JPH08232659A - Cooling device for internal combustion engine - Google Patents

Cooling device for internal combustion engine

Info

Publication number
JPH08232659A
JPH08232659A JP6183495A JP6183495A JPH08232659A JP H08232659 A JPH08232659 A JP H08232659A JP 6183495 A JP6183495 A JP 6183495A JP 6183495 A JP6183495 A JP 6183495A JP H08232659 A JPH08232659 A JP H08232659A
Authority
JP
Japan
Prior art keywords
cooling water
internal combustion
combustion engine
engine
bypass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6183495A
Other languages
Japanese (ja)
Other versions
JP3353236B2 (en
Inventor
Ryuichi Matsushiro
隆一 松代
Toshihiko Ito
猪頭  敏彦
Hiroyuki Fukunaga
博之 福永
Tokio Kohama
時男 小浜
Yasutoshi Yamanaka
保利 山中
Hikari Sugi
光 杉
Yoshimitsu Inoue
美光 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Nippon Soken Inc
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, NipponDenso Co Ltd filed Critical Nippon Soken Inc
Priority to JP06183495A priority Critical patent/JP3353236B2/en
Priority to DE19606634A priority patent/DE19606634B4/en
Priority to US08/607,349 priority patent/US5749330A/en
Publication of JPH08232659A publication Critical patent/JPH08232659A/en
Application granted granted Critical
Publication of JP3353236B2 publication Critical patent/JP3353236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P2011/205Indicating devices; Other safety devices using heat-accumulators

Landscapes

  • Exhaust Gas After Treatment (AREA)

Abstract

PURPOSE: To realize improvement in emissions and reduction in fuel consumption by providing an opening/closing valve for opening a bypass path in accordance with reduction of a load of an internal combustion engine, and providing a heat accumulator interposed in the bypass path. CONSTITUTION: A cooling water path 3 extended from a cooling water outlet 11 of an engine 1, leading to a radiator 2, is connected to a cooling water inlet 12 of the engine 1. A bypass main path 4 branches from the cooling water outlet 11 of the engine 1, to lead to a flow regulating valve 7, to extend bypass paths 41, 42. The one bypass path 41 is connected to a bottom wall of a heat accumulator 8 and here opened. During warming the engine, cooling water flowing out from the cooling water outlet 11, much flowing in the bypass path 41 from the bypass main path 4, is supplied to the heat accumulator 8. Cooling water of high temperature in the heat accumulator 8 is supplied to a water jacket and an oil warmer 14 via a warm water supply path 5 and the cooling water inlet 12. Thus by increasing a cylinder wall temperature of the engine 1, improving exhaust emission and reducing fuel consumption can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は内燃機関の冷却装置に関
し、特に暖機時の冷却水温の速やかな上昇を可能とし
て、排気エミッションの改善等を図った内燃機関の冷却
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device for an internal combustion engine, and more particularly to a cooling device for an internal combustion engine which enables a rapid rise in cooling water temperature during warm-up to improve exhaust emission.

【0002】[0002]

【従来の技術】内燃機関(エンジン)の冷却は、加熱さ
れて高温(100℃以上)となったウォータジャケット
内の冷却水をラジエータへ送って放熱し、適温(80℃
〜88℃)となった冷却水を再びエンジンに還流させる
ことにより行っている。ところで、エンジンの暖機開始
時にはエンジン冷却水は外気温程度にまで低下してお
り、エンジンシリンダ壁も冷たくなっていることから、
空燃比を燃料リッチにして確実なエンジン起動と暖機中
のエンジン回転の円滑を図っている。しかし、燃料リッ
チとすることは排気エミッションの悪化を招くことが多
いとともに、燃費も低下することから、近年の排気規制
および省エネルギーの要請に応え得ないことになる。
2. Description of the Related Art In cooling an internal combustion engine (engine), the cooling water in the water jacket, which has been heated to a high temperature (100 ° C. or more), is sent to a radiator to radiate the heat, so that an appropriate temperature (80 ° C.) is reached.
This is done by recirculating the cooling water that has reached ~ 88 ° C) to the engine again. By the way, at the start of engine warm-up, the engine cooling water has dropped to about the outside temperature, and the engine cylinder wall is also cold,
The air-fuel ratio is made rich in fuel to ensure reliable engine startup and smooth engine rotation during warm-up. However, making the fuel rich often causes deterioration of exhaust emission and also lowers fuel consumption, and thus cannot meet the recent demands for exhaust regulations and energy saving.

