion 7 is made to project to the front of the pipe axis and the inspection is performed. Sensor scanning mechanism section 7 for turning drive section 8
After setting the orthogonal position turning with respect to the drive wheels 1a to 1b with,
The multistage telescopic gas cylinders 10a to 10b are contracted to bring the inspection sensor units 9a and 9b into the most contracted state.
【0015】又、搬入後に大口径配管内で走行検査する
場合は、走行装置1のガスシリンダ6a〜6dを伸長操
作して交叉パンタグラフ状部の開作動により駆動輪1a
〜1bを配管内面へ押圧保持状態にして追従走行し、か
つ検査用センサ部9a,9bを多段テレスコピックガス
シリンダ10a〜10bの伸長操作で配管内面両側へ押
圧調心追従させて旋回駆動部8で旋回走査し、曲管部で
は中心部のジンバル機構部材11a,11bにて歳差運
動旋回走査する。When carrying out a traveling inspection in a large-diameter pipe after loading, the drive wheels 1a are operated by extending the gas cylinders 6a to 6d of the traveling device 1 to open the cross pantograph-shaped portion.
˜1b are pressed and held on the inner surface of the pipe to follow, and the inspection sensor units 9a and 9b are pressed and aligned on both sides of the inner surface of the pipe by the extension operation of the multistage telescopic gas cylinders 10a to 10b. In the curved tube portion, the gimbal mechanism members 11a and 11b at the central portion of the curved tube portion perform the precession rotational scan.
【0016】[0016]
【発明の効果】以上説明したように本発明によれば、駆
動輪をパンダグラフ機構で大きく開閉させると共に検査
用センサ部を多段テレスコピックシリンダで大きく伸縮
させるように構成したので、狭隘開口部よりの搬入をも
可能とし、多種口径への追従走行検査を可能としてい
る。As described above, according to the present invention, the drive wheel is opened and closed by the pandagraph mechanism, and the inspection sensor unit is expanded and contracted by the multistage telescopic cylinder. It can be carried in, and it is possible to perform follow-up running inspections of various diameters.
【図1】本発明の一実施例を示す管路内走行検査装置の
全体側面図である。FIG. 1 is an overall side view of an in-pipe running inspection device showing an embodiment of the present invention.
【図2】同じく図1のA−A線矢視図である。FIG. 2 is a view taken along the line AA of FIG.
【図3】同じく検査用センサ走査機構部の正面図であ
る。FIG. 3 is a front view of the inspection sensor scanning mechanism section.
【図4】同じく検査用センサ走査機構部の要部側面図で
ある。FIG. 4 is a side view of an essential part of the inspection sensor scanning mechanism portion.
【図5】従来の管路内走行装置の全体鳥瞰図である。FIG. 5 is an overall bird's-eye view of a conventional traveling device in a pipeline.
1 走行装置 1a〜1d 駆動輪 2a〜2d フレーム 3a,3b 支持部材 4a〜4b リンク 5 保持部材 6a〜6b ガスシリンダ 7 検査用センサ走査機構部 8 旋回駆動部 9a,9b 検査用センサ部 10a〜10d 多段テレスコピックガスシリンダ 11a〜11c ジンバル機構部材 DESCRIPTION OF SYMBOLS 1 Traveling device 1a-1d Drive wheel 2a-2d Frame 3a, 3b Supporting member 4a-4b Link 5 Holding member 6a-6b Gas cylinder 7 Inspection sensor scanning mechanism part 8 Revolving drive part 9a, 9b Inspection sensor part 10a-10d Multi-stage telescopic gas cylinder 11a-11c Gimbal mechanism member
Claims (1)
心部より放射状に張り出したフレームを各2組パンタグ
ラフ状に屈曲可能に交叉させ、各2組のパンタグラフ機
構のそれぞれ両側へシリンダを配設,連結して大幅開閉
可能とし、当該連結部のパンタグラフ先端部管路軸心位
置へ検査用センサ走査機構部の旋回駆動部を挿設,固定
して管路軸心方向へ追動可能とした走行装置と、反対向
きに配設した2組の検査用センサ部をそれぞれ管路軸心
方向に各2組反対向きに並設した多段テレスコピックシ
リンダで管路法線方向へ伸縮可能とすると共に、前記シ
リンダをジンバル機構部材で支承して管路軸心方向と曲
管路曲率半径方向へ調心,歳差運動可能とした検査用セ
ンサ走査機構部と、を備えたことを特徴とする管路内走
行検査装置。1. A drive wheel is arranged at a ridge angle position of a tetrahedron, and two sets of frames radially projecting from a central portion are crossed so as to be bendable in a pantograph shape, and cylinders are provided on both sides of each two sets of pantograph mechanisms. Is installed and connected to make it possible to open and close significantly, and the swivel drive part of the inspection sensor scanning mechanism is inserted and fixed at the tip of the pantograph pipe line axis of the connection part, and driven in the pipe line axis direction It is possible to expand and contract in the normal direction of the pipeline with a