JPH08233411A - Cooling device - Google Patents

Cooling device

Info

Publication number
JPH08233411A
JPH08233411A JP7041544A JP4154495A JPH08233411A JP H08233411 A JPH08233411 A JP H08233411A JP 7041544 A JP7041544 A JP 7041544A JP 4154495 A JP4154495 A JP 4154495A JP H08233411 A JPH08233411 A JP H08233411A
Authority
JP
Japan
Prior art keywords
refrigerant
pressure
pressure chamber
evaporator
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7041544A
Other languages
Japanese (ja)
Inventor
Hidetaka Shinkai
英隆 新開
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP7041544A priority Critical patent/JPH08233411A/en
Publication of JPH08233411A publication Critical patent/JPH08233411A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To provide a cooling device which favorably cools the ambient atmosphere without being affected by the operating environment. CONSTITUTION: A diaphragm 31 partitions a space in a case 30 into a first pressure chamber 32 and second pressure chamber 33. To the first pressure chamber 32, the pressure in a pressure bulb 6 is applied through a refrigerant passage 40. To the second pressure chamber 33, a refrigerant pressure in an outlet side piping of an evaporator 5 is applied through a joint 42 and the inside of a refrigerant container 43. The diameter of the refrigerant container 43 is larger than the diameter of an external equalizing capillary 41. Even when the rotating number of a compressor 1 suddenly varies, and the refrigerant pressure in the outlet side piping of the evaporator 5 suddenly varies, because of a large capacity of the refrigerant container 43, a refrigerant gently flows out or flows in from the refrigerant container 43 to the evaporator 5 side or expansion valve 4 side, and the pressure of the second pressure chamber 33 gently varies. By this method, the quantity of the refrigerant which is discharged from the expansion valve to the evaporator 5 is appropriately controlled regardless of the ambient environment.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は冷却装置に関する。FIELD OF THE INVENTION The present invention relates to a cooling device.

【0002】[0002]

【従来の技術】従来より、例えば車両搭載用冷房装置の
冷凍サイクルは次のようにして冷媒を循環させている。
圧縮機で高温高圧にしたガス状の冷媒を凝縮器で冷や
して液化させ、膨張弁内の絞りを通してこの液化した
冷媒を低圧の蒸発器内に吐出し、断熱膨張作用により気
化させて低温低圧の霧状にし、蒸発器において低温の冷
媒と車室内の空気との間で熱交換を行って車室内空気を
冷却し、蒸発器で気化した冷媒を再び圧縮機で高温高
圧にする。
2. Description of the Related Art Conventionally, for example, a refrigerating cycle of a vehicle-mounted cooling device circulates a refrigerant as follows.
The high temperature and high pressure gaseous refrigerant in the compressor is liquefied by cooling it in the condenser, and this liquefied refrigerant is discharged into the low pressure evaporator through the throttle in the expansion valve, and is vaporized by the adiabatic expansion action to reduce the low temperature and low pressure. After atomization, the evaporator cools the air inside the passenger compartment by exchanging heat between the low temperature refrigerant and the air inside the passenger compartment, and the refrigerant vaporized in the evaporator is heated again to high temperature and high pressure in the compressor.

【0003】膨張弁は、蒸発器の出口配管に取付けられ
ている感熱筒内の圧力が加わっている第1圧力室と蒸発
器出口側の圧力が加わっている第2圧力室との差によっ
てダイアフラムを変位させることにより冷媒の流路面積
である吹出開口面積を調節し、蒸発器に吐出する冷媒量
を調節している。第1圧力室の圧力は吹出開口面積を増
加させる方向、第2圧力室の圧力は吹出開口面積を減少
させる方向に働く。
The expansion valve is a diaphragm due to the difference between the first pressure chamber in the heat-sensitive cylinder attached to the outlet pipe of the evaporator and the second pressure chamber in which the pressure on the outlet side of the evaporator is applied. Is adjusted to adjust the discharge opening area, which is the flow passage area of the refrigerant, to adjust the amount of refrigerant discharged to the evaporator. The pressure of the first pressure chamber acts in the direction of increasing the blowout opening area, and the pressure of the second pressure chamber acts in the direction of decreasing the blowout opening area.

【0004】このような冷房装置において、車両の走行
状態に応じて作動開始と停止が頻繁に繰り返されると、
例えばエンジンの回転数増加に伴い圧縮機の冷媒吸入量
が増加し蒸発器出口側の冷媒圧力が急激に減少して冷媒
温度が低下しても温度感知に時間を要するため感熱筒内
の圧力は緩やかに低下する。一方、第2圧力室には蒸発
器出口側の冷媒圧力の低下が速やかに伝達されるので、
第1圧力室よりも第2圧力室の方が早く圧力が低下す
る。このため、吹出開口面積が増加し多くの冷媒が低圧
の蒸発器側に吐出される。すると、吐出した冷媒が蒸発
器内で完全に気化せずに一部が液状のままで圧縮機に戻
る、所謂液戻りが発生する。液戻りが発生すると、圧縮
機内で液状の冷媒を圧縮することになる。すると、圧縮
機内の弁等に過大な荷重がかかることがあり、弁破損の
原因となることがある。
In such a cooling system, if the operation start and stop are frequently repeated depending on the running state of the vehicle,
For example, even if the refrigerant intake amount of the compressor increases as the engine speed increases and the refrigerant pressure on the evaporator outlet side sharply decreases and the refrigerant temperature drops, it takes time to detect the temperature, so the pressure inside the heat-sensitive cylinder is It decreases slowly. On the other hand, since the decrease in the refrigerant pressure on the outlet side of the evaporator is quickly transmitted to the second pressure chamber,
The pressure drops faster in the second pressure chamber than in the first pressure chamber. Therefore, the area of the outlet opening is increased, and a large amount of the refrigerant is discharged to the low pressure evaporator side. Then, a so-called liquid return occurs in which the discharged refrigerant is not completely vaporized in the evaporator and a part of it remains liquid and returns to the compressor. When the liquid return occurs, the liquid refrigerant is compressed in the compressor. Then, an excessive load may be applied to the valve and the like in the compressor, which may cause valve damage.