【0003】[0003]

【発明が解決しようとする課題】そこで、エンジン運転
中の適温の冷却水を蓄熱器に蓄えておき、これをエンジ
ン暖機時に使用してエンジンシリンダを急速に適温まで
温めることにより、空燃比の燃料リッチを回避すること
が考えられる。しかし、大きな容量の蓄熱器を設けるこ
とは設置スペースの確保に苦慮するとともに、蓄熱器の
重量増により却って燃費が悪化するという問題を生じ
る。
Therefore, the cooling water of an appropriate temperature during engine operation is stored in a heat accumulator, which is used at the time of engine warm-up to rapidly warm the engine cylinder to an appropriate temperature, thereby increasing the air-fuel ratio. It is possible to avoid fuel rich. However, providing a large-capacity heat storage device makes it difficult to secure an installation space, and causes an increase in weight of the heat storage device, which causes deterioration of fuel efficiency.

【0004】本発明はかかる課題を解決するもので、冷
却水系に設けた小型の蓄熱器により、暖機中の排気エミ
ッション等の悪化を有効に防止できる内燃機関の冷却装
置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide a cooling device for an internal combustion engine, which can effectively prevent deterioration of exhaust emission during warm-up by a small heat storage device provided in a cooling water system. And

【0005】[0005]

【課題を解決するための手段】本発明の第1の構成で
は、内燃機関1の冷却水出口11から流出した冷却水を
ラジエータ2を経て内燃機関1の冷却水入口12へ還流
させる冷却水路3と、内燃機関1の冷却水出口11から
流出した直後の冷却水を内燃機関1の冷却水入口12へ
直接還流させるバイパス路41と、内燃機関の負荷状態
を検出する負荷状態検出手段7aと、内燃機関1の負荷
の減少に応じて上記バイパス路41を開く開閉弁7と、
上記バイパス路41に介設された蓄熱器8とを具備して
いる。
In the first configuration of the present invention, a cooling water passage 3 for returning the cooling water flowing out of the cooling water outlet 11 of the internal combustion engine 1 to the cooling water inlet 12 of the internal combustion engine 1 via the radiator 2. A bypass path 41 for directly returning the cooling water immediately after flowing out from the cooling water outlet 11 of the internal combustion engine 1 to the cooling water inlet 12 of the internal combustion engine 1, and a load state detecting means 7a for detecting a load state of the internal combustion engine, An on-off valve 7 that opens the bypass passage 41 according to a decrease in the load of the internal combustion engine 1;
The heat storage device 8 is provided in the bypass 41.

【0006】本発明の第2の構成では、内燃機関1の冷
却水出口11から流出した冷却水をラジエータ2を経て
内燃機関1の冷却水入口12へ還流させる冷却水路3
と、内燃機関1の冷却水出口11から流出した直後の冷
却水をラジエータ2を迂回して内燃機関1の冷却水入口
12へ還流させる第1バイパス路41と、内燃機関1の
冷却水出口11から流出した直後の冷却水を、上記ラジ
エータ2の出口と内燃機関1を結ぶ冷却水路3中に設け
られて冷却水温に応じて開く感熱弁6の感熱部近くへ供
給して、冷却水路3を経て内燃機関1の冷却水入口12
へ還流させる第2バイパス路42と、内燃機関の負荷状
態を検出する負荷状態検出手段7aと、内燃機関1の負
荷の減少に応じて、上記第2バイパス路42に対する第
1バイパス路41への冷却水流入比を大きくする流量調
整弁7と、上記第1バイパス路41に介設された蓄熱器
8とを具備している。
In the second configuration of the present invention, the cooling water passage 3 for returning the cooling water flowing out from the cooling water outlet 11 of the internal combustion engine 1 to the cooling water inlet 12 of the internal combustion engine 1 via the radiator 2.
And a first bypass passage 41 for circulating the cooling water immediately after flowing out from the cooling water outlet 11 of the internal combustion engine 1 to the cooling water inlet 12 of the internal combustion engine 1 bypassing the radiator 2, and the cooling water outlet 11 of the internal combustion engine 1. Immediately after flowing out of the cooling water, the cooling water is supplied to the vicinity of the heat-sensitive part of the heat-sensitive valve 6 provided in the cooling water passage 3 connecting the outlet of the radiator 2 and the internal combustion engine 1 and opened according to the cooling water temperature, and the cooling water passage 3 is Through the cooling water inlet 12 of the internal combustion engine 1
To the first bypass passage 41 for the second bypass passage 42 in response to the decrease in the load of the internal combustion engine 1, and the second bypass passage 42 for returning to the second bypass passage 42, the load state detecting means 7a for detecting the load state of the internal combustion engine, It is provided with a flow rate adjusting valve 7 for increasing the cooling water inflow ratio, and a heat storage device 8 provided in the first bypass passage 41.

【0007】上記第3の構成では、上記負荷状態検出手
段を、内燃機関のインテークマニホールド負圧が導入さ
れて上記流量調整弁7の弁体操作用ダイヤフラム71を
駆動する圧力室7aで構成する。
In the third structure, the load state detecting means is composed of the pressure chamber 7a for driving the valve body operating diaphragm 71 of the flow rate adjusting valve 7 by introducing the intake manifold negative pressure of the internal combustion engine.

