JPH08233557A - Rotational information detector and drive controller using the same - Google Patents

Rotational information detector and drive controller using the same

Info

Publication number
JPH08233557A
JPH08233557A JP4026595A JP4026595A JPH08233557A JP H08233557 A JPH08233557 A JP H08233557A JP 4026595 A JP4026595 A JP 4026595A JP 4026595 A JP4026595 A JP 4026595A JP H08233557 A JPH08233557 A JP H08233557A
Authority
JP
Japan
Prior art keywords
diffraction grating
light
grating
side radial
radial diffraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4026595A
Other languages
Japanese (ja)
Inventor
Akira Ishizuka
公 石塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP4026595A priority Critical patent/JPH08233557A/en
Publication of JPH08233557A publication Critical patent/JPH08233557A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Transform (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE: To provide a rotational information detector in which the reduction in size, the simplification in a structure and high detecting accuracy are realized and a drive controller using the same. CONSTITUTION: A scale side radiating diffraction grating GT and body side radiating diffraction gratings GBS2, GBS3 disposed in parallel with the grating GT are used, the luminous flux from the source LGT is separated, deflected and synthesized by the diffraction, the generated interference light is detected by a photodetector SA to detect the relative rotational information of an article. In this case, the grating pitches of the scale side grating and the body side grating and the order of the diffraction of the used diffraction light are N1, N2, N3 and n1, n2, n3 in the incident order of the fluxes, and so set as to satisfy N1×n1+N2×n2+N3×n3=0.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は回転情報検出装置及びこ
れを用いたドライブ制御装置に関する。本発明は、相対
回転物体に取り付けられたディスクの放射状回折格子に
光束を照射して、そこから得られる位相変調信号光を検
出することで、ディスクの回転位置、回転位置ずれ量、
回転位置ずれ方向、回転速度、回転加速度等を検出する
ロータリーエンコーダに特に良好に適用できるものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotation information detecting device and a drive control device using the same. The present invention irradiates a radial diffraction grating of a disk attached to a relative rotating object with a light beam, and detects a phase-modulated signal light obtained from the light beam, thereby detecting the rotational position of the disk, the rotational position shift amount,
The present invention can be applied particularly well to a rotary encoder that detects a rotational displacement direction, a rotational speed, a rotational acceleration, and the like.

【0002】[0002]

【従来の技術】従来より、物体の回転情報(回転変位
量、速度、加速度等)を高精度に測定する目的にインク
リメンタルロータリーエンコーダが利用されている。
2. Description of the Related Art Conventionally, an incremental rotary encoder has been used for the purpose of highly accurately measuring rotation information (rotational displacement amount, speed, acceleration, etc.) of an object.

【0003】高精度なインクリメンタルリニアエンコー
ダは、ミクロンオーダの微細な格子をスケール上に記録
したものに、単色光束を照明し、そこで得られる回折光
のうち、少なくとも2つを取り出して干渉させること
で、格子の移動にともなう光量の周期的変化を作り出し
て、それを光電素子で検出することでインクリメンタル
エンコーダ信号を出力している。
A high-precision incremental linear encoder illuminates a monochromatic light flux on a micrometer-order fine grating recorded on a scale, extracts at least two of the diffracted light obtained there, and causes them to interfere with each other. , An incremental encoder signal is output by creating a periodic change in the amount of light with the movement of the grating and detecting it with a photoelectric element.

【0004】[0004]

【発明が解決しようとしている課題】さて、最近の動向
としてロータリーエンコーダの小型化(EX.Φ10ミリ
のディスク)が求められているが、上記のように小型化
したリニアエンコーダの原理そのものをロータリーエン
コーダに利用することは、構成が異なるために困難であ
った。特にこのような原理をロータリーエンコーダに採
用するにおいて、精度良く回折光を干渉させるようにし
た具体的構成が存在しなかった。
As a recent trend, there is a demand for miniaturization of a rotary encoder (EX.Φ10 mm disc). The principle of the miniaturized linear encoder as described above is the rotary encoder. However, it was difficult to use it for different configurations. In particular, when adopting such a principle in a rotary encoder, there has been no specific configuration for accurately interfering diffracted light.

【0005】本発明は、上述に鑑みて、小型化、構成の
簡素化と高検出精度を実現した回転情報検出装置とこれ
を用いたドライブ制御装置を提供することを目的とす
る。
In view of the above, it is an object of the present invention to provide a rotation information detecting device that realizes downsizing, simplification of configuration, and high detection accuracy, and a drive control device using the same.