【0005】[0005]

【発明が解決しようとする課題】このような問題を解決
するため、第2圧力室に蒸発器出口側の冷媒を伝達する
膨張弁の導入孔または導入管内に蒸発器出口側の急激な
圧力変化を緩和する絞りや緩衝材等のダンピング機構を
設けることが考えられる。これにより第2圧力室への圧
力伝達を遅延させ、感熱筒による圧力感知の遅延との時
間差を減少することができる。しかしながら、このよう
な蒸発器出口側の圧力変化を緩和させるダンピング機構
を設けると、冷媒中に混入している異物または酸化生成
物等がダンピング機構で詰まり易く、その結果膨張弁の
制御不良を引き起こす恐れがある。
In order to solve such a problem, a rapid pressure change on the evaporator outlet side is introduced into the introduction hole or the introduction pipe of the expansion valve for transmitting the refrigerant on the evaporator outlet side to the second pressure chamber. It is conceivable to provide a damping mechanism such as a diaphragm or a cushioning material for alleviating the above. As a result, the pressure transmission to the second pressure chamber can be delayed, and the time difference from the delay in the pressure sensing by the heat sensitive cylinder can be reduced. However, if a damping mechanism that alleviates the pressure change at the outlet side of the evaporator is provided, foreign matter or oxidation products mixed in the refrigerant are easily clogged in the damping mechanism, resulting in poor control of the expansion valve. There is a fear.

【0006】本発明はこのような問題を解決するために
なされたものであり、動作環境に左右されず良好に周囲
雰囲気を冷却する冷却装置を提供することを目的とす
る。
The present invention has been made to solve such a problem, and an object of the present invention is to provide a cooling device which can cool the ambient atmosphere satisfactorily regardless of the operating environment.

【0007】[0007]

【課題を解決するための手段】前記課題を解決するため
の本発明の請求項1記載の冷却装置は、入口流路から流
入した冷媒を絞りを通して出口流路に吹出し、前記出口
流路から蒸発器に冷媒を吐出する膨張弁であって、前記
蒸発器の出口側配管に取付けられ前記出口側配管内の冷
媒温度に応じて変化する感熱筒内の圧力が加わる第1圧
力室と前記出口側配管内の圧力が加わる第2圧力室とを
仕切るとともに前記第1圧力室と前記第2圧力室との圧
力差に応じて変位する薄膜、および前記絞りの開口面積
を前記薄膜の変位量に応じて変化させることにより前記
絞りを通して前記入口流路から前記出口流路に吹出す冷
媒量を調節する可変絞り手段を有する膨張弁と、前記出
口側配管内と前記第2圧力室とを連通する冷媒流路を形
成する冷媒配管に直列に取付けられ、前記冷媒配管より
も径が大きく前記冷媒流路の一部を形成する空間部を有
する冷媒容器と、を備えることを特徴とする。
According to a first aspect of the present invention, there is provided a cooling device, wherein a refrigerant flowing from an inlet passage is blown out to an outlet passage through a throttle and evaporated from the outlet passage. Expansion valve for discharging refrigerant to the evaporator, the first pressure chamber being attached to the outlet side pipe of the evaporator, to which the pressure in the heat-sensitive cylinder is changed according to the refrigerant temperature in the outlet side pipe, and the outlet side The second pressure chamber to which the pressure in the pipe is applied is partitioned from the second pressure chamber, and the thin film is displaced according to the pressure difference between the first pressure chamber and the second pressure chamber, and the opening area of the diaphragm is changed according to the displacement amount of the thin film. Expansion valve having a variable throttle means for adjusting the amount of the refrigerant blown from the inlet passage to the outlet passage through the throttle, and the refrigerant communicating the inside of the outlet side pipe with the second pressure chamber. For refrigerant piping that forms a flow path Attached to the column, characterized in that it comprises a coolant tank having a space portion having a diameter to form a large part of the refrigerant passage than the refrigerant pipe.

【0008】本発明の請求項2記載の冷却装置は、請求
項1記載の冷却装置において、前記可変絞り手段は、前
記薄膜の変位とともに往復移動する作動棒と、前記絞り
に続いて冷媒下流側に形成され前記作動棒が貫挿される
吹出孔を形成するとともに前記入口流路と前記出口流路
とを仕切る隔壁の前記入口流路側に設けられた弁座と、
前記入口流路に収容され前記弁座と前記絞りを形成し前
記作動棒と前記弁座側で当接する弁部材と、前記弁部材
を前記弁座方向に付勢する付勢手段とを有することを特
徴とする。
A cooling device according to a second aspect of the present invention is the cooling device according to the first aspect, wherein the variable throttle means is a working rod that reciprocates along with the displacement of the thin film, and the refrigerant downstream side following the throttle. A valve seat provided on the inlet flow passage side of the partition wall that partitions the inlet flow passage and the outlet flow passage while forming a blow-out hole through which the actuation rod is inserted.
A valve member that is housed in the inlet passage, forms the throttle with the valve seat, and contacts the actuation rod on the valve seat side; and a biasing means that biases the valve member toward the valve seat. Is characterized by.

【0009】本発明の請求項3記載の冷却装置は、請求
項1または2記載の冷却装置において、前記冷媒容器は
前記膨張弁に近接して設置されることを特徴とする。
A cooling device according to a third aspect of the present invention is characterized in that, in the cooling device according to the first or second aspect, the refrigerant container is installed close to the expansion valve.