【0008】[0008]

【作用】上記第1の構成において、暖機時には内燃機関
の負荷は小さいから開閉弁が開き、内燃機関の冷却水出
口から流出した冷却水がバイパス路へ流入する。蓄熱器
に蓄えられた高温の冷却水は、新たな冷却水の流入によ
り押し出されて内燃機関の冷却水入口へ向かい内燃機関
のシリンダ壁温を速やかに上昇させる。内燃機関から流
出する冷却水は暖機中に次第に高温となり、上記冷却水
出口から流出した直後の冷却水温は十分に高くなる。そ
して、この高温の冷却水がバイパス路の上記蓄熱器に流
入してここに蓄えられる。十分に高温の冷却水を蓄える
から、蓄熱器を小型にしても、暖機中の内燃機関のシリ
ンダ壁温を速やかに上昇させるに足る熱量が得られる。
このシリンダ壁温の速やかな上昇により、暖機時の空燃
比を燃料リッチとする必要がなくなり、排気エミッショ
ンの向上と燃費の低減が実現される。
In the first construction described above, when the engine is warmed up, the load on the internal combustion engine is small, so the on-off valve opens, and the cooling water flowing out from the cooling water outlet of the internal combustion engine flows into the bypass passage. The high-temperature cooling water stored in the heat accumulator is pushed out by the new inflow of cooling water, moves toward the cooling water inlet of the internal combustion engine, and quickly raises the cylinder wall temperature of the internal combustion engine. The cooling water flowing out from the internal combustion engine gradually becomes hot during warm-up, and the cooling water temperature immediately after flowing out from the cooling water outlet becomes sufficiently high. Then, this high-temperature cooling water flows into the heat storage device in the bypass passage and is stored therein. Since sufficiently high-temperature cooling water is stored, even if the heat storage unit is made small, a sufficient amount of heat can be obtained to quickly raise the cylinder wall temperature of the internal combustion engine that is warming up.
This rapid increase in the cylinder wall temperature eliminates the need to make the air-fuel ratio fuel-rich at the time of warm-up, thereby improving exhaust emission and reducing fuel consumption.

【0009】上記第2の構成において、暖機中や低負荷
で走行中には、流量調整弁により第1バイパス路への冷
却水流入比が第2バイパス路への冷却水流入比よりも大
きくなり、内燃機関の冷却水出口から流出した高温の冷
却水が第1バイパス路へ流入して蓄熱器に蓄えられる。
同時に、感熱部近くへの高温冷却水の供給が少なくなる
から感熱弁は閉じ気味となり、ラジエータを経由する冷
却水量が減って内燃機関の冷却水温は全体として上昇す
る。これにより、暖機時の排気エミッションの向上に加
えて、クエンチエリア減少による低負荷走行時のエンジ
ン回転の円滑と燃費低減が実現される。高負荷走行中に
は、第2バイパス路への冷却水流入比が大きくなること
により、感熱部近くへの高温冷却水の供給が多くなって
感熱弁が開き気味となり、ラジエータを経由する冷却水
量が増加して内燃機関の冷却水温は全体として低下す
る。これにより、ノッキングが抑制されるとともに、充
填効率の向上による内燃機関の出力増大が実現される。
In the above-mentioned second structure, during warm-up or when traveling under a low load, the flow rate adjusting valve causes the cooling water inflow ratio to the first bypass passage to be larger than the cooling water inflow ratio to the second bypass passage. Then, the high temperature cooling water flowing out from the cooling water outlet of the internal combustion engine flows into the first bypass passage and is stored in the heat accumulator.
At the same time, since the supply of high-temperature cooling water to the vicinity of the heat-sensitive portion is reduced, the heat-sensitive valve tends to close, the amount of cooling water passing through the radiator decreases, and the cooling water temperature of the internal combustion engine rises as a whole. As a result, in addition to the improvement of exhaust emission at the time of warming up, smooth engine rotation and fuel consumption reduction at low load running are realized by reducing the quench area. During high-load running, the ratio of cooling water flowing into the second bypass path becomes large, and the supply of high-temperature cooling water to the vicinity of the heat-sensitive section increases, causing the heat-sensitive valve to open and the amount of cooling water passing through the radiator. And the cooling water temperature of the internal combustion engine decreases as a whole. As a result, knocking is suppressed and the output of the internal combustion engine is increased by improving the charging efficiency.

【0010】上記第3の構成においては、内燃機関のイ
ンテークマニホールド負圧により内燃機関の負荷状態が
確実に検出されるとともに、電気的な弁制御回路が不要
であるから装置構成が簡易となる。
In the third structure, the load condition of the internal combustion engine is reliably detected by the intake manifold negative pressure of the internal combustion engine, and the electric valve control circuit is not required, so that the device structure is simplified.