【0006】[0006]

【課題を解決するための手段】上述目的を達成するため
の第1発明は、相対回転情報を検出すべき物体に設けら
れるスケール側放射状回折格子と、該放射状回折格子に
平行に配置された1つ乃至複数の本体側放射状回折格子
と、本体側に設けられた光源手段及び受光手段とを有
し、前記スケール側放射状回折格子と前記本体側放射状
回折格子とを用いて前記光源手段からの光束の回折によ
る分離、偏向、合成を行って発生した干渉光を前記受光
手段で検出して前記物体の相対回転情報が検出されるよ
うに配置され、かつ前記スケール側放射状回折格子と前
記本体側放射状回折格子の一周相当の格子本数を光束の
入射順にN1、N2、N3、前記スケール側放射状回折格子と
前記本体側放射状回折格子から出射する使用回折光の回
折次数を光束の出射順にn1、n2、n3として、N1・n1+N2
・n2+N3・n3=0を満たすように光路が構成されているこ
とを特徴とする回転情報検出装置である。
A first aspect of the present invention for achieving the above object is to provide a scale-side radial diffraction grating provided on an object whose relative rotation information is to be detected, and a scale-side radial diffraction grating arranged parallel to the radial diffraction grating. A plurality of main body side radial diffraction gratings, a light source means and a light receiving means provided on the main body side, and the light flux from the light source means using the scale side radial diffraction grating and the main body side radial diffraction grating. Are arranged so that the relative light information of the object can be detected by detecting the interference light generated by separating, deflecting and combining by the diffraction of the scale side radial diffraction grating and the body side radial direction. The number of gratings corresponding to one round of the diffraction grating is N1, N2, N3 in the order of incidence of the light flux, and the diffraction order of the diffracted light used from the scale-side radial diffraction grating and the body-side radial diffraction grating is the order of emission of the light flux. As n1, n2, n3, N1 · n1 + N2
The rotation information detecting device is characterized in that the optical path is configured so as to satisfy n2 + N3 · n3 = 0.

【0007】また、第2発明は更に、前記スケール側放
射状回折格子と前記本体側放射状回折格子とが位相型回
折格子であることを特徴とする。
The second invention is further characterized in that the scale side radial diffraction grating and the main body side radial diffraction grating are phase type diffraction gratings.

【0008】また、第3発明は、上述の回転情報検出装
置の検出した相対回転情報を用いて、前記物体の相対回
転駆動制御を行うドライブ制御装置である。
A third aspect of the present invention is a drive control device for performing relative rotation drive control of the object using the relative rotation information detected by the rotation information detection device.

【0009】[0009]

【実施例】図1〜3は、本発明の第1の実施例に係るロ
ータリーエンコーダの説明図である。図1は、本実施例
の装置の光学配置図、図2は同装置の光路模式図、図3
は同装置におけるパターンの形状を示す図である。図中
ディスクDと、その上に形成されているパターン以外の
全ての部材は、固定側である不図示の装置本体に固定配
置されており、ディスクDは、シャフト等の不図示の回
動部材にディスク中心を回動中心に合わせて設置されて
いる。
1 to 3 are explanatory views of a rotary encoder according to a first embodiment of the present invention. FIG. 1 is an optical layout diagram of the apparatus of this embodiment, FIG. 2 is a schematic optical path diagram of the apparatus, and FIG.
FIG. 3 is a diagram showing a shape of a pattern in the same device. In the figure, all members except the disk D and the pattern formed thereon are fixedly arranged on the apparatus main body (not shown) on the fixed side, and the disk D is a rotating member (not shown) such as a shaft. It is installed with the disk center aligned with the center of rotation.

【0010】LED等の光源LGTより射出された光束は、コ
リメータレンズLNSによって平行光束Rに変換され、相対
回転するディスクD上に照明される。
A light beam emitted from a light source LGT such as an LED is converted into a parallel light beam R by a collimator lens LNS and illuminated on a disk D which rotates relative to one another.

【0011】ディスクD上にはディスク中心を放射中心
とする透過型の放射状回折格子GT(一周相当の格子本数
がN1本/周)がディスクDの全周に亘って記録されてい
る。さらに装置本体におけるこの放射状回折格子の光束
出射側には、略ディスク中心を放射中心とする透過型の
放射状回折格子GBS2(一周相当の格子本数がN2本/
周)、及び同様に略ディスク中心を放射中心とする透過
型の放射状回折格子GBS3(一周相当の格子本数がN3本/
周)が、ディスクDに略平行に配置されている。回折格
子GBS2、GBS3はディスクDの全周に対して部分的に設け
られている。例えば回折格子GBS2がディスクDの全周の1
/12だけ形成されているとすると、回折格子GBS2の形成
本数はN2/12本となる。回折格子GT、GBS2、GBS3の具体
的パターン形状の例を図3に示す。
On the disk D, a transmissive radial diffraction grating GT (the number of gratings corresponding to one rotation is N1 / circle) having the disk center as the radiation center is recorded over the entire circumference of the disk D. Further, on the light emitting side of the radial diffraction grating in the main body of the apparatus, a transmission type radial diffraction grating GBS2 (the number of gratings corresponding to one round is N2 /
Circumference), and similarly, a transmission type radial diffraction grating GBS3 (where the number of gratings corresponding to one circumference is N3 /
Circumference) is arranged substantially parallel to the disk D. The diffraction gratings GBS2 and GBS3 are partially provided on the entire circumference of the disc D. For example, the diffraction grating GBS2 is 1
If only / 12 are formed, the number of diffraction gratings GBS2 formed will be N2 / 12. An example of a specific pattern shape of the diffraction gratings GT, GBS2, GBS3 is shown in FIG.

【0012】ここで回折格子GBS2、GBS3および放射格
子GTは、望ましくは、ラメラ格子で0次回折光が発生し
ないような微細構造を有している。
Here, the diffraction gratings GBS2, GBS3 and the radiation grating GT preferably have a fine structure so that the 0th order diffracted light is not generated in the lamella grating.