【0010】[0010]

【作用および発明の効果】本発明の請求項1または3記
載の冷却装置によると、膨張弁に設けられ薄膜により仕
切られた第1圧力室と第2圧力室との圧力差により薄膜
の変位量に応じて膨張弁の入口流路から出口流路に吹出
す冷媒量、すなわち蒸発器に吐出する冷媒量を調節して
いる。第1圧力室には蒸発器の出口側配管内の冷媒温度
によって圧力変化する感熱筒内の圧力を加え、第2圧力
室に蒸発器の出口側の冷媒圧力を伝達する冷媒流路を形
成する冷媒配管に冷媒配管よりも径の大きい冷媒容器を
直列に取付けている。これにより、例えば圧縮機の回転
が急激に変動することにより蒸発器の出口側配管内の冷
媒圧力が急激に変化しても、出口側配管内の冷媒圧力
が上昇すると冷媒容器から第2圧力室に緩やかに冷媒が
流入し、出口側配管内の冷媒圧力が低下すると冷媒容
器から緩やかに蒸発器側の冷媒配管に冷媒が流出するの
で第2圧力室からも緩やかに冷媒が流出する。このた
め、蒸発器の出口側配管内の冷媒圧力が急激に変化して
も、第2圧力室の圧力は緩やかに変化する。また、蒸発
器の出口側配管内に生じた急激な圧力変化による温度変
化を検知して感熱筒内の圧力が変動するにも時間遅れが
発生するので、第1圧力室の圧力も緩やかに変化する。
その結果、蒸発器の出口側配管内に急激な冷媒圧力の変
化が生じても、第1圧力室と第2圧力室との圧力差は緩
やかに変化するので、膨張弁から適正量の冷媒を蒸発器
に吐出することができる。また、冷媒容器は冷媒配管よ
りも径が大きいため、冷媒中に混入している異物等によ
り冷媒容器内が閉塞されることがないので膨張弁の良好
な作動が継続できる。
According to the cooling device of the first or third aspect of the present invention, the displacement amount of the thin film due to the pressure difference between the first pressure chamber and the second pressure chamber provided in the expansion valve and partitioned by the thin film. The amount of the refrigerant blown from the inlet flow path of the expansion valve to the outlet flow path, that is, the amount of the refrigerant discharged to the evaporator is adjusted accordingly. A pressure in the heat-sensitive cylinder, which changes in pressure depending on the refrigerant temperature in the outlet side pipe of the evaporator, is applied to the first pressure chamber, and a refrigerant flow path for transmitting the refrigerant pressure on the outlet side of the evaporator is formed in the second pressure chamber. A refrigerant container having a diameter larger than that of the refrigerant pipe is attached in series to the refrigerant pipe. As a result, even if the refrigerant pressure in the outlet side pipe of the evaporator changes abruptly due to, for example, abrupt changes in the rotation of the compressor, if the refrigerant pressure in the outlet side pipe rises, the refrigerant container moves to the second pressure chamber. When the refrigerant gradually flows into the outlet side pipe and the refrigerant pressure in the outlet side pipe decreases, the refrigerant slowly flows out from the refrigerant container to the evaporator side refrigerant pipe, so that the refrigerant also slowly flows out from the second pressure chamber. Therefore, even if the refrigerant pressure in the outlet side pipe of the evaporator changes abruptly, the pressure in the second pressure chamber changes gently. Also, since a time delay occurs even when the pressure inside the heat-sensitive cylinder fluctuates due to the detection of a temperature change due to a sudden pressure change occurring in the outlet side pipe of the evaporator, the pressure in the first pressure chamber also changes gently. To do.
As a result, the pressure difference between the first pressure chamber and the second pressure chamber changes gently even if a sudden change in the refrigerant pressure occurs in the outlet side pipe of the evaporator, so that an appropriate amount of refrigerant is output from the expansion valve. It can be discharged to the evaporator. Further, since the refrigerant container has a diameter larger than that of the refrigerant pipe, the inside of the refrigerant container is not blocked by foreign substances mixed in the refrigerant, so that the expansion valve can continue to operate properly.

【0011】本発明の請求項2記載の冷却装置による
と、膨張弁に近接して冷媒容器を設置することにより、
冷媒容器内と第2圧力室とを連通する冷媒流路が短くな
る。このため、冷媒容器による圧力伝達の遅延作用が冷
媒流路に影響されずにより良好に第2圧力室に働く。
According to the cooling device of the second aspect of the present invention, by installing the refrigerant container close to the expansion valve,
The refrigerant passage that connects the inside of the refrigerant container and the second pressure chamber is shortened. Therefore, the effect of delaying the pressure transmission by the refrigerant container is not affected by the refrigerant flow passage, and thus works better in the second pressure chamber.

【0012】[0012]

【実施例】本発明の実施例を図面に基づいて具体的に説
明する。本発明の冷却装置を車両用冷房装置に適用した
一実施例を図1に示す。冷房装置の冷凍サイクルは、圧
縮機1、凝縮器2、レシーバ3、膨張弁4および蒸発器
5で構成されており、冷媒はこの冷凍サイクルを潤滑油
とともに循環している。蒸発器5の出口側配管に感熱筒
6が取付けられている。
Embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 shows an embodiment in which the cooling device of the present invention is applied to a vehicle cooling device. The refrigeration cycle of the cooling device includes a compressor 1, a condenser 2, a receiver 3, an expansion valve 4 and an evaporator 5, and the refrigerant circulates in the refrigeration cycle together with lubricating oil. A heat sensitive tube 6 is attached to the outlet side pipe of the evaporator 5.