【0011】[0011]

【実施例】図1には本発明に係る内燃機関(エンジン)
の冷却装置の配管系統を示す。エンジン1の冷却水出口
11から延びる冷却水路3はラジエータ2に至り、該ラ
ジエータ2を経由してエンジン1の冷却水入口12に接
続されている。ラジエータ2から上記冷却水入口12へ
至る冷却水路3には途中に感熱弁たるサーモスタット6
が設けてある。サーモスタット6は内設した感熱部のワ
ックスの膨張により、冷却水温が上昇すると開き気味と
なってラジエータ2を経由する冷却水路3中の流量を増
大させ、エンジン冷却水温を全体として低下させる。冷
却水温が低下するとサーモスタット6は閉じ気味となっ
てラジエータ2を経由する冷却水路3中の流量を減少さ
せ、エンジン冷却水温を全体として上昇させる。このよ
うにして、エンジン1に供給される冷却水温はほぼ一定
(80℃〜88℃)に維持される。なお、冷却水の循環
はエンジン1に付設されたウォータポンプ13によりな
され、冷却水入口12に至った冷却水はエンジン1内の
ウォータジャケットを経てエンジン1を冷却するととも
に、オイルウォーマ14にも供給されてエンジンオイル
を温める
FIG. 1 shows an internal combustion engine (engine) according to the present invention.
2 shows the piping system of the cooling device. A cooling water passage 3 extending from a cooling water outlet 11 of the engine 1 reaches a radiator 2 and is connected to a cooling water inlet 12 of the engine 1 via the radiator 2. In the cooling water passage 3 from the radiator 2 to the cooling water inlet 12, a thermostat 6 as a heat sensitive valve is provided on the way.
Is provided. The thermostat 6 tends to open as the cooling water temperature rises due to the expansion of the wax in the heat-sensing portion provided therein, increasing the flow rate in the cooling water passage 3 passing through the radiator 2 and decreasing the engine cooling water temperature as a whole. When the cooling water temperature decreases, the thermostat 6 tends to close, reducing the flow rate in the cooling water passage 3 passing through the radiator 2 and increasing the engine cooling water temperature as a whole. In this way, the temperature of the cooling water supplied to the engine 1 is maintained substantially constant (80 ° C to 88 ° C). The cooling water is circulated by a water pump 13 attached to the engine 1. The cooling water reaching the cooling water inlet 12 cools the engine 1 through a water jacket in the engine 1 and is also supplied to an oil warmer 14. Be warmed up engine oil

【0012】エンジン1の冷却水出口11からはバイパ
ス主路4が分岐して流量調整弁7に至っており、流量調
整弁7からはバイパス路41,42が延びて、一方のバ
イパス路41が蓄熱器8の底壁に接続されてここに開口
し、他方のバイパス路42は冷却水路3に接続されて上
記サーモスタット6の感熱部近くに開口している。
The bypass main path 4 branches from the cooling water outlet 11 of the engine 1 to reach the flow rate adjusting valve 7. The bypass paths 41 and 42 extend from the flow rate adjusting valve 7, and one bypass path 41 stores heat. The bypass passage 42 is connected to the bottom wall of the container 8 and opens therein, and the other bypass passage 42 is connected to the cooling water passage 3 and opens near the heat-sensitive portion of the thermostat 6.

【0013】上記冷却水出口11からはまた温水供給路
5が分岐して、ヒータバルブ51を経てヒータコア52
へ至っている。ヒータコア52から戻る温水供給路5
は、冷却水入口12へ向かう冷却水路3の途中に接続さ
れており、この戻り路に、上記蓄熱器8から延びるバイ
パス路43が接続されている。バイパス路43はその基
端が蓄熱器8内の上方位置にある。
The hot water supply path 5 branches off from the cooling water outlet 11 and passes through the heater valve 51 and the heater core 52.
Has been reached. Hot water supply path 5 returning from the heater core 52
Is connected in the middle of the cooling water passage 3 toward the cooling water inlet 12, and the bypass passage 43 extending from the heat storage device 8 is connected to this return passage. The base end of the bypass passage 43 is located above the heat storage device 8.

