JPH08231688A - Production of polylactic acid - Google Patents

Production of polylactic acid

Info

Publication number
JPH08231688A
JPH08231688A JP3482395A JP3482395A JPH08231688A JP H08231688 A JPH08231688 A JP H08231688A JP 3482395 A JP3482395 A JP 3482395A JP 3482395 A JP3482395 A JP 3482395A JP H08231688 A JPH08231688 A JP H08231688A
Authority
JP
Japan
Prior art keywords
polylactic acid
lactide
polymerization
temperature
pellets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3482395A
Other languages
Japanese (ja)
Other versions
JP3055422B2 (en
Inventor
Hitomi Obara
仁実 小原
Seiji Sawa
誠治 澤
Masahiro Ito
正博 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP7034823A priority Critical patent/JP3055422B2/en
Publication of JPH08231688A publication Critical patent/JPH08231688A/en
Application granted granted Critical
Publication of JP3055422B2 publication Critical patent/JP3055422B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

PURPOSE: To prevent the discoloration and decomposition by using lactide as the main raw material and performing the steps of melt polymerization, pellet forming, solid-phase polymerization at a temperature below the melting point of the pellets, and sublimation of an unreacted monomer. CONSTITUTION: In the first step, lactide is subjected to melt polymerization at 100-190 deg.C in the presence of 1-500ppm catalyst to give a polylactic acid with an average molecular weight of 5 to 200,000, a lactide content of 2-20wt.% and a viscosity of 1,000-20,000P. In the second step, the polylactic acid is taken out of the reactor, cooled and formed into pellets. In the third step, the pellets are subjected to solid-phase polymerization at a temperature of 80-175 deg.C, i.e., below the melting point of the pellet, for 6-90hr. In the fourth step, an unreacted monomer is removed by sublimation at a temperature 2-40 deg.C lower than the melting point, 90-98 deg.C, of lactide in a vacuum, an inert gas or dry air to give high-molecular-weight pellets.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は固形の高分子量ポリ乳酸
の製造法に関する。本発明の製造法にて得られたポリ乳
酸は高分子量であり、粒状、ペレット状、板状など種々
の形態をなす。
The present invention relates to a method for producing solid high molecular weight polylactic acid. The polylactic acid obtained by the production method of the present invention has a high molecular weight and has various forms such as a granular form, a pellet form and a plate form.

【0002】[0002]

【従来の技術】ポリ乳酸は生体安全性が高く、しかも分
解物である乳酸は生体内で吸収される。このようにポリ
乳酸は生体安全性の高い高分子化合物であり、手術用縫
合糸、ドラッグデリバリー(徐放性カプセル)、骨折時
の補強材など医療用にも用いられ、自然環境下で分解す
るため分解性プラスチックとしても注目されている。ま
た、一軸、二軸延伸フィルムや繊維、放出成形品などと
して種々の用途にも用いられている。
2. Description of the Related Art Polylactic acid has high biosafety, and lactic acid, which is a decomposition product, is absorbed in vivo. As described above, polylactic acid is a highly biosafe polymer compound, and is also used for medical purposes such as surgical sutures, drug delivery (sustained release capsules), and reinforcing materials for fractures, and decomposes in natural environments. Therefore, it is attracting attention as a degradable plastic. It is also used for various applications as uniaxially and biaxially stretched films, fibers, release molded products and the like.