【0013】圧縮機1の図示しない駆動軸は図示しない
エンジンのクランクシャフトとベルトにより連結されク
ランクシャフトとともに回転しているので、車両の走行
状態がほぼ一定であれば圧縮機1から供給される冷媒の
圧力はほぼ一定である。膨張弁4は外均圧式であり、吹
出孔11aを介して流通可能な入口流路12および出口
流路13がハウジング11内に形成されている。入口流
路12にはレシーバ3から高温高圧の冷媒が供給され、
この冷媒が吹出孔11aを通って出口流路13から蒸発
器5に吐出される。吹出孔11aを形成するハウジング
11の内壁に弁座11bが形成されている。入口流路1
2には弁座11bに着座可能な弁部材であるボール2
1、ボール21を支持するガイド部材22、ガイド部材
22を弁座11b方向に付勢する付勢手段である圧縮コ
イルスプリング23、およびハウジング11の内壁に固
定され入口流路12を閉塞せずに圧縮コイルスプリング
23を係止する係止部材24が収容されている。吹出孔
11aから出口流路13に吹出す冷媒量は、弁座11b
とボール21との間で形成される冷媒の流路面積である
吹出開口面積で決定される。
Since the drive shaft (not shown) of the compressor 1 is connected to the crankshaft of the engine (not shown) by a belt and rotates together with the crankshaft, the refrigerant supplied from the compressor 1 when the running condition of the vehicle is substantially constant. The pressure of is almost constant. The expansion valve 4 is an external pressure equalizing type, and an inlet flow path 12 and an outlet flow path 13 which can flow through the blowout hole 11a are formed in the housing 11. The high temperature and high pressure refrigerant is supplied from the receiver 3 to the inlet passage 12,
This refrigerant is discharged from the outlet passage 13 to the evaporator 5 through the blowout holes 11a. A valve seat 11b is formed on the inner wall of the housing 11 forming the blowout hole 11a. Inlet channel 1
2 is a ball 2 which is a valve member that can be seated on the valve seat 11b.
1, a guide member 22 that supports the ball 21, a compression coil spring 23 that is a biasing means that biases the guide member 22 toward the valve seat 11b, and is fixed to the inner wall of the housing 11 without blocking the inlet passage 12. A locking member 24 that locks the compression coil spring 23 is housed. The amount of the refrigerant blown from the blowout hole 11a to the outlet flow path 13 is determined by the valve seat 11b.
It is determined by the blowout opening area which is the flow passage area of the refrigerant formed between the ball 21 and the ball 21.

【0014】ハウジング11の外壁にケース30が密接
に嵌合している。このケース30に外周縁部を挟持され
た弾性薄膜であるステンレス製のダイアフラム31は、
ケース30内の空間部を第1圧力室32および第2圧力
室33に仕切っている。第1圧力室32には、冷媒流路
40を介して感熱筒6内の圧力が加わっている。第2圧
力室33には、ジョイント42、冷媒容器43、冷媒配
管の一部である外均キャピラリ41内を通ってハウジン
グ11に形成された冷媒通路14を経て蒸発器5の出口
側配管内における冷媒圧力が加わっている。第1圧力室
32の圧力は弁座11bからボール21を離間させて吹
出開口面積を拡大する方向に働き、第2圧力室33の圧
力は弁座11bに向けてボール21を近づけ吹出開口面
積を縮小する方向に働く。外均キャピラリ41を含む冷
媒配管は、蒸発器5の出口側から冷媒通路14の入口ま
でをジョイント42および冷媒容器43を介して接続し
ており、冷媒容器43よりも径が小さい。外均キャピラ
リ41の径は1mmであり、冷媒容器43の径は10mmで
ある。ダイアフラム31の第2圧力室33側の面にダイ
アフラム31とともに移動する係止部材34が接着され
ている。作動棒であるロッド35はハウジング11の内
壁に固定された円筒状のガイド部材36に往復移動可能
に支持されており、このガイド部材36の両端でハウジ
ング11の内壁とOリング37によりシールされてい
る。ロッド35は吹出孔11aに貫挿されており、一端
は係止部材34に当接し、他端はボール21に当接して
いる。ダイアフラム31は、第1圧力室32の圧力と第
2圧力室33の圧力との差から受ける力により変位し、
この変位量に応じてロッド35を往復移動させて吹出開
口面積を調整している。
The case 30 is closely fitted to the outer wall of the housing 11. The diaphragm 31 made of stainless steel, which is an elastic thin film whose outer peripheral edge is sandwiched by the case 30,
The space in the case 30 is partitioned into a first pressure chamber 32 and a second pressure chamber 33. The pressure in the heat-sensitive cylinder 6 is applied to the first pressure chamber 32 via the refrigerant flow passage 40. In the second pressure chamber 33, the joint 42, the refrigerant container 43, and the external equalizing capillary 41, which is a part of the refrigerant pipe, pass through the refrigerant passage 14 formed in the housing 11 and then in the outlet side pipe of the evaporator 5. Refrigerant pressure is applied. The pressure in the first pressure chamber 32 acts to separate the ball 21 from the valve seat 11b to increase the blowout opening area, and the pressure in the second pressure chamber 33 brings the ball 21 closer to the valve seat 11b to reduce the blowout opening area. It works in the direction of shrinking. The refrigerant pipe including the outer capillary 41 connects the outlet side of the evaporator 5 to the inlet of the refrigerant passage 14 via the joint 42 and the refrigerant container 43, and has a smaller diameter than the refrigerant container 43. The outer uniform capillary 41 has a diameter of 1 mm, and the refrigerant container 43 has a diameter of 10 mm. A locking member 34 that moves together with the diaphragm 31 is adhered to the surface of the diaphragm 31 on the second pressure chamber 33 side. The rod 35, which is an actuating rod, is supported by a cylindrical guide member 36 fixed to the inner wall of the housing 11 so as to be capable of reciprocating, and is sealed at both ends of the guide member 36 by the O-ring 37 from the inner wall of the housing 11. There is. The rod 35 is inserted through the blowout hole 11a, one end of which abuts on the locking member 34, and the other end of which abuts on the ball 21. The diaphragm 31 is displaced by the force received from the difference between the pressure in the first pressure chamber 32 and the pressure in the second pressure chamber 33,
The blowing opening area is adjusted by reciprocally moving the rod 35 according to the displacement amount.