【0014】流量調整弁7の構造の詳細を図2に示す。
流量調整弁7内にはダイヤフラム71で区画されて圧力
室7aが形成され、上記ダイヤフラム71は圧力室7a
内に設けたコイルバネ72により図の左方へ押圧されて
いる。ダイヤフラム71から延びる操作棒73は流体室
7b,7cを区画する隔壁75の開口751を挿通して
おり、その先端に設けられた弁体74が流体室7cへの
バイパス路41の開口411を閉鎖している。上記流体
室7cには上方よりバイパス主路4が接続開口してお
り、また、流体室7bからはバイパス路42が延びてい
る。上記圧力室7aはエンジン1の図略のインテークマ
ニホールドに連通しており、インテークマニホールド負
圧が小さいエンジン高負荷状態では、図示の如く、バイ
パス主路4とバイパス路42が連通してこれらを冷却水
が流れる。エンジン負荷が小さくなってこれに応じてイ
ンテークマニホールド負圧が大きくなると、ダイヤフラ
ム71が右方へ移動し、これに伴って弁体74は次第に
開口411から離れ、バイパス主路4からバイパス路4
1へ冷却水が流れ始める。その分、バイパス路42への
冷却水量は減る。エンジン負荷が十分小さい暖機時に
は、弁体74は開口751を閉鎖する位置まで移動し、
バイパス主路4より流入した冷却水は全てバイパス路4
1へ流れる。
The details of the structure of the flow rate adjusting valve 7 are shown in FIG.
A pressure chamber 7a is formed in the flow rate adjusting valve 7 by being partitioned by a diaphragm 71. The diaphragm 71 is formed by the pressure chamber 7a.
It is pressed to the left in the figure by a coil spring 72 provided inside. An operation rod 73 extending from the diaphragm 71 is inserted through an opening 751 of a partition wall 75 that divides the fluid chambers 7b and 7c, and a valve element 74 provided at the tip of the operation rod 73 closes an opening 411 of the bypass passage 41 to the fluid chamber 7c. are doing. The bypass main passage 4 is connected to the fluid chamber 7c from above and a bypass passage 42 extends from the fluid chamber 7b. The pressure chamber 7a communicates with an intake manifold (not shown) of the engine 1. In a high engine load state where the intake manifold negative pressure is small, the bypass main passage 4 and the bypass passage 42 communicate with each other to cool them as shown in the figure. Water flows. When the engine load decreases and the intake manifold negative pressure increases accordingly, the diaphragm 71 moves to the right, and along with this, the valve element 74 gradually separates from the opening 411 and from the bypass main path 4 to the bypass path 4
Cooling water begins to flow to 1. The amount of cooling water to the bypass 42 is reduced accordingly. During warm-up when the engine load is sufficiently small, the valve element 74 moves to a position where it closes the opening 751.
All the cooling water that has flowed in from the bypass main passage 4 is bypass passage 4
Flow to 1.

【0015】かかる構成の冷却装置において、暖機中や
エンジン低負荷での走行中には、エンジン1の冷却水出
口11より流出した直後の冷却水はバイパス主路4から
バイパス路41へ多く流れて蓄熱器8へ供給される。供
給された冷却水は、自然対流により蓄熱器8内の上部に
溜まった高温の冷却水をバイパス路43へ押し出し、押
し出された高温の冷却水は温水供給路5の戻り路より冷
却水路3を経てエンジン1の冷却水入口12へ至り、エ
ンジン1内のウォータジャケットおよびオイルウォーマ
14に供給される。高温の冷却水が供給されて、エンジ
ン1のシリンダ壁温度は迅速に上昇し、暖機時の燃料リ
ッチが不要となって排気エミッションの向上が図られ
る。また、低負荷での走行中にはクエンチエリアが減少
してエンジン回転の円滑と燃費低減が実現される。そし
て、上記蓄熱器8には、エンジンから流出した直後の十
分高温(100℃以上)の冷却水が蓄えられるから、ラ
ジエータ通過後の80℃〜88℃程度の冷却水を蓄える
場合に比して蓄熱器容量を25%〜13.6%程度小さ
くし小型化してもエンジン昇温に十分な熱量を蓄えるこ
とができる。
In the cooling device having such a structure, during warming up or running with a low engine load, much cooling water immediately after flowing out from the cooling water outlet 11 of the engine 1 flows from the bypass main passage 4 to the bypass passage 41. And is supplied to the heat storage device 8. The supplied cooling water pushes the high temperature cooling water accumulated in the upper part of the heat storage device 8 into the bypass passage 43 by natural convection, and the pushed high temperature cooling water flows from the return passage of the hot water supply passage 5 to the cooling water passage 3. After that, it reaches the cooling water inlet 12 of the engine 1 and is supplied to the water jacket and the oil warmer 14 in the engine 1. The high-temperature cooling water is supplied, the temperature of the cylinder wall of the engine 1 rises quickly, and fuel rich at the time of warm-up becomes unnecessary, so that exhaust emission is improved. In addition, the quench area is reduced during running under a low load, which realizes smooth engine rotation and reduced fuel consumption. And since the sufficiently high temperature (100 degreeC or more) cooling water immediately after flowing out from an engine is stored in the said heat storage device 8, compared with the case where 80 degreeC-88 degreeC cooling water after passing a radiator is stored. Even if the capacity of the heat accumulator is reduced by about 25% to 13.6% and the size is reduced, a sufficient amount of heat for engine temperature rise can be stored.

【0016】また、本実施例ではエンジン1のオイルウ
ォーマ14に高温の冷却水が供給されることにより、特
に暖機時にオイル温度が迅速に上昇してその粘度が低下
し、これによっても燃費の低減が図られる。また、高温
の冷却水はヒータコア52にも供給されるから、暖房の
立ち上がりが向上する。
Further, in this embodiment, by supplying the high temperature cooling water to the oil warmer 14 of the engine 1, the oil temperature rapidly rises and its viscosity decreases especially during warm-up, which also reduces fuel consumption. Reduction is achieved. Further, since the high-temperature cooling water is also supplied to the heater core 52, the rising of heating is improved.