【0013】平行光束Rを照射された放射状回折格子GT
(一周相当の格子本数N1本/周)からは+N1次回折光束R
+、-N1次回折光束R-が発生する。この回折光束R+、R-は
回折格子GBS2(一周相当の格子本数N2本/周)により、
それぞれ-n2次、+n2次回折されて光路を折曲げられて、
光束R+-、R-+になる。この光束R+-、R-+が交差する空間
上の点0に回折格子GBS3が配置されており、光束R+-、R
-+はこの回折格子GBS3(一周相当の格子本数N3本/周)
によりそれぞれ+n3次、-n3次回折されて光束R+-+、R-+-
になる。
Radial diffraction grating GT irradiated with parallel light flux R
From the number of gratings equivalent to one round N1 / circle, + N first-order diffracted light flux R
+, -N first-order diffracted light flux R- is generated. These diffracted light beams R + and R- are generated by the diffraction grating GBS2 (the number of gratings N2 per circle)
-N 2nd order and + n 2nd order are diffracted and the optical path is bent,
The luminous flux becomes R +-, R- +. The diffraction grating GBS3 is arranged at a point 0 on the space where the light fluxes R +-and R- + intersect, and the light fluxes R +-and R-
-+ Is this diffraction grating GBS3 (number of gratings equivalent to one round N3 / circle)
Are diffracted by + n3rd order and -n3rd order respectively, and luminous fluxes R +-+ and R-+-
become.

【0014】ここで、回折格子GT、GBS2、GBS3におけ
る一周相当の格子本数N1,N2,N3と、信号光に使用する回
折光の回折次数n1,n2,n3との関係が N1・n1+N2・n2+N3・n3=0 ...(1) (N1,N2,N3,n1,n2,n3は任意の自然数)を満たすように
光路が構成されているので、最終的に信号光として使用
される光束R+-+、R-+-は平行に重なりあって出射する。
この光束R+-+、R-+-は光路長が等しい状態で重ね合わさ
れており、互いに干渉して明暗信号として射出する。
Here, the relationship between the number of gratings N1, N2, N3 corresponding to one round in the diffraction gratings GT, GBS2, GBS3 and the diffraction orders n1, n2, n3 of the diffracted light used for the signal light is N1.n1 + N2.・ N2 + N3 ・ n3 = 0. . . (1) Since the optical path is configured so as to satisfy (N1, N2, N3, n1, n2, n3 are arbitrary natural numbers), the luminous flux R +-+, R-+-finally used as the signal light Are emitted in parallel with each other.
The light fluxes R +-+ and R-+-are overlapped with each other with the same optical path length, and interfere with each other to be emitted as a bright / dark signal.

【0015】以上の光路を模式したのが図2である。FIG. 2 schematically shows the above optical path.

【0016】回折格子GBS3から回折される光束R+-+、R
-+-は互いに光軸の光路を重なりあわせて光軸を互いに
平行になるように射出され、光源からのすべての光路の
対称性が保持されて互いに干渉する。
Light fluxes R +-+, R diffracted from the diffraction grating GBS3
-+-Are emitted so that the optical axes of the optical axes are overlapped with each other and the optical axes are parallel to each other, and the symmetry of all the optical paths from the light source is maintained and interfere with each other.

【0017】その際に、回折光R+-+はディスクの回転に
よって放射状回折格子GTが1ピッチ分移動すると、波面
の位相が+2πずれ、回折光R-+-はディスクDの回転に
よって放射状回折格子GTが1ピッチ分移動すると、波面
の位相が-2πずれる。そこで干渉光は、ディスクの回
転によって放射状回折格子GTが1ピッチ分移動すると、
明暗が正弦波状に2回変化する。
At this time, when the radial diffraction grating GT of the diffracted light R +-+ moves by one pitch due to the rotation of the disk, the phase of the wavefront is shifted by + 2π, and the diffracted light R-+-is rotated by the disk D. When the GT moves one pitch, the wavefront phase shifts by -2π. Therefore, when the radial diffraction grating GT moves by one pitch due to the rotation of the disk,
The light and dark changes twice in a sine wave.

【0018】ここで回折格子GBS3は、図3に示すよう
に、点P0を境界に、領域を4分割されていて、互いの
格子の配列の位相を1/8ピッチ分ずつずらして形成し
てある。従って、各領域から出射する干渉光束の干渉位
相(明暗の位相)は1/4周期ずつずれて正弦波状に2
回変化する。この各領域からの干渉光がそれぞれ受光素
子SA,SB,SバーA,SバーB に入射されるので、各受光素子
SA,SB,SバーA,SバーBからは1回転で2N1周期の互いに
1/4周期ずつずれた正弦波状アナログ信号電流が発生
する。この4つの周期信号を不図示の信号処理系で信号
処理して、回転量と回転方向が演算される。この時の回
転量及び回転方向の演算方法は良く知られているので、
説明は省略する。
Here, as shown in FIG. 3, the diffraction grating GBS3 is divided into four regions with the point P0 as a boundary, and the phases of the arrangement of the gratings are shifted by 1/8 pitch. is there. Therefore, the interference phase (brightness phase) of the interference light flux emitted from each region is shifted by 1/4 cycle and becomes 2 in a sinusoidal shape.
Change times. Since the interference light from each of these areas is incident on the light receiving elements SA, SB, S bar A, S bar B,
From SA, SB, S bar A, and S bar B, sinusoidal analog signal currents that are shifted by 1/4 cycle of 2N1 cycles are generated in one rotation. The four cyclic signals are signal-processed by a signal processing system (not shown) to calculate the rotation amount and the rotation direction. Since the method of calculating the rotation amount and the rotation direction at this time is well known,
Description is omitted.