【0015】感熱筒6には冷凍サイクルを循環する冷媒
と同じガスが封入されており、この感熱筒6内のガスは
蒸発器5の出口側の冷媒温度によって飽和圧力になって
いる。このため、蒸発器5の出口側の冷媒温度により感
熱筒6内の圧力が変化し、この圧力が冷媒流路40を介
して第1圧力室32に伝わる。次に、冷房装置の作動を
冷媒流れに沿って説明する。
The heat-sensitive cylinder 6 is filled with the same gas as the refrigerant circulating in the refrigeration cycle, and the gas in the heat-sensitive cylinder 6 has a saturated pressure due to the temperature of the refrigerant on the outlet side of the evaporator 5. Therefore, the pressure in the heat-sensitive cylinder 6 changes depending on the refrigerant temperature on the outlet side of the evaporator 5, and this pressure is transmitted to the first pressure chamber 32 via the refrigerant flow passage 40. Next, the operation of the cooling device will be described along the refrigerant flow.

【0016】(1) 圧縮機1で高温高圧のガス状に圧縮さ
れた冷媒は凝縮器2で冷やされて液化する。レシーバ3
は、凝縮器2で液化した冷媒を一時的に蓄え、冷房負荷
に対応して膨張弁4に供給する。またレシーバ3では、
冷媒中に混入している水分および異物等が除去される。 (2) 膨張弁4のダイアフラム31は、第1圧力室32と
第2圧力室33との圧力差から受ける力によりロッド3
5を移動させて弁座11bとボール21とで形成する吹
出開口面積を変化させ、吹出孔11aから出口流路13
に流出する冷媒量を調整する。
(1) The refrigerant compressed into a high-temperature and high-pressure gaseous state in the compressor 1 is cooled in the condenser 2 and liquefied. Receiver 3
Temporarily stores the liquefied refrigerant in the condenser 2 and supplies it to the expansion valve 4 in response to the cooling load. In the receiver 3,
Water and foreign substances mixed in the refrigerant are removed. (2) The diaphragm 31 of the expansion valve 4 receives the force of the pressure difference between the first pressure chamber 32 and the second pressure chamber 33 from the rod 3
5 is moved to change the blowout opening area formed by the valve seat 11b and the ball 21, so that the blowout hole 11a to the outlet flow path 13 are changed.
Adjust the amount of refrigerant flowing out to.

【0017】(3) 吹出孔11aから出口流路13を通っ
て低圧の蒸発器5内に吐出された冷媒は断熱膨張作用に
よって霧状の低温低圧冷媒となり、この冷媒と車室内の
空気との間で熱交換が行われることにより車室内の空気
が冷却される。車室内の空気と熱交換した冷媒は設定さ
れた過熱ガスとなり蒸発器5の出口側配管から圧縮機1
に戻される。蒸発器5の出口側配管に取付けられた感熱
筒6は出口配管内の冷媒温度を感知し、感熱筒6に封入
されたガスの圧力が変化してこの圧力が第1圧力室32
に加わる。また、蒸発器5の出口側配管内における冷媒
圧力は、ジョイント42、冷媒容器43、外均キャピラ
リ41内を通って冷媒通路14から第2圧力室33に加
わっている。
(3) The refrigerant discharged from the blow-out hole 11a through the outlet passage 13 into the low-pressure evaporator 5 becomes a mist-like low-temperature low-pressure refrigerant due to the adiabatic expansion action, and the refrigerant and the air in the passenger compartment are separated from each other. By exchanging heat between them, the air in the vehicle interior is cooled. The refrigerant that has exchanged heat with the air in the passenger compartment becomes a set superheated gas, and the compressor 1 is discharged from the outlet side pipe of the evaporator 5.
Is returned to. The heat-sensitive cylinder 6 attached to the outlet side pipe of the evaporator 5 senses the temperature of the refrigerant in the outlet pipe, the pressure of the gas sealed in the heat-sensitive cylinder 6 changes, and this pressure changes to the first pressure chamber 32.
Join. The refrigerant pressure in the outlet side pipe of the evaporator 5 is applied to the second pressure chamber 33 from the refrigerant passage 14 through the joint 42, the refrigerant container 43, and the outer uniforming capillary 41.

【0018】次に、車室内温度の高低に対する冷媒装置
の作動について説明する。 (1) 車室内の温度が高い場合、蒸発器5内の霧状の冷媒
は通常の蒸発完了ポイントより上流側で蒸発しきってし
まう。このため、蒸発器5の出口側における冷媒の過熱
ガス温度が上昇して感熱筒6内の圧力が上昇するのでダ
イアフラム31は図1の下方に移動する。すると、ロッ
ド35に押されてボール21が弁座11bから離れるこ
とにより吹出開口面積が増加するので出口流路13から
蒸発器5内に吐出する冷媒量が増加する。これにより冷
房能力が上昇するので、車室温度が低下する。
Next, the operation of the refrigerant device with respect to high and low vehicle interior temperature will be described. (1) When the temperature in the passenger compartment is high, the atomized refrigerant in the evaporator 5 is completely evaporated upstream of the normal evaporation completion point. Therefore, the temperature of the superheated gas of the refrigerant on the outlet side of the evaporator 5 rises and the pressure in the heat-sensitive cylinder 6 rises, so that the diaphragm 31 moves downward in FIG. Then, since the ball 21 is pushed by the rod 35 and moves away from the valve seat 11b, the blowout opening area increases, so that the amount of refrigerant discharged from the outlet passage 13 into the evaporator 5 increases. As a result, the cooling capacity is increased, and the vehicle compartment temperature is decreased.