【0017】走行中にエンジン1が高負荷状態になる
と、その冷却水出口11より流出した直後の冷却水はバ
イパス主路4からバイパス路42へ多く流れ始め、この
高温冷却水が感熱部近くへ供給されてサーモスタット6
が開き気味となる。これにより、ラジエータ2を経由す
る冷却水量が増加してエンジン冷却水温は全体として8
0℃〜88℃程度よりも低下し、ノッキングが抑制され
るとともに、充填効率が向上してエンジン出力が増大せ
しめられる。
When the engine 1 is in a high load state during traveling, a large amount of cooling water immediately after flowing out from the cooling water outlet 11 starts to flow from the bypass main passage 4 to the bypass passage 42, and this high temperature cooling water is brought to the vicinity of the heat-sensitive portion. Supplied with thermostat 6
Will open up. As a result, the amount of cooling water passing through the radiator 2 increases, and the engine cooling water temperature as a whole becomes 8
The temperature is lower than 0 ° C. to 88 ° C., knocking is suppressed, the filling efficiency is improved, and the engine output is increased.

【0018】走行中にエンジン1が高負荷状態から低負
荷状態になると、冷却水出口11から流出した直後の冷
却水はバイパス主路4からバイパス路41へと流れ始
め、これにより蓄熱器8内の高温冷却水が押し出されて
エンジン1へ供給される。これにより、低負荷に切り替
わった際のエンジン1に高温の冷却水が供給されて、エ
ンジン1における希薄燃焼が効率的に開始され、燃費が
向上する。この時のエンジン負荷と冷却水温の変化を図
3(1),(2)に示す。図3(2)の実線は本発明に
おけるもの、破線は蓄熱器がないものを示し、図より知
られる如く、本発明では、低負荷状態にエンジンが切り
替わった際の水温上昇が迅速になされる。
When the engine 1 changes from a high load state to a low load state during traveling, the cooling water immediately after flowing out from the cooling water outlet 11 starts to flow from the bypass main passage 4 to the bypass passage 41, whereby the inside of the heat storage unit 8 is stored. The high temperature cooling water is extruded and supplied to the engine 1. As a result, high-temperature cooling water is supplied to the engine 1 when the load is switched to a low load, lean combustion in the engine 1 is efficiently started, and fuel efficiency is improved. Changes in engine load and cooling water temperature at this time are shown in FIGS. 3 (1) and 3 (2). The solid line in FIG. 3 (2) shows the one in the present invention, and the broken line shows one without a heat accumulator. As is known from the figure, in the present invention, the water temperature rises rapidly when the engine is switched to the low load state. .

【0019】なお、上記実施例において、流量調整弁
7、サーモスタット6、蓄熱器8、およびこれらを接続
するバイパス路4,41,42,43は一体のモジュー
ルとすることが可能である。
In the above embodiment, the flow rate adjusting valve 7, the thermostat 6, the heat accumulator 8 and the bypass passages 4, 41, 42, 43 connecting them can be integrated into a module.

【0020】また、上記実施例において、エンジン高負
荷時に冷却水温を低下させる必要がない場合には、バイ
パス路42を設ける必要はなく、この場合は、上記構造
の流量調整弁7に代えてインテークマニホールド負圧に
応じて開閉作動する開閉弁を使用することができる。
Further, in the above embodiment, when it is not necessary to lower the cooling water temperature when the engine is under high load, it is not necessary to provide the bypass passage 42. In this case, instead of the flow rate adjusting valve 7 having the above structure, the intake air is taken. An on-off valve that opens and closes depending on the manifold negative pressure can be used.

【0021】上記実施例ではインテークマニホールド負
圧によってエンジン1の負荷状態を検出したが、他の方
法により負荷状態を検出するようにしても良く、この場
合には負圧作動型の上記流量調整弁や開閉弁に代えて、
制御回路からの電気信号で作動する電磁弁等を使用する
ことができる。
Although the load state of the engine 1 is detected by the intake manifold negative pressure in the above embodiment, the load state may be detected by another method. In this case, the negative pressure actuated type flow rate adjusting valve is used. Or instead of the open / close valve,
A solenoid valve or the like operated by an electric signal from the control circuit can be used.

【0022】[0022]

【発明の効果】以上の如く、本発明の内燃機関の冷却装
置によれば、小型の蓄熱器を使用して内燃機関低負荷時
の冷却水温を迅速に上昇させることにより、排気エミッ
ションと燃費の向上を図ることができる。
As described above, according to the cooling system for an internal combustion engine of the present invention, the cooling water temperature at a low load of the internal combustion engine is rapidly increased by using a small heat storage device, thereby reducing exhaust emission and fuel consumption. It is possible to improve.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す冷却装置の配管系統図
である。
FIG. 1 is a piping system diagram of a cooling device showing an embodiment of the present invention.