【0019】ディスクDに照明される光束Rは広がりを持
っているため、放射状回折格子GTで回折して回折格子GB
S2に到達しても、2つの信号用回折光はほとんど重な
りあったまま回折格子GBS2、GBS3を経て受光素子SA,S
B,SバーA,SバーBへ導かれる。
Since the luminous flux R illuminating the disc D has a spread, it is diffracted by the radial diffraction grating GT and the diffraction grating GB
Even when the light reaches S2, the two signal diffracted lights are almost overlapped with each other and pass through the diffraction gratings GBS2 and GBS3 to receive the light receiving elements SA and S.
Guided to B, S bar A, S bar B.

【0020】たとえば照明する光束径が500μm、放射状
回折格子 本数N1=2500、ディスクD上の記録半径r=50
00μm、LED波長λ=0.86μmとすると、1次回折角θ
は、 θ=arcsin{λ・N1/(2πr)}=3.92° となる。この場合放射状回折格子GTと回折格子GBS2と
のギャップh=500μmとして、分離量=68.5μmである。
For example, the luminous flux diameter for illumination is 500 μm, the number of radial diffraction gratings is N1 = 2500, and the recording radius on the disc D is r = 50.
Assuming 00μm and LED wavelength λ = 0.86μm, first-order diffraction angle θ
Is θ = arcsin {λ · N1 / (2πr)} = 3.92 °. In this case, the gap between the radial diffraction grating GT and the diffraction grating GBS2 is h = 500 μm, and the separation amount is 68.5 μm.

【0021】以上述べた実施例においては、回折格子G
T、GBS2、GBS3における一周相当の格子本数N1,N2,N3
と、信号光に使用する回折光の回折次数n1,n2,n3との関
係が N1・n1+N2・n2+N3・n3=0 (N1,N2,N3,n1,n2,n3は任意の自然数)を満たすように
光路が構成されているので、放射状回折格子を用いた回
転情報検出において、ディスクDの近傍に設けた2枚の
回折格子によって簡単に安定した干渉光束が得られ、全
体的な装置構成の小型化も可能になる。特に、このよう
な条件を0次光を防止する構成の位相格子で達成するこ
とによって、これら回折格子を近接させた構成において
もノイズ光の発生を極力防止した高精度な回転検出が可
能になる。
In the embodiment described above, the diffraction grating G
Number of grids N1, N2, N3 corresponding to one round in T, GBS2, GBS3
And the relationship between the diffraction orders of the diffracted light used for the signal light, n1, n2, n3, is N1 ・ n1 + N2 ・ n2 + N3 ・ n3 = 0 (N1, N2, N3, n1, n2, n3 are any natural numbers. Since the optical path is configured so as to satisfy (1), in the rotation information detection using the radial diffraction grating, a stable interference light flux can be easily obtained by the two diffraction gratings provided in the vicinity of the disc D, and It is also possible to downsize the device configuration. In particular, by achieving such a condition with a phase grating configured to prevent 0th-order light, it is possible to perform highly accurate rotation detection while preventing the generation of noise light as much as possible even in the configuration in which these diffraction gratings are close to each other. .

【0022】図4〜6は本発明の第2の実施例に係るロ
ータリーエンコーダの説明図である。図4は、本実施例
の装置の光学配置図、図5は同装置の光路模式図、図6
は同装置におけるパターンの形状を示す図である。前出
と同様の部材は同じ符号を冠してある。
4 to 6 are explanatory views of a rotary encoder according to the second embodiment of the present invention. FIG. 4 is an optical layout diagram of the apparatus of this embodiment, FIG. 5 is a schematic optical path diagram of the apparatus, and FIG.
FIG. 3 is a diagram showing a shape of a pattern in the same device. The same members as those described above are given the same reference numerals.

【0023】本実施例においては、ディスクD上の放射
状回折格子GTによる反射回折光を利用する。すなわち、
第1実施例の光学系を一部変更して、放射状回折格子GT
を反射型の回折格子とし、放射状回折格子GTより反射回
折光を発生させ、回折格子GBS4により分離、合成を行わ
せて干渉信号光を受光素子に投影するように構成したも
のである。放射状回折格子GTは反射型の位相型回折格子
(好ましくは0次回折光が発生しないような微細構造を
有しているラメラ位相格子)であることを除けば、基本
的に第1の実施例のものと同様の構成である。
In this embodiment, the reflected diffracted light from the radial diffraction grating GT on the disk D is used. That is,
The radial diffraction grating GT is modified by partially modifying the optical system of the first embodiment.
Is a reflection type diffraction grating, and the diffraction diffraction light is generated from the radial diffraction grating GT, separated and combined by the diffraction grating GBS4, and the interference signal light is projected onto the light receiving element. The radial diffraction grating GT is basically the same as that of the first embodiment except that it is a reflection type phase diffraction grating (preferably a lamella phase grating having a fine structure that does not generate 0th-order diffracted light). It has the same configuration as the one.