【0019】(2) 車室内の温度が低い場合、蒸発器5内
の霧状の冷媒は通常の蒸発完了ポイントより下流側で蒸
発が完了してしまう。このため、蒸発器5の出口側にお
ける冷媒の過熱ガス温度が低下して感熱筒6内の圧力が
低下するのでダイアフラム31は図1の上方に移動す
る。すると、圧縮コイルスプリング23の付勢力により
ボール21は弁座11bに近付き、吹出開口面積が減少
するので出口通路13から蒸発器5内に吐出する冷媒量
が減少する。これにより冷房能力が低下するので、車室
温度が上昇する。
(2) When the temperature in the passenger compartment is low, the atomized refrigerant in the evaporator 5 is completely vaporized downstream from the normal vaporization completion point. Therefore, the temperature of the superheated gas of the refrigerant on the outlet side of the evaporator 5 decreases and the pressure inside the heat-sensitive cylinder 6 decreases, so that the diaphragm 31 moves upward in FIG. Then, the ball 21 approaches the valve seat 11b by the urging force of the compression coil spring 23, and the area of the blowout opening decreases, so that the amount of refrigerant discharged from the outlet passage 13 into the evaporator 5 decreases. As a result, the cooling capacity is reduced, and the vehicle compartment temperature is increased.

【0020】以上説明した冷房装置の作動により車室内
の空気温度が所望温度に調節される。ここで、例えば車
両がシフトダウンまたはキックダウンすると、エンジン
回転数が急激に増加するので圧縮機1の回転数も急激に
増加する。このため、圧縮機1の冷媒吸入量が増加して
蒸発器5の出口側配管内の冷媒圧力が急激に低下する。
この冷媒圧力の低下により蒸発器5の出口側配管内の冷
媒温度が低下し、感熱筒6内の圧力が低下する。そし
て、感熱筒6内の圧力低下は冷媒流路40を介して第1
圧力室32に伝達される。
The air temperature in the passenger compartment is adjusted to a desired temperature by the operation of the cooling device described above. Here, for example, when the vehicle shifts down or kicks down, the engine speed sharply increases, so the speed of the compressor 1 also sharply increases. Therefore, the refrigerant suction amount of the compressor 1 increases and the refrigerant pressure in the outlet side pipe of the evaporator 5 sharply decreases.
Due to this decrease in the refrigerant pressure, the refrigerant temperature in the outlet side pipe of the evaporator 5 decreases, and the pressure in the heat-sensitive cylinder 6 decreases. Then, the pressure drop in the heat-sensitive cylinder 6 is caused by the first
It is transmitted to the pressure chamber 32.

【0021】しかしながら、蒸発器5の出口側配管内に
おける冷媒圧力の急激な低下に伴う冷媒温度の低下を感
熱筒6が検知し、感熱筒6内の圧力が冷媒温度の低下に
追随して低下するまでには時間的遅れがあるので、第1
圧力室32の圧力は緩やかに低下する。蒸発器5の出口
側配管内の冷媒圧力における冷媒圧力の急激な低下によ
り、蒸発器5側の出口側に向けてジョイント42内、冷
媒容器43の空間部43a、外均キャピラリ41内、冷
媒通路14の順番に冷媒が移動し、第2圧力室33の冷
媒が蒸発器5側に流出する。冷媒容器43は外均キャピ
ラリ41を含む冷媒配管よりも径が大きい、つまり流路
面積が大きく容量が大きいことから冷媒容器43の蒸発
器5側の冷媒配管から急激に蒸発器5側に冷媒が移動し
ても冷媒容器43内のガス状の冷媒は緩やかに蒸発器5
側に流出していくので、第2圧力室33からも緩やかに
冷媒が流出し、第2圧力室33の圧力は緩やかに低下す
る。このため、蒸発器5の出口側配管内における冷媒圧
力の急激な低下が感熱筒6により時間遅れを生じて第1
圧力室32に伝達しても、蒸発器5の出口側配管内にお
ける冷媒圧力の急激な低下は第2圧力室33にも時間遅
れを生じて伝達される。このため、第1圧力室32と第
2圧力室33との圧力差は緩やかに変化するのでダイア
フラム31は緩やかに下降する。第2圧力室33の圧力
は急激に低下しないので、ダイアフラム31が図1の下
方に素早く下降して吹出開口面積が増加し必要量以上の
冷媒が出口流路13から蒸発器5に吐出することを防止
できる。その結果、大量に吐出された冷媒の一部が蒸発
器5で気化されずに液状のまま圧縮機1に吸入、圧縮さ
れることを防止できるので、圧縮機1の動作不良を低減
できる。
However, the heat-sensitive cylinder 6 detects a decrease in the refrigerant temperature due to a sharp decrease in the refrigerant pressure in the outlet side pipe of the evaporator 5, and the pressure in the heat-sensitive cylinder 6 decreases following the decrease in the refrigerant temperature. There is a time delay before
The pressure in the pressure chamber 32 gradually decreases. Due to the sudden decrease in the refrigerant pressure in the refrigerant pressure in the outlet side pipe of the evaporator 5, the inside of the joint 42, the space 43a of the refrigerant container 43, the inside of the outer level capillary 41, the refrigerant passage toward the outlet side of the evaporator 5 side. The refrigerant moves in the order of 14, and the refrigerant in the second pressure chamber 33 flows out to the evaporator 5 side. The diameter of the refrigerant container 43 is larger than that of the refrigerant pipe including the external smoothing capillary 41, that is, the flow passage area is large and the capacity is large. Therefore, the refrigerant pipe 43 of the refrigerant container 43 suddenly transfers the refrigerant to the evaporator 5 side. Even if the refrigerant moves, the gaseous refrigerant in the refrigerant container 43 is slowly removed from the evaporator 5.
Since the refrigerant flows out to the side, the refrigerant also gently flows out from the second pressure chamber 33, and the pressure in the second pressure chamber 33 gradually decreases. For this reason, the rapid decrease in the refrigerant pressure in the outlet side pipe of the evaporator 5 causes a time delay due to the heat-sensitive cylinder 6, and
Even if it is transmitted to the pressure chamber 32, the rapid decrease in the refrigerant pressure in the outlet side pipe of the evaporator 5 is transmitted to the second pressure chamber 33 with a time delay. Therefore, the pressure difference between the first pressure chamber 32 and the second pressure chamber 33 changes gently, so that the diaphragm 31 moves down gently. Since the pressure in the second pressure chamber 33 does not suddenly decrease, the diaphragm 31 quickly descends downward in FIG. 1 to increase the blowout opening area and discharge more refrigerant than necessary from the outlet passage 13 to the evaporator 5. Can be prevented. As a result, it is possible to prevent a large amount of the discharged refrigerant from being sucked and compressed in the compressor 1 in a liquid state without being vaporized in the evaporator 5, so that malfunction of the compressor 1 can be reduced.