【図2】流量調整弁の概略断面図である。FIG. 2 is a schematic sectional view of a flow rate adjusting valve.

【図3】冷却装置の作動を示すタイムチャートである。FIG. 3 is a time chart showing the operation of the cooling device.

【符号の説明】[Explanation of symbols]

1 エンジン(内燃機関) 11 冷却水出口 12 冷却水入口 2 ラジエータ 3 冷却水路 41 バイパス路(第1のバイパス路) 42 バイパス路(第2のバイパス路) 6 サーモスタット(感熱弁) 7 流量調整弁(開閉弁) 7a 圧力室(負荷状態検出手段) 8 蓄熱器 1 Engine (Internal Combustion Engine) 11 Cooling Water Outlet 12 Cooling Water Inlet 2 Radiator 3 Cooling Water Channel 41 Bypass Channel (First Bypass Channel) 42 Bypass Channel (Second Bypass Channel) 6 Thermostat (Heat Sensitive Valve) 7 Flow Control Valve ( Open / close valve) 7a Pressure chamber (load state detection means) 8 Heat accumulator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 福永 博之 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 小浜 時男 愛知県西尾市下羽角町岩谷14番地 株式会 社日本自動車部品総合研究所内 (72)発明者 山中 保利 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 杉 光 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 (72)発明者 井上 美光 愛知県刈谷市昭和町1丁目1番地 日本電 装株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiroyuki Fukunaga 14 Iwatani, Shimohakaku-cho, Nishio-shi, Aichi Stock Company Japan Automotive Parts Research Institute (72) Inventor Tokio Obama 14 Iwatani, Shimohakaku-cho, Nishio-shi, Aichi Shares (72) Inventor Houri Yamanaka, 1-1, Showa-cho, Kariya city, Aichi prefecture, Nihon Denso Co., Ltd. (72) Inventor, 1-1, 1-1, Showa-machi, Kariya city, Aichi prefecture Co., Ltd. (72) Inventor Mitsuru Inoue 1-1, Showa-cho, Kariya city, Aichi prefecture Nihon Denso Co., Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 内燃機関の冷却水出口から流出した冷却
水をラジエータを経て内燃機関の冷却水入口へ還流させ
る冷却水路と、内燃機関の冷却水出口から流出した直後
の冷却水を直接内燃機関の冷却水入口へ還流させるバイ
パス路と、内燃機関の負荷状態を検出する負荷状態検出
手段と、内燃機関の負荷の減少に応じて上記バイパス路
を開く開閉弁と、上記バイパス路に介設された蓄熱器と
を具備する内燃機関の冷却装置。
1. A cooling water passage for returning cooling water flowing out from a cooling water outlet of an internal combustion engine to a cooling water inlet of the internal combustion engine via a radiator, and a cooling water immediately after flowing out of the cooling water outlet of the internal combustion engine directly to the internal combustion engine. A bypass path for returning to the cooling water inlet, load state detection means for detecting a load state of the internal combustion engine, an opening / closing valve for opening the bypass path according to a decrease in the load of the internal combustion engine, and a bypass path provided in the bypass path. And a cooling device for an internal combustion engine.
【請求項2】 内燃機関の冷却水出口から流出した冷却
水をラジエータを経て内燃機関の冷却水入口へ還流させ
る冷却水路と、内燃機関の冷却水出口から流出した直後
の冷却水をラジエータを迂回して内燃機関の冷却水入口
へ還流させる第1バイパス路と、内燃機関の冷却水出口
から流出した直後の冷却水を、上記ラジエータの出口と
内燃機関を結ぶ冷却水路に設けられて冷却水温に応じて
開く感熱弁の感熱部近くへ供給して、冷却水路を経て内
燃機関の冷却水入口へ還流させる第2バイパス路と、内
燃機関の負荷状態を検出する負荷状態検出手段と、内燃
機関の負荷の減少に応じて、上記第2バイパス路に対す
る第1バイパス路への冷却水流入比を大きくする流量調
整弁と、上記第1バイパス路に介設された蓄熱器とを具
備する内燃機関の冷却装置。
2. A cooling water passage for returning cooling water flowing out of a cooling water outlet of the internal combustion engine to a cooling water inlet of the internal combustion engine via a radiator, and a cooling water immediately after flowing out of the cooling water outlet of the internal combustion engine, bypassing the radiator. The first bypass passage for returning to the cooling water inlet of the internal combustion engine and the cooling water immediately after flowing out from the cooling water outlet of the internal combustion engine are provided in the cooling water passage connecting the outlet of the radiator and the internal combustion engine to the cooling water temperature. A second bypass passage for supplying the fluid near the heat-sensitive portion of the heat-sensitive valve to recirculate to the cooling water inlet of the internal combustion engine through the cooling water passage; load state detecting means for detecting the load state of the internal combustion engine; An internal combustion engine including a flow control valve for increasing a cooling water inflow ratio to the first bypass passage with respect to the second bypass passage according to a decrease in load, and a heat storage device provided in the first bypass passage. cold Rejection device.
【請求項3】 上記負荷状態検出手段を、内燃機関のイ
ンテークマニホールド負圧が導入されて上記流量調整弁
の弁体操作用ダイヤフラムを駆動する圧力室で構成した
請求項1または2記載の内燃機関の冷却装置。
3. The internal combustion engine according to claim 1, wherein the load state detecting means is constituted by a pressure chamber for driving a valve body operating diaphragm of the flow rate adjusting valve by introducing an intake manifold negative pressure of the internal combustion engine. Cooling system.
JP06183495A 1995-02-24 1995-02-24 Internal combustion engine cooling system Expired - Fee Related JP3353236B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP06183495A JP3353236B2 (en) 1995-02-24 1995-02-24 Internal combustion engine cooling system
DE19606634A DE19606634B4 (en) 1995-02-24 1996-02-22 Cooling system for an internal combustion engine
US08/607,349 US5749330A (en) 1995-02-24 1996-02-26 Cooling system for an internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06183495A JP3353236B2 (en) 1995-02-24 1995-02-24 Internal combustion engine cooling system