【0024】LED等の光源LGTより射出された光束は、コ
リメータレンズLNS1によって平行光束Rにされ、半分の
光量がビームスプリッタBSを透過して回折格子GBS4に達
する。装置本体に設けられたこの回折格子GBS4(一周相
当の格子本数がN2本/周)は、略ディスク中心を放射中
心とする透過型の放射状回折格子であり、ディスクDに
略平行に配置されている。また回折格子GBS4はディスク
Dの全周に対して部分的に設けられている。ここで回折
格子GBS4は、望ましくは、ラメラ格子で0次回折光が発
生しないような微細構造を有している。
The light beam emitted from the light source LGT such as an LED is converted into a parallel light beam R by the collimator lens LNS1, and half the amount of light passes through the beam splitter BS and reaches the diffraction grating GBS4. This diffraction grating GBS4 (the number of gratings corresponding to one rotation is N2 / circle) provided in the main body of the device is a transmission type radial diffraction grating whose radiation center is substantially the center of the disc, and is arranged substantially parallel to the disc D. There is. The diffraction grating GBS4 is a disc
It is partially provided around the entire circumference of D. Here, the diffraction grating GBS4 preferably has a fine structure that does not generate 0th-order diffracted light in the lamella grating.

【0025】平行光束Rを照射された回折格子GBS4(一
周相当の格子本数N2本/周)からは+n2次の回折光R+
と、-n2次の回折光R-が発生して、それぞれ相対回転す
るディスクD上に照明される。
From the diffraction grating GBS4 (the number of gratings corresponding to one round N2 / circle) irradiated with the parallel light flux R, the + n second-order diffracted light R +
Then, -n second-order diffracted light R- is generated and illuminated on the disk D that rotates relative to each other.

【0026】ディスクD上には前述のように反射型の放
射状回折格子GT(一周相当の格子本数N1本/周)が記録
されている。
On the disk D, as described above, the reflection type radial diffraction grating GT (the number of gratings N1 / circle corresponding to one round) is recorded.

【0027】回折光R+、R-が照射された放射状回折格子
GT(一周相当の格子本数N1本/周)からはそれぞれ-N1
次、+N1次反射回折光束R+-、R-+を発生する。回折光束R
+-、R-+は、回折格子GBS4(一周相当の格子本数N2本/
周)によりそれぞれ+n2次、-n2次回折されて射出する。
Radial diffraction grating irradiated with diffracted lights R + and R-
-N1 from GT (N1 grid per lap / lap)
Next, + N first-order reflected diffracted light fluxes R +-and R- + are generated. Diffracted light flux R
+-, R- + are the diffraction grating GBS4 (the number of gratings corresponding to one round N2 /
(Circumference), the light is diffracted by + n2nd order and -n2nd order respectively and then emitted.

【0028】ここで、回折格子GT、GBS4における格子本
数N1,N2と、信号光に使用する回折光の回折次数n1,n2と
の関係が N2・n2+N1・n1+N2・n2=0 (N1,N2,n1,n2は任意の自然数)を満たすように光路が
構成されているので、最終的に信号光として使用される
光束R+-+、R-+-は平行に重なりあって互いに干渉する。
この光束R+-+、R-+-は光路長が等しい状態で重ね合わさ
れており、互いに干渉して明暗信号として射出する。
Here, the relationship between the number of gratings N1 and N2 in the diffraction gratings GT and GBS4 and the diffraction orders n1 and n2 of the diffracted light used for the signal light is N2.n2 + N1.n1 + N2.n2 = 0 ( N1, N2, n1, and n2 have an optical path that satisfies any natural number), so the light fluxes R +-+ and R-+-that are finally used as signal light overlap in parallel and interfere with each other. To do.
The light fluxes R +-+ and R-+-are overlapped with each other with the same optical path length, and interfere with each other to be emitted as a bright / dark signal.

【0029】以上の光路を模式したのが図5である。FIG. 5 schematically shows the above optical path.

【0030】回折格子GBS4から再回折される光束R+-+、
R-+-は互いに光軸の光路を重なりあわせて光軸を互いに
平行になるように射出され、光源からのすべての光路の
対称性が保持されて互いに干渉する。
Light flux R +-+ re-diffracted from the diffraction grating GBS4,
The R-+-are emitted so that the optical paths of the optical axes are overlapped with each other and the optical axes are parallel to each other, and the symmetry of all the optical paths from the light source is maintained and interfere with each other.

【0031】その際に、回折光R+-+はディスクDの回転
によって放射状回折格子GTが1ピッチ分移動すると、波
面の位相が+2πずれ、回折光R-+-はディスクDの回転
によって放射状回折格子が1ピッチ分移動すると、波面
の位相が-2πずれる。そこで干渉光は、ディスクの回
転によって放射状回折格子が1ピッチ分移動すると、明
暗が正弦波状に2回変化する。
At this time, when the radial diffraction grating GT moves by one pitch due to the rotation of the disk D, the diffracted light R +-+ is shifted in phase by + 2π, and the diffracted light R-+-is radially diffracted by the rotation of the disk D. When the grating moves by one pitch, the wavefront phase shifts by -2π. Therefore, the interference light changes its brightness twice in a sine wave shape when the radial diffraction grating moves by one pitch due to the rotation of the disk.