【0003】このようなポリ乳酸の製造法には、乳酸を
直接脱水縮合して目的物を得る直接法と、乳酸から一旦
環状ラクチド(二量体)を合成し、晶析法などにより精
製を行い、ついで開環重合を行う方法がある。ラクチド
の合成、精製及び重合操作は、例えば米国特許第4,0
57,537号明細書:公開欧州特許出願第261,5
72号明細書:Polymer Bulletin,14,491-495(1985);及
びMakromol.Chem.,187,1611-1628(1986)のような化学文
献で様々に記載されている。また、特公昭56−146
88号公報には2分子の環状ジエステルを中間体とし、
これをオクチル酸錫、ラウリルアルコールを触媒として
重合し、ポリ乳酸を製造することが開示されている。こ
のようにして得られたポリ乳酸は、成形加工の工程にお
ける取り扱い性を容易にするため、あらかじめ米粒大か
ら豆粒程度の大きさの球状、立方体、円柱状、破砕状等
のペレット状の製品とされる。
[0003] Such a method for producing polylactic acid includes a direct method for directly dehydrating and condensing lactic acid to obtain a desired product, and a method in which a cyclic lactide (dimer) is once synthesized from lactic acid and purified by a crystallization method or the like. Then, ring-opening polymerization is performed. Lactide synthesis, purification and polymerization procedures are described, for example, in US Pat.
57,537: Published European Patent Application No. 261,5
72: Polymer Bulletin, 14,491-495 (1985); and Makromol. Chem., 187, 1611-1628 (1986). In addition, Japanese Patent Publication Sho-56-146
In JP-A-88, two molecules of cyclic diester are used as intermediates,
It is disclosed that polylactic acid is produced by polymerizing this using tin octylate and lauryl alcohol as catalysts. The polylactic acid thus obtained is used in advance in order to facilitate the handling in the molding process, and in advance, spherical, cubic, columnar, crushed and other pellet-shaped products having a size of about rice grains to bean grains. Is done.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、分子量
10万〜50万の高分子量のポリ乳酸の融点は175〜
200℃と高く、従来このようなポリ乳酸の最終重合物
を溶融状態で反応器から取り出し、これを融点以上に加
熱すると、ポリ乳酸の分解や着色を生じた。さらにこの
様な温度においては、多量のラクチドがポリマー中に発
生した。また、ラクチドや分解物はポリマーのガラス転
移点温度および、溶融粘度を低下させ、成形加工性、熱
安定性をいちぢるしく劣下させていた。これらはこの様
な温度においてはポリマーとラクチドの平衡がラクチド
側に傾くためと思われる。
However, the melting point of high molecular weight polylactic acid having a molecular weight of 100,000 to 500,000 is 175 to 175.
Conventionally, such a final polymer of polylactic acid was taken out of the reactor in a molten state at a high temperature of 200 ° C., and when it was heated to a temperature equal to or higher than the melting point, polylactic acid was decomposed or colored. Furthermore, at such temperatures, large amounts of lactide were generated in the polymer. In addition, lactide and decomposed products lowered the glass transition temperature and melt viscosity of the polymer, and considerably deteriorated the moldability and heat stability. This is probably because the equilibrium between the polymer and lactide is inclined toward the lactide side at such a temperature.

【0005】そこで、本件出願人は、かかる課題を解決
するため、ポリ乳酸の重合において、最終生成物を得る
前に融点より低い温度で第1段の溶融重合を行い、ポリ
乳酸をペレット状に成型し、それをさらに第2段の固相
重合で最終重合物とする方法を提案している(特願平6
−22165号)。
Therefore, in order to solve such a problem, the applicant of the present invention, in the polymerization of polylactic acid, conducts the first stage melt polymerization at a temperature lower than the melting point before obtaining the final product, and transforms the polylactic acid into pellets. We have proposed a method in which it is molded and then made into the final polymer by the second-stage solid-state polymerization (Japanese Patent Application No. 6-83242).
22165).

【0006】本発明は、更に改良を加え、固相重合の際
残っていた未反応のモノマーを除去する工程をも付加し
た高分子量のポリ乳酸を製造する方法を提供することを
目的とする。
[0006] It is an object of the present invention to provide a method for producing high molecular weight polylactic acid, which is further improved and additionally includes a step of removing unreacted monomers remaining during solid phase polymerization.

【0007】[0007]

【課題を解決するための手段】本発明者らは前記の課題
について鋭意研究を行った結果、ポリ乳酸の重合過程に
おいて未だ反応せずに残存するモノマーを昇華すること
により、ポリ乳酸の物性を改善することを見出だし、本
発明をなすに至った。
Means for Solving the Problems As a result of intensive studies on the above-mentioned problems, the present inventors have succeeded in improving the physical properties of polylactic acid by sublimating the monomer which remains unreacted in the polymerization process of polylactic acid. The inventors have found that they are improved and have completed the present invention.

【0008】すなわち、本発明は、ラクチドを主原料と
し、溶融重合により固形のポリ乳酸を得る第1工程と、
第1工程で重合し成形した固形のポリ乳酸をペレット状
に成形する第2工程と、第2工程で得たポリ乳酸ペレッ
トをその融点より低い温度で固相重合をする第3工程
と、第3工程の重合で未反応のモノマーを昇華する第4
工程とからなるポリ乳酸の製造法を提供する。
That is, the present invention comprises a first step of obtaining solid polylactic acid by melt polymerization using lactide as a main raw material,
A second step in which solid polylactic acid polymerized and molded in the first step is molded into pellets, a third step in which the polylactic acid pellet obtained in the second step is solid-phase polymerized at a temperature lower than its melting point, Fourth sublimation of unreacted monomer by three-step polymerization
A method for producing polylactic acid comprising the steps of:

【0009】本発明のポリ乳酸の製造法では、まず第1
工程で分解や着色の伴わない比較的低温で1段目の重合
反応を行い、目的の重合度の50〜95%のプレポリマ
ーを重合する。1段目の反応温度は100〜190℃、
好ましくは140〜170℃であり、平均分子量5万〜
20万、ラクチド含量2〜20重量%、好ましくは3〜
7%のポリ乳酸を得る。第1工程で得られるポリ乳酸は
粘度が1000〜20,000pois、好ましくは300
0〜7000poisである。ここで、ラクチド含量の%は
10/10のDSC測定で得られるクロマトグラムの面
積比をいう(以下同様)。
In the method for producing polylactic acid of the present invention, firstly,
In the process, the first stage polymerization reaction is carried out at a relatively low temperature without decomposition or coloration to polymerize a prepolymer having a desired degree of polymerization of 50 to 95%. The reaction temperature in the first step is 100 to 190 ° C,
It is preferably 140 to 170 ° C. and has an average molecular weight of 50,000 to
200,000, lactide content 2 to 20% by weight, preferably 3 to
7% polylactic acid is obtained. The polylactic acid obtained in the first step has a viscosity of 1000 to 20,000 pois, preferably 300.
It is 0-7000 pois. Here,% of the lactide content means the area ratio of the chromatogram obtained by the DSC measurement of 10/10 (the same applies hereinafter).

【0010】重合に用いる触媒としては、オクチル酸ス
ズなどのスズ系化合物、テトライソプロピルチタネート
などのチタン系化合物、ジルコニウムイソプロポキシド
などのジルコニウム系化合物、三酸化アンチモンなどの
アンチモン系化合物等、いずれも乳酸の重合に従来公知
の触媒が挙げられる。触媒の量としては1〜500ppm.
好ましくは10〜100ppm.である。また、添加する触
媒量によって、最終ポリマーの分子量を調整することも
できる。触媒量が少ないほど反応速度は遅くなるが、分
子量は高くなる。また、核剤(タルク、クレー、酸化チ
タン等)を添加してもよい。
Examples of the catalyst used for the polymerization include tin compounds such as tin octylate, titanium compounds such as tetraisopropyl titanate, zirconium compounds such as zirconium isopropoxide, and antimony compounds such as antimony trioxide. Conventionally known catalysts are used for the polymerization of lactic acid. The amount of catalyst is 1 to 500 ppm.
It is preferably 10 to 100 ppm. Further, the molecular weight of the final polymer can be adjusted by adjusting the amount of catalyst added. The lower the amount of catalyst, the slower the reaction rate, but the higher the molecular weight. A nucleating agent (talc, clay, titanium oxide, etc.) may be added.

【0011】本方法に使用するラクチドはD−、L−、
DL−またはD−、L−の混合物でよく、ラクトン類、
例えばβ−プロピオラクトン、δ−バレルラクトン、ε
−カプロラクトングリコリド、δ−ブチルラクトンとの
共重合も可能である。またグリセリンなど多価アルコー
ルにより物性をコントロールすることもできる。
The lactide used in this method is D-, L-,
DL- or a mixture of D- and L- may be used, lactones,
For example, β-propiolactone, δ-barrellactone, ε
Copolymerization with -caprolactone glycolide and δ-butyl lactone is also possible. Further, the physical properties can be controlled by using a polyhydric alcohol such as glycerin.

【0012】重合反応は触媒の種類によって異なるがオ
クチル酸スズを用いる場合、ラクチド重量に対して0.
0001〜0.1重量%、好ましくは0.05〜0.0
01重量%の触媒を用い、通常5〜200時間加熱重合
する。反応は窒素など不活性ガス雰囲気中にて行うのが
好ましい。
The polymerization reaction varies depending on the type of catalyst, but when tin octylate is used, it is 0.
0001 to 0.1% by weight, preferably 0.05 to 0.0
Heat polymerization is usually carried out for 5 to 200 hours using 01% by weight of the catalyst. The reaction is preferably carried out in an atmosphere of an inert gas such as nitrogen.

【0013】また、第1工程の重合を行う反応器は、原
料のラクチドからプレポリマーまで幅広い粘度で重合を
行うため、それぞれの粘度に応じ1個以上設ける。例え
ば全面翼を持った縦型反応器で、パドル翼を持った縦型
反応器、ヘリカルリボン翼を持った縦型反応器、エクス
クルーダーのような横型反応器と順次流していくように
することができるが、これに限定されない。反応器から
の重合物(ポリ乳酸)の取り出しは、低粘度の場合は窒
素などの不活性ガスによる押し出しにより行い、高粘度
の場合はギヤポンプによる抜き出しにより行う。
Further, the reactor for carrying out the polymerization in the first step carries out the polymerization with a wide range of viscosities from the lactide as the raw material to the prepolymer, so one or more reactors are provided depending on the respective viscosities. For example, in a vertical reactor with full blades, a vertical reactor with paddle blades, a vertical reactor with helical ribbon blades, and a horizontal reactor such as an excluder should be used. However, the present invention is not limited to this. The polymer (polylactic acid) is taken out from the reactor by extrusion with an inert gas such as nitrogen when the viscosity is low, and by a gear pump when the viscosity is high.