Publications (2)

Publication Number Publication Date
JPH08232659A true JPH08232659A (en) 1996-09-10
JP3353236B2 JP3353236B2 (en) 2002-12-03

Family

ID=13182527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06183495A Expired - Fee Related JP3353236B2 (en) 1995-02-24 1995-02-24 Internal combustion engine cooling system

Country Status (1)

Country Link
JP (1) JP3353236B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222217A (en) * 2015-11-03 2016-01-06 孙翠玲 A kind of circulating type water tank structure
US10428783B2 (en) 2017-03-03 2019-10-01 C.R.F. Societa Consortile Per Azioni Cooling system for an internal combustion engine of a motor-vehicle
CN112963284A (en) * 2021-03-19 2021-06-15 中国第一汽车股份有限公司 Engine control system and engine control method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105737659B (en) * 2016-03-18 2018-08-10 江苏一万节能科技股份有限公司 High-effective spherical heat exchanger
EP3246541B1 (en) 2016-05-16 2018-07-18 C.R.F. Società Consortile per Azioni Cooling system for an internal combustion engine of a motor vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105222217A (en) * 2015-11-03 2016-01-06 孙翠玲 A kind of circulating type water tank structure
US10428783B2 (en) 2017-03-03 2019-10-01 C.R.F. Societa Consortile Per Azioni Cooling system for an internal combustion engine of a motor-vehicle
CN112963284A (en) * 2021-03-19 2021-06-15 中国第一汽车股份有限公司 Engine control system and engine control method
CN112963284B (en) * 2021-03-19 2022-05-20 中国第一汽车股份有限公司 Engine control system and engine control method

Also Published As

Publication number Publication date
JP3353236B2 (en) 2002-12-03

Similar Documents

Publication Publication Date Title
JP2553300B2 (en) Cooling device for internal combustion engine
US7721683B2 (en) Integrated engine thermal management
US7263954B2 (en) Internal combustion engine coolant flow
US20150184576A1 (en) Engine cooling system
US5337704A (en) Engine cooling system with thermostat coolant flow control between head and block
KR101394051B1 (en) Engine cooling system for vehicle and control method in the same
US20080115747A1 (en) Coolant controller for an internal combustion engine
CN106246322A (en) The heat-exchange device of vehicle
US20180252196A1 (en) Cooling system for an internal combustion engine of a motor-vehicle
US4394960A (en) Heating apparatus for a passenger compartment of a motor vehicle
JP4432272B2 (en) Internal combustion engine equipped with a heat storage device
US7607313B2 (en) Vehicle HVAC system
US20050229873A1 (en) Method and apparatus for moderating the temperature of an internal combustion engine of a motor vehicle
JPH08232659A (en) Cooling device for internal combustion engine
US10794260B2 (en) Coolant pump for vehicle, cooling system provided with the same and control method for the same
JP2003003843A (en) Internal combustion engine provided with heat accumulator
US10968811B2 (en) Coolant flow control apparatus, cooling system provided with the same and control method for the same
JP2705389B2 (en) Engine cooling system
JP2001132450A (en) Oil temperature controller for internal combustion engine
GB2234343A (en) Engine cooling system
CN114991932B (en) Vehicle and engine thereof
JP2001280132A (en) Cooling water controller
JPS6344932B2 (en)
US11047279B2 (en) Warm-up device
JPS6226583Y2 (en)

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020903

LAPS Cancellation because of no payment of annual fees