【0032】ここで回折格子GBS3は、図6に示すよう
に、点P0を境界に、領域を4分割されていて、互いの
格子の配列の位相を1/8ピッチ分ずつずらして形成し
てある。従って、各領域から出射する干渉光束の干渉位
相(明暗の位相)は1/4周期ずつずれて正弦波状に2
回変化する。この各領域からの干渉光がビームスプリッ
タBSで半分の光量だけ反射してそれぞれ受光素子SA,SB,
SバーA,SバーB に入射されるので、各受光素子SA,SB,S
バーA,SバーBからは1回転で2N周期の互いに1/4周
期ずつずれた正弦波状アナログ信号電流が発生する。こ
の4つの周期信号を不図示の信号処理系で信号処理し
て、回転量と回転方向が演算される。この時の回転量及
び回転方向の演算方法は良く知られているので、説明は
省略する。
As shown in FIG. 6, the diffraction grating GBS3 is divided into four regions with the point P0 as a boundary, and the phases of the grating arrangements are shifted by 1/8 pitch. is there. Therefore, the interference phase (brightness phase) of the interference light flux emitted from each region is shifted by 1/4 cycle and becomes 2 in a sinusoidal shape.
Change times. The interference light from each of these areas is reflected by the beam splitter BS by half the amount of light, and the light receiving elements SA, SB,
Since it is incident on S-bar A and S-bar B, each photodetector SA, SB, S
From the bar A and the bar B, sinusoidal analog signal currents of 2N cycles, which are deviated from each other by ¼ cycle, are generated in one rotation. The four cyclic signals are signal-processed by a signal processing system (not shown) to calculate the rotation amount and the rotation direction. Since the method of calculating the rotation amount and the rotation direction at this time is well known, the description thereof will be omitted.

【0033】ディスクDに照明される光束Rは広がりを持
っているため、回折格子GBS4で回折して放射状回折格子
GTに到達しても2つの回折光束はほとんど重なりあった
まま回折格子GBS4を経て受光素子SA,SB,SバーA,SバーB
へ導かれる。
Since the luminous flux R illuminating the disc D has a divergence, it is diffracted by the diffraction grating GBS4 and is then a radial diffraction grating.
Even after reaching the GT, the two diffracted light fluxes are almost overlapped and go through the diffraction grating GBS4 and then the light receiving elements SA, SB, S bar A, S bar B.
Be led to.

【0034】たとえば照明する光束径が500μm、放射状
回折格子GTの一周相当の本数N2=2500、ディスクD上の
記録半径r=5000μm、LED波長λ=0.86μmとすると、デ
ィスク照明光入射角θは、 θ=arcsin{λ・N2/(4πr)}=1.96° となる。放射状回折格子GTと回折格子GBSとのギャップh
=500μmとすると、分離量=34.2μmである。
For example, assuming that the illuminating luminous flux diameter is 500 μm, the number N2 of the radial diffraction grating GT corresponding to one round is N2 = 2500, the recording radius on the disc D is r = 5000 μm, and the LED wavelength is λ = 0.86 μm, the disc illumination light incident angle θ is , Θ = arcsin {λ · N2 / (4πr)} = 1.96 °. Gap between radial grating GT and grating GBS h
= 500 μm, the separation amount = 34.2 μm.

【0035】以上述べた実施例においては、回折格子G
T、GBS4における一周相当の格子本数N1,N2と、信号光に
使用する回折光の回折次数n1,n2との関係が N2・n2+N1・n1+N2・n2=0 (N1,N2,n1,n2は任意の自然数)を満たすように光路が
構成されているので、放射状回折格子を用いた回転情報
検出において、ディスクDの近傍に設けた1枚の回折格子
によって簡単に安定した干渉光束が得られ、全体的な装
置構成の小型化も可能になる。特に、このような条件を
0次光を防止する構成の位相格子で達成することによっ
て、これら回折格子を近接させた構成においてもノイズ
光の発生を極力防止した高精度な回転検出が可能にな
る。上述の式は、同じ回折格子を2回経由する方式のた
め、式(1)におけるN3・n3がN2・n2に置き換わり、順
番も異なったものとなっているが、実質的に式(1)と
同じものである。
In the embodiment described above, the diffraction grating G
The relationship between the number of gratings N1 and N2 corresponding to one round in T and GBS4 and the diffraction orders n1 and n2 of the diffracted light used for the signal light is N2 ・ n2 + N1 ・ n1 + N2 ・ n2 = 0 (N1, N2, n1 , n2 have an optical path configured to satisfy an arbitrary natural number), so that in the rotation information detection using the radial diffraction grating, a stable interference light flux can be easily generated by one diffraction grating provided near the disk D. As a result, the overall size of the device can be reduced. In particular, such conditions
By achieving this with a phase grating configured to prevent 0th-order light, it is possible to perform highly accurate rotation detection while preventing the generation of noise light even in the configuration in which these diffraction gratings are arranged close to each other. Since the above equation is a method of passing through the same diffraction grating twice, N3 · n3 in the equation (1) is replaced by N2 · n2, and the order is also different, but substantially the equation (1) Is the same as.