multi-stage telescopic cylinder in which the traveling device that is made possible and two pairs of the inspection sensor portions that are arranged in opposite directions are arranged in parallel in the axial direction of the pipeline. And a sensor scanning mechanism portion for inspection, which supports the cylinder with a gimbal mechanism member and is capable of centering and precessing in the axial direction of the conduit and the radius of curvature of the curved conduit. In-pipe running inspection device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7038096A JP3046921B2 (en) | 1995-02-27 | 1995-02-27 | In-pipe running inspection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7038096A JP3046921B2 (en) | 1995-02-27 | 1995-02-27 | In-pipe running inspection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08233976A true JPH08233976A (en) | 1996-09-13 |
JP3046921B2 JP3046921B2 (en) | 2000-05-29 |
Family
ID=12515953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7038096A Expired - Fee Related JP3046921B2 (en) | 1995-02-27 | 1995-02-27 | In-pipe running inspection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3046921B2 (en) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1314519C (en) * | 2003-05-27 | 2007-05-09 | 哈尔滨工业大学 | Six single driven-wheel space moving mechanism |
JP2007263579A (en) * | 2006-03-27 | 2007-10-11 | Jfe Engineering Kk | Intra-pipe inspection device |
CN101818842A (en) * | 2010-04-02 | 2010-09-01 | 浙江师范大学 | Pipeline robot walking mechanism realizing walking by using self-locking |
CN101961870A (en) * | 2010-08-12 | 2011-02-02 | 燕山大学 | Danger rescue and pipe parallel robot |
CN102644831A (en) * | 2012-04-27 | 2012-08-22 | 东北石油大学 | Drive travelling mechanism of peristaltic pipeline robot |
CN102979988A (en) * | 2012-11-24 | 2013-03-20 | 西南石油大学 | Initiative-driving spiral pipeline robot |
CN104407107A (en) * | 2014-11-29 | 2015-03-11 | 柳州铁道职业技术学院 | Intelligent sewer detection system |
GB2527904A (en) * | 2014-05-01 | 2016-01-06 | Ulc Robotics Inc | System and method for pipeline maintenance |
US10378992B2 (en) | 2016-10-19 | 2019-08-13 | Ulc Robotics, Inc. | System and method for pipeline inspection |
CN110307443A (en) * | 2019-07-10 | 2019-10-08 | 集美工业学校 | A kind of circular pipe inner wall detection device |
CN110873258A (en) * | 2019-11-26 | 2020-03-10 | 四川大学 | Inner wall detection device and inner wall detection system |
CN111283696A (en) * | 2020-03-18 | 2020-06-16 | 广州万为石化科技有限公司 | Pipeline inner wall thickness measuring robot |
CN114542992A (en) * | 2022-02-24 | 2022-05-27 | 成都秦川物联网科技股份有限公司 | Natural gas pipe network metering working condition remote monitoring system based on Internet of things |
KR20220089287A (en) * | 2020-12-21 | 2022-06-28 | 한국수력원자력 주식회사 | Corrosion detecting system in post-tensioning duct |
CN115013639A (en) * | 2022-06-10 | 2022-09-06 | 山东大学 | Variable-length robot for jet cleaning of inner wall of pipeline |
-
1995
- 1995-02-27 JP JP7038096A patent/JP3046921B2/en not_active Expired - Fee Related
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1314519C (en) * | 2003-05-27 | 2007-05-09 | 哈尔滨工业大学 | Six single driven-wheel space moving mechanism |
JP2007263579A (en) * | 2006-03-27 | 2007-10-11 | Jfe Engineering Kk | Intra-pipe inspection device |
JP4707595B2 (en) * | 2006-03-27 | 2011-06-22 | Jfeエンジニアリング株式会社 | In-pipe inspection device |
CN101818842A (en) * | 2010-04-02 | 2010-09-01 | 浙江师范大学 | Pipeline robot walking mechanism realizing walking by using self-locking |
CN101961870A (en) * | 2010-08-12 | 2011-02-02 | 燕山大学 | Danger rescue and pipe parallel robot |
CN102644831A (en) * | 2012-04-27 | 2012-08-22 | 东北石油大学 | Drive travelling mechanism of peristaltic pipeline robot |