【0022】前述した冷媒容器43による圧力伝達の遅
延作用は、蒸発器5の出口側配管内における冷媒圧力の
急激な上昇においても同様に作用する。例えば、車両の
シフトアップ時に発生するエンジン回転数の急激な減少
により圧縮機1の冷媒吸入量が低下すると蒸発器5の出
口側配管内において冷媒圧力が急激に上昇するとともに
冷媒温度も上昇する。この温度上昇を感知して感熱筒6
内の圧力が上昇するにも時間的遅延があるので第1圧力
室の圧力は遅れて上昇する。また、蒸発器5の出口側配
管内において冷媒圧力が急激に上昇すると、冷媒容器4
3から緩やかに第2圧力室33に向けて冷媒が流出する
ので第2圧力室33の圧力は緩やかに上昇する。これに
より、第2圧力室33の圧力が第1圧力室32の圧力よ
りも速く急激に上昇して吹出開口面積が小さくなり蒸発
器5に吐出される冷媒量が急激に低下することに起因す
る、圧縮機1に供給される潤滑油量の不足、蒸発器
5での熱交換冷媒量の低下による吹き出し空気の温度上
昇、等の問題を防止できる。
The above-described action of delaying the pressure transmission by the refrigerant container 43 also acts when the refrigerant pressure in the outlet side pipe of the evaporator 5 rapidly increases. For example, when the refrigerant intake amount of the compressor 1 decreases due to a rapid decrease in the engine speed that occurs when the vehicle is upshifted, the refrigerant pressure in the outlet side pipe of the evaporator 5 rapidly increases and the refrigerant temperature also increases. Detecting this temperature rise, heat sensitive tube 6
Since there is a time delay even when the internal pressure increases, the pressure in the first pressure chamber increases with a delay. Further, when the refrigerant pressure rises rapidly in the outlet side pipe of the evaporator 5, the refrigerant container 4
Since the refrigerant gently flows from the third pressure chamber 33 toward the second pressure chamber 33, the pressure in the second pressure chamber 33 gradually increases. As a result, the pressure in the second pressure chamber 33 rapidly rises faster than the pressure in the first pressure chamber 32, the area of the outlet opening decreases, and the amount of refrigerant discharged to the evaporator 5 sharply decreases. It is possible to prevent problems such as a shortage of the amount of lubricating oil supplied to the compressor 1 and an increase in the temperature of blown air due to a decrease in the amount of heat exchange refrigerant in the evaporator 5.

【0023】また、車両走行状態が殆ど変化しない定常
運転の場合、冷媒容器43による第2圧力室33への圧
力伝達の遅延作用は、蒸発器5の出口側において僅かな
圧力変動が生じても蒸発器5に吐出する冷媒量をほぼ一
定量に保持するように働くので冷房装置の安定した作動
を維持できる。このような冷媒容器43による圧力伝達
の遅延効果は、外均キャピラリ41を含む冷媒配管の径
および長さと冷媒容器43の容積により変化する。例え
ば、外均キャピラリ41の径が大きくなるか長さが短く
なると圧力伝達が速くなる。また、冷媒容器43の容積
が大きくなると蒸発器5の圧力変化がより緩やかに第2
圧力室33に伝達する。
Further, in the steady operation in which the vehicle traveling state hardly changes, the delay effect of the pressure transmission to the second pressure chamber 33 by the refrigerant container 43 is caused even if a slight pressure fluctuation occurs at the outlet side of the evaporator 5. Since it works to keep the amount of refrigerant discharged to the evaporator 5 at a substantially constant amount, stable operation of the cooling device can be maintained. The effect of delaying the pressure transmission by the refrigerant container 43 varies depending on the diameter and length of the refrigerant pipe including the outer uniforming capillary 41 and the volume of the refrigerant container 43. For example, if the diameter of the outer uniforming capillary 41 is increased or the length thereof is decreased, pressure transmission becomes faster. Further, when the volume of the refrigerant container 43 increases, the pressure change of the evaporator 5 becomes more gradual.
It is transmitted to the pressure chamber 33.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の冷却装置を車両用冷房装置に適用した
一実施例を示す構成図である。
FIG. 1 is a configuration diagram showing an embodiment in which a cooling device of the present invention is applied to a vehicle cooling device.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 コンデンサ 4 膨張弁 5 蒸発器 6 感熱筒 11 ハウジング 12 入口流路 13 出口流路 11a 吹出孔 11b 弁座 21 ボール 23 圧縮コイルスプリング(付勢手段) 31 ダイアフラム(薄膜) 32 第1圧力室 33 第2圧力室 35 ロッド(作動棒) 41 外均キャピラリ(冷媒配管) 43 冷媒容器 43a 空間部 DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Condenser 4 Expansion valve 5 Evaporator 6 Heat-sensitive cylinder 11 Housing 12 Inlet channel 13 Outlet channel 11a Blow-out hole 11b Valve seat 21 Ball 23 Compression coil spring (biasing means) 31 Diaphragm (thin film) 32 First pressure chamber 33 Second pressure chamber 35 Rod (actuating rod) 41 Outer level capillary (refrigerant pipe) 43 Refrigerant container 43a Space portion