【0036】図7は本発明の第3実施例にかかるモータ
ードライバーシステムの概略構成図である。図中、DHは
前述した第1〜第2実施例のいずれかにおける光源LGT
から受光素子までのディスクDをのぞく全光学構成が配
置された検出ヘッド、PUは各受光素子からの出力を信号
処理して、インクリメンタルな回転量及び回転方向測定
を行い、制御信号を発生する信号処理回路、IMは信号処
理回路PUへ回転の指令入力を行う為の入力部、MDは信号
処理回路PUからの制御信号を受けてモータの駆動制御を
行うモータドライバー、MTはモータ、SFはモータに回転
駆動され、不図示の被駆動部に駆動力を伝達するシャフ
トである。
FIG. 7 is a schematic configuration diagram of a motor driver system according to a third embodiment of the present invention. In the figure, DH is the light source LGT in any of the above-described first and second embodiments.
A detection head in which all optical configurations except the disk D from the light receiving element to the light receiving element are arranged, and the PU processes the output from each light receiving element, performs incremental rotation amount and rotation direction measurement, and generates a control signal. Processing circuit, IM is an input section for inputting a rotation command to the signal processing circuit PU, MD is a motor driver that receives the control signal from the signal processing circuit PU and controls the drive of the motor, MT is a motor, SF is a motor It is a shaft that is rotationally driven to transmit the driving force to a driven part (not shown).

【0037】信号処理回路PUは各受光素子からの出力
と、入力部からの指令入力情報に基づいて制御信号を発
生し、これによりモータMTによるシャフトSFの回転駆動
が制御される。
The signal processing circuit PU generates a control signal based on the output from each light receiving element and the command input information from the input section, and thereby the rotational drive of the shaft SF by the motor MT is controlled.

【0038】前述のような構成により検出ヘッドDHが小
型化され、よりコンパクト化されたモータードライバー
システムが実現される。
With the above-described structure, the detection head DH is downsized, and a more compact motor driver system is realized.

【0039】その他以下の変更による光学系の変形が可
能である。 (1)全周記録しない場合は放射状回折格子の一周相当
の本数は整数である必要はなく、小数点以下がついても
よい。例えば第1の実施例のN2、N3、第2の実施例のN2
がこれに当たる。ちなみに、第1の実施例では、n1=+
1、n2=-1、n3=+1、N1=2500、N2=5000、N3=2500を想定し
ている。 (2)回折格子(第1の実施例ではGBS3、第2の実施
例ではGBS4)の分割数や位相ずらし量を変えてもよい
(2分割にして、互いの格子配列位相を90度ずらした
り、6分割にして60度ずつずらしたりすること等)。
In addition, the optical system can be modified by the following modifications. (1) When the entire circumference is not recorded, the number of the radial diffraction gratings corresponding to one round does not need to be an integer, and may be a number after the decimal point. For example, N2 and N3 of the first embodiment, N2 of the second embodiment
Corresponds to this. By the way, in the first embodiment, n1 = +
It is assumed that 1, n2 = -1, n3 = + 1, N1 = 2500, N2 = 5000, N3 = 2500. (2) The number of divisions of the diffraction grating (GBS3 in the first embodiment, GBS4 in the second embodiment) and the phase shift amount may be changed (two divisions, and the grating arrangement phases are mutually shifted by 90 degrees. , 6 divisions and 60 degree shifts).

【0040】[0040]

【発明の効果】以上、第1発明によれば、簡単に安定し
た干渉光束が得られ、全体的な装置構成の小型化も可能
になり、小型、簡素且つ高精度測定可能な装置が実現さ
れる。
As described above, according to the first aspect of the present invention, stable and stable interference light flux can be easily obtained, the overall size of the apparatus can be reduced, and a small, simple, and highly accurate apparatus can be realized. It

【0041】また、第2発明によれば、0次光の発生が
避けられるので、このような小型化装置でより高精度な
測定が可能となる。
Further, according to the second aspect of the present invention, the generation of zero-order light can be avoided, so that it is possible to perform a more accurate measurement with such a miniaturized device.

【0042】また、第3発明によれば、小型、簡素且つ
高精度測定可能なドライブ制御装置が実現される。
Further, according to the third aspect of the invention, a drive controller which is small, simple, and capable of highly accurate measurement is realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例に係るロータリーエンコー
ダの光学配置図同装置の光路模式図
FIG. 1 is an optical layout diagram of a rotary encoder according to a first embodiment of the present invention, and an optical path schematic diagram of the same device.

【図2】同装置の光路模式図FIG. 2 is a schematic diagram of the optical path of the device.

【図3】同装置におけるパターンの形状を示す図FIG. 3 is a diagram showing a shape of a pattern in the device.

【図4】本発明の第2実施例に係るロータリーエンコー
ダの装置の光学配置図
FIG. 4 is an optical layout diagram of a rotary encoder device according to a second embodiment of the present invention.

【図5】同装置の光路模式図FIG. 5 is a schematic diagram of the optical path of the device.

【図6】同装置におけるパターンの形状を示す図FIG. 6 is a diagram showing a shape of a pattern in the device.