【0014】なお、第1工程の重合時に反応が進行し、
粘度が上がりすぎるのを防ぐためラクチドを新たに加え
ても良い。また、連続的にラクチドを加え、同時に重合
物の取り出しを行ってもよい。
The reaction proceeds during the polymerization in the first step,
Lactide may be newly added to prevent the viscosity from increasing too much. Alternatively, lactide may be continuously added and the polymer may be taken out at the same time.

【0015】第1工程で得られたポリ乳酸を第2工程で
ペレットに成形する。成形方法としてはまず、反応器よ
り取り出し冷却する。冷却は水槽などを用いても良い
が、ベルトクーラー、またはドラムクーラーなど水に直
接接触しない冷却方法が好ましい。冷却に際しては、ポ
リ乳酸に水分が付着するのを防ぐため、脱湿空気または
窒素を導入し、冷却面および気相中に水分が50 ppm以
下にしておくのが好ましい。冷却温度は、1段目の重合
によりできたポリ乳酸の結晶化温度より低くても高くて
も良い。成型は、前記ベルトクーラーやドラムクーラー
の出口側に例えば、直径2〜5mmのダイスよりストラ
ンド状に取り出しペレタイザーで切断しチップとするも
のや、造粒装置によりマーブル状とするもの、シール状
に取り出し、粉砕するものなどを配置しておくことが考
えられるが、これらに限定されない。
The polylactic acid obtained in the first step is molded into pellets in the second step. As a molding method, first, it is taken out from the reactor and cooled. A water tank or the like may be used for cooling, but a cooling method such as a belt cooler or a drum cooler that does not come into direct contact with water is preferable. At the time of cooling, it is preferable to introduce dehumidified air or nitrogen so as to prevent water from adhering to the polylactic acid so that the water content is 50 ppm or less on the cooling surface and in the gas phase. The cooling temperature may be lower or higher than the crystallization temperature of the polylactic acid formed by the first stage polymerization. Molding is carried out at the outlet side of the belt cooler or drum cooler, for example, by taking out in a strand form from a die having a diameter of 2 to 5 mm to cut into chips with a pelletizer, making into marble in a granulator, and taking out in a seal form. It is conceivable to arrange things to be crushed, but it is not limited to these.

【0016】第3工程では、成形されたポリ乳酸ペレッ
トを固相のまま加熱し重合反応を進行させる。この工程
はペレットを結晶化させると同時に重合も進行する。結
晶化したペレットは固相重合時に結晶化熱を発する事が
ないので融着しにくい。結晶化の方法としては予熱後さ
らに温度を上げるのが好ましい。温度はラクチドの融点
以上で、かつ第1工程の重合温度より5℃以上、好まし
くは10℃以上低く設定するのがよい。したがって、第
3工程の反応温度は80〜175℃、好ましくは120
〜140℃である。反応時間は6〜90時間、好ましく
は20〜40時間である。また、反応時間を短縮するた
め、重合の進行に伴い、反応温度を上昇させてもよい。
最終的なポリマーの融点は170〜180℃であるか
ら、175℃付近まで昇温できる。なお、この工程は真
空または不活性ガス、乾燥空気中などで行ってもよい
が、ラクチドは昇華しやすいため未反応ラクチドを少し
でも反応させようとするときは、大気圧〜10kgf/
cm2 で行うのがより好ましい。
In the third step, the molded polylactic acid pellets are heated in the solid phase to allow the polymerization reaction to proceed. In this step, the pellets are crystallized, and at the same time, the polymerization proceeds. The crystallized pellets do not generate heat of crystallization during solid-state polymerization, and thus are difficult to fuse. As a crystallization method, it is preferable to further raise the temperature after preheating. The temperature is set to the melting point of lactide or higher and lower than the polymerization temperature in the first step by 5 ° C. or higher, preferably 10 ° C. or higher. Therefore, the reaction temperature in the third step is 80 to 175 ° C., preferably 120.
~ 140 ° C. The reaction time is 6 to 90 hours, preferably 20 to 40 hours. Further, in order to shorten the reaction time, the reaction temperature may be increased as the polymerization proceeds.
Since the final melting point of the polymer is 170 to 180 ° C, the temperature can be raised to around 175 ° C. This step may be carried out in a vacuum, an inert gas, dry air, or the like, however, since lactide easily sublimes, when trying to react unreacted lactide even a little, atmospheric pressure to 10 kgf /
More preferably, it is performed in cm 2 .