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 入口流路から流入した冷媒を絞りを通し
て出口流路に吹出し、前記出口流路から蒸発器に冷媒を
吐出する膨張弁であって、前記蒸発器の出口側配管に取
付けられ前記出口側配管内の冷媒温度に応じて変化する
感熱筒内の圧力が加わる第1圧力室と前記出口側配管内
の圧力が加わる第2圧力室とを仕切るとともに前記第1
圧力室と前記第2圧力室との圧力差に応じて変位する薄
膜、および前記絞りの開口面積を前記薄膜の変位量に応
じて変化させることにより前記絞りを通して前記入口流
路から前記出口流路に吹出す冷媒量を調節する可変絞り
手段を有する膨張弁と、 前記出口側配管内と前記第2圧力室とを連通する冷媒流
路を形成する冷媒配管に直列に取付けられ、前記冷媒配
管よりも径が大きく前記冷媒流路の一部を形成する空間
部を有する冷媒容器と、 を備えることを特徴とする冷却装置。
1. An expansion valve for discharging refrigerant flowing from an inlet flow path to an outlet flow path through a throttle and discharging the refrigerant from the outlet flow path to an evaporator, the expansion valve being mounted on an outlet side pipe of the evaporator. The first pressure chamber to which the pressure in the thermosensitive cylinder that changes according to the temperature of the refrigerant in the outlet side pipe is applied and the second pressure chamber to which the pressure in the outlet side pipe is applied are separated from each other.
A thin film that is displaced according to the pressure difference between the pressure chamber and the second pressure chamber, and the opening area of the diaphragm is changed according to the amount of displacement of the thin film, so that the inlet channel and the outlet channel pass through the diaphragm. An expansion valve having a variable throttle means for adjusting the amount of refrigerant to be blown out to, and a refrigerant pipe forming a refrigerant flow passage communicating the inside of the outlet side pipe and the second pressure chamber, And a refrigerant container having a space portion having a large diameter and forming a part of the refrigerant flow path.
【請求項2】 前記可変絞り手段は、前記薄膜の変位と
ともに往復移動する作動棒と、前記絞りに続いて冷媒下
流側に形成され前記作動棒が貫挿される吹出孔を形成す
るとともに前記入口流路と前記出口流路とを仕切る隔壁
の前記入口流路側に設けられた弁座と、前記入口流路に
収容され前記弁座と前記絞りを形成し前記作動棒と前記
弁座側で当接する弁部材と、前記弁部材を前記弁座方向
に付勢する付勢手段とを有することを特徴とする請求項
1記載の冷却装置。
2. The variable throttle means forms an actuating rod that reciprocates with the displacement of the thin film, an outlet hole formed downstream of the refrigerant following the throttle and through which the actuating rod is inserted, and the inlet flow. A valve seat provided on the side of the inlet flow path of a partition wall that separates the passage from the outlet flow path, and the valve seat that is housed in the inlet flow path and forms the throttle and contacts the operating rod and the valve seat side. The cooling device according to claim 1, further comprising a valve member and a biasing unit that biases the valve member toward the valve seat.
【請求項3】 前記冷媒容器は前記膨張弁に近接して設
置されることを特徴とする請求項1または2記載の冷却
装置。
3. The cooling device according to claim 1, wherein the refrigerant container is installed close to the expansion valve.
JP7041544A 1995-03-01 1995-03-01 Cooling device Pending JPH08233411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7041544A JPH08233411A (en) 1995-03-01 1995-03-01 Cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7041544A JPH08233411A (en) 1995-03-01 1995-03-01 Cooling device

Publications (1)

Publication Number Publication Date
JPH08233411A true JPH08233411A (en) 1996-09-13

Family

ID=12611371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7041544A Pending JPH08233411A (en) 1995-03-01 1995-03-01 Cooling device

Country Status (1)

Country Link
JP (1) JPH08233411A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111336728A (en) * 2020-03-16 2020-06-26 深圳市道通科技股份有限公司 Refrigerant transmission method and device and refrigerant treatment equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111336728A (en) * 2020-03-16 2020-06-26 深圳市道通科技股份有限公司 Refrigerant transmission method and device and refrigerant treatment equipment

Similar Documents

Publication Publication Date Title
US6430947B2 (en) Mobile air conditioning system and control mechanism therefor
USRE42908E1 (en) Vapor-compression-type refrigerating machine
KR100331717B1 (en) Device to control high side pressure of steam compression cycle system
EP0713063B1 (en) Expansion Valve
JP5083107B2 (en) Expansion valve and vapor compression refrigeration cycle provided with the same
JP2006189240A (en) Expansion device
JP3555592B2 (en) Refrigeration cycle device and valve device used therefor
KR840000974B1 (en) Oil return device
JP2000310461A (en) Thermostatic refrigerant expansion valve
JPH08233411A (en) Cooling device
AU2361899A (en) Controlling refrigerant in a closed loop recirculating system
JPS62280549A (en) Refrigerator adjusting capacity
JP2004067042A (en) Air-conditioner
JP2000205664A (en) Refrigerating cycle system
US1983550A (en) Refrigerating apparatus
KR960002567B1 (en) Refrigeration circuit
JP3442949B2 (en) Refrigeration cycle using variable capacity compressor
JP3924935B2 (en) Thermal expansion valve
JPH06281296A (en) Expansion valve
JPH0972622A (en) Freezing device
JP2005265385A (en) Decompression device
JPH07139825A (en) Freezer device
JPH0587054A (en) Fluid transfer pump for automobile and air-conditioner using fluid transfer pump
JPH06241620A (en) Control valve for refrigerating cycle
JPH06241580A (en) Freezing cycle device