【図7】本発明の第3実施例にかかるモータードライバ
ーシステムの概略構成図
FIG. 7 is a schematic configuration diagram of a motor driver system according to a third embodiment of the invention.

【符号の説明】[Explanation of symbols]

LGT 光源 R 平行光束 LNS、LNS1 レンズ D ディスク GBS2〜GBS4 放射状回折格子 GT ディスク上の放射状回折格子 SA,SバーA,SB,SバーB 干渉光受光素子 LGT light source R parallel light flux LNS, LNS1 lens D disk GBS2 to GBS4 radial diffraction grating radial diffraction grating on GT disk SA, S bar A, SB, S bar B interference light receiving element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 相対回転情報を検出すべき物体に設けら
れるスケール側放射状回折格子と、該放射状回折格子に
平行に配置された1つ乃至複数の本体側放射状回折格子
と、本体側に設けられた光源手段及び受光手段とを有
し、前記スケール側放射状回折格子と前記本体側放射状
回折格子とを用いて前記光源手段からの光束の回折によ
る分離、偏向、合成を行って発生した干渉光を前記受光
手段で検出して前記物体の相対回転情報が検出されるよ
うに配置され、かつ前記スケール側放射状回折格子と前
記本体側放射状回折格子の一周相当の格子本数を光束の
入射順にN1、N2、N3、前記スケール側放射状回折格子と
前記本体側放射状回折格子から出射する使用回折光の回
折次数を光束の出射順にn1、n2、n3として、N1・n1+N2
・n2+N3・n3=0を満たすように光路が構成されているこ
とを特徴とする回転情報検出装置。
1. A scale-side radial diffraction grating provided on an object whose relative rotation information is to be detected, one or a plurality of body-side radial diffraction gratings arranged in parallel with the radial diffraction grating, and a body-side radial diffraction grating. Interference light generated by separating, deflecting, and combining the luminous flux from the light source means by diffraction using the scale-side radial diffraction grating and the main-body-side radial diffraction grating. Arranged so that the relative rotation information of the object detected by the light receiving means is detected, and the number of gratings corresponding to one circumference of the scale side radial diffraction grating and the main body side radial diffraction grating is N1, N2 in the order of incidence of the light flux. , N3, the diffraction orders of the used diffracted light emitted from the scale-side radial diffraction grating and the main-body-side radial diffraction grating are n1, n2, and n3 in the order of emission of the light flux, and N1 · n1 + N2
A rotation information detecting device characterized in that an optical path is configured so as to satisfy n2 + N3 · n3 = 0.
【請求項2】 前記スケール側放射状回折格子と前記本
体側放射状回折格子とが位相型回折格子であることを特
徴とする請求項1に記載の回転情報検出装置。
2. The rotation information detecting device according to claim 1, wherein the scale side radial diffraction grating and the main body side radial diffraction grating are phase type diffraction gratings.
【請求項3】 請求項1乃至2に記載の回転情報検出装
置の検出した相対回転情報を用いて、前記物体の相対回
転駆動制御を行うドライブ制御装置。
3. A drive control device that performs relative rotation drive control of the object using the relative rotation information detected by the rotation information detection device according to claim 1.
JP4026595A 1995-02-28 1995-02-28 Rotational information detector and drive controller using the same Pending JPH08233557A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4026595A JPH08233557A (en) 1995-02-28 1995-02-28 Rotational information detector and drive controller using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4026595A JPH08233557A (en) 1995-02-28 1995-02-28 Rotational information detector and drive controller using the same

Publications (1)

Publication Number Publication Date
JPH08233557A true JPH08233557A (en) 1996-09-13

Family

ID=12575829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4026595A Pending JPH08233557A (en) 1995-02-28 1995-02-28 Rotational information detector and drive controller using the same

Country Status (1)

Country Link
JP (1) JPH08233557A (en)

Similar Documents

Publication Publication Date Title
EP0727646B1 (en) Displacement information detection apparatus, scale used in the apparatus, and drive apparatus using the apparatus
EP0729013B1 (en) Displacement detection apparatus and drive control apparatus using the same
JPH08210824A (en) Rotation detection device and rotation control device
JPH067062B2 (en) Position detector
JP5479255B2 (en) Optical encoder
JP2004212243A (en) Grating interference type optical encoder
JPH06347293A (en) Rotation detector and scale for detecting rotation
JPH0843136A (en) Optical encoder
JP5063997B2 (en) Improved interpolation encoder
JP3977126B2 (en) Displacement information detector
JPH074993A (en) Encoder apparatus
JP3641316B2 (en) Optical encoder
JPH07306060A (en) Encoder
JP3471971B2 (en) Composite rotary encoder
US10859374B2 (en) Optical angle sensor
JPH0835859A (en) Encoder device
JP2586122B2 (en) Rotary encoder
JPH06201327A (en) Displacement detector
JPH08233557A (en) Rotational information detector and drive controller using the same
JPH08327401A (en) Displacement-information detection apparatus, drive control device and scale for detection of displacement information
JP2006145466A (en) Optical scale
JPH05256666A (en) Rotary encoder
JPH08240443A (en) Displacement information detecting device and drive control device using it
JPH08226804A (en) Displacement information detector and drive controller utilizing the detector
JPH08271287A (en) Displacement information detecting device, drive control device using the detecting device, and scale device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040511