CN102979988A (en) * | 2012-11-24 | 2013-03-20 | 西南石油大学 | Initiative-driving spiral pipeline robot |
GB2527904B (en) * | 2014-05-01 | 2021-03-24 | Ulc Robotics Inc | System and method for pipeline maintenance |
GB2527904A (en) * | 2014-05-01 | 2016-01-06 | Ulc Robotics Inc | System and method for pipeline maintenance |
US9869420B2 (en) | 2014-05-01 | 2018-01-16 | Ulc Robotics, Inc. | System and method for pipeline maintenance |
CN104407107A (en) * | 2014-11-29 | 2015-03-11 | 柳州铁道职业技术学院 | Intelligent sewer detection system |
US10378992B2 (en) | 2016-10-19 | 2019-08-13 | Ulc Robotics, Inc. | System and method for pipeline inspection |
CN110307443B (en) * | 2019-07-10 | 2020-08-18 | 集美工业学校 | Circular pipeline inner wall detection device |
CN110307443A (en) * | 2019-07-10 | 2019-10-08 | 集美工业学校 | A kind of circular pipe inner wall detection device |
CN110873258A (en) * | 2019-11-26 | 2020-03-10 | 四川大学 | Inner wall detection device and inner wall detection system |
CN110873258B (en) * | 2019-11-26 | 2024-04-12 | 四川大学 | Inner wall detection device and inner wall detection system |
CN111283696A (en) * | 2020-03-18 | 2020-06-16 | 广州万为石化科技有限公司 | Pipeline inner wall thickness measuring robot |
CN111283696B (en) * | 2020-03-18 | 2023-01-17 | 广州万为石化科技有限公司 | Pipeline inner wall thickness measuring robot |
KR20220089287A (en) * | 2020-12-21 | 2022-06-28 | 한국수력원자력 주식회사 | Corrosion detecting system in post-tensioning duct |
CN114542992A (en) * | 2022-02-24 | 2022-05-27 | 成都秦川物联网科技股份有限公司 | Natural gas pipe network metering working condition remote monitoring system based on Internet of things |
CN115013639A (en) * | 2022-06-10 | 2022-09-06 | 山东大学 | Variable-length robot for jet cleaning of inner wall of pipeline |
CN115013639B (en) * | 2022-06-10 | 2023-04-18 | 山东大学 | Variable-length robot for jet cleaning of inner wall of pipeline |
Also Published As
Publication number | Publication date |
---|---|
JP3046921B2 (en) | 2000-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08233976A (en) | Traveling device for inspecting inside of pipe conduit | |
EP0104655B1 (en) | Ultrasonic flaw detector driving apparatus of a trackless type | |
CN113165710A (en) | Robot for overhauling inside of pipe | |
CN106402576B (en) | A kind of detecting robot of pipe | |
JPH0434449Y2 (en) | ||
CN106051375A (en) | Active steering device of pipe robot | |
US6104772A (en) | Method and apparatus for introducing a self-propelled in-pipe manipulator into a pipeline | |
JPH0257974A (en) | Travel apparatus in pipe | |
CN206177891U (en) | Outside of tubes circumferential weld is swept and is looked into ware | |
JPS6120843A (en) | Travelling instrument for inspecting inside pipe | |
JPH09192888A (en) | Holding device for welding of bent pipe | |
JPH03154767A (en) | Internal polishing device for pipe | |
JPH102888A (en) | Automatic flow detection apparatus for piping | |
JP2617137B2 (en) | In-pipe drive trolley | |
JPH07309228A (en) | Inline traveling device | |
JPS61250553A (en) | Trackless type scanning apparatus for inspecting pipe | |
CN103063688A (en) | Detection device for pipe corrosion conditions | |
JP3600296B2 (en) | Hemispherical tube sheet positioning device | |
JP2500739B2 (en) | Self-propelled device in pipeline | |
JPH0518667B2 (en) | ||
CN220152178U (en) | Inner wall detection device for gas pipeline | |
JPH06123402A (en) | Running device for inspecting inside of piping | |
JP2987828B2 (en) | Piping method of cable protection tube and moving device for laying in tunnel | |
JPH03204368A (en) | In-pipe running device | |
JPH06206538A (en) | Self-propelling device in pipe line |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20000222 |
|
LAPS | Cancellation because of no payment of annual fees |