【0017】第3工程の反応器は、縦型又は横型反応器
のいずれでも良い。反応器内では、静置または流動させ
て加熱する。流動させる場合はコニカルドライヤーや窒
素などの不活性ガス雰囲気の吹き上げで行うのが好まし
い。
The reactor of the third step may be either a vertical reactor or a horizontal reactor. In the reactor, it is left standing or fluidized and heated. When fluidized, it is preferable to blow it up with a conical dryer or an atmosphere of an inert gas such as nitrogen.

【0018】第4工程では、未反応モノマーを除去する
ため、昇華させる。ラクチドは昇華しやすい性質である
ので、真空または不活性ガス、乾燥空気中で行うことが
できる。加熱温度はラクチド(融点90〜98℃)の融
解が始まるより2〜40℃低い温度で行うのが好まし
い。但し、本発明で言う「昇華」とは、融点以下のポリ
乳酸ペレット中からのガス化のことを指し、操作温度は
モノマーであるラクチドの融点以上である場合もある。
In the fourth step, sublimation is performed in order to remove unreacted monomers. Since lactide has a property of easily sublimating, it can be performed in a vacuum, an inert gas, or dry air. The heating temperature is preferably 2 to 40 ° C. lower than the temperature at which melting of lactide (melting point 90 to 98 ° C.) starts. However, the "sublimation" referred to in the present invention refers to gasification from the inside of the polylactic acid pellet having a melting point or lower, and the operation temperature may be higher than the melting point of lactide which is a monomer.

【0019】本工程については特別な反応器は要らず、
第3工程の反応器をそのまま使用し、その温度を調整す
るだけで良い。本工程で除去されるモノマーは、ラクチ
ド、乳酸オリゴマーなどの未反応物である。除去された
モノマーは、コンデンサーやサイクロンに回収され、再
び第1工程へ戻すことができる。また、回収されたオリ
ゴマーはラクチド合成の工程へ戻すことができる。
No special reactor is required for this step,
It suffices to use the reactor of the third step as it is and adjust its temperature. The monomers removed in this step are unreacted substances such as lactide and lactic acid oligomer. The removed monomer is recovered in a condenser or a cyclone and can be returned to the first step again. Further, the recovered oligomer can be returned to the step of lactide synthesis.

【0020】[0020]

【作用】本発明では、ポリ乳酸の重合に際して残存した
未反応モノマーを昇華させて除去する。そのため、ガラ
ス転移点温度が、55℃以上のポリ乳酸ペレットができ
る。
In the present invention, the unreacted monomer remaining during the polymerization of polylactic acid is sublimated and removed. Therefore, a polylactic acid pellet having a glass transition temperature of 55 ° C. or higher can be obtained.

【0021】[0021]

【実施例】本発明の方法を実施する装置の一例を図面に
基づいて説明する。図1が製造装置の一例で、図中Aが
第1工程を行う反応器、Bが第2工程を行う冷却・成型
部、Cが第3工程の重合、第4工程の昇華を行う反応器
である。反応器Aは、中空円筒体の反応タンク1からな
り、反応タンク1には、原料供給口2及び排出口用の開
口3が設けられ、排出口用の開口3には取り出しノズル
5が接続されている。ノズル5には、次の冷却・成型部
Bに供給するポリ乳酸量を制御するためのバルブVが設
けてある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An example of an apparatus for carrying out the method of the present invention will be described with reference to the drawings. FIG. 1 is an example of a manufacturing apparatus, in which A is a reactor for performing the first step, B is a cooling / molding part for performing the second step, C is a reactor for performing polymerization in the third step, and sublimation in the fourth step. Is. The reactor A is composed of a hollow cylindrical reaction tank 1. The reaction tank 1 is provided with an opening 3 for a raw material supply port 2 and a discharge port, and a discharge nozzle 5 is connected to the opening 3 for the discharge port. ing. The nozzle 5 is provided with a valve V for controlling the amount of polylactic acid supplied to the next cooling / molding section B.

【0022】反応タンク1内にはヘリカルリボン翼4が
収容されており、その駆動源(モータ)Mは、反応タン
ク1のもう一つの開口側に設置される。また、反応タン
ク1には、窒素ガス供給配管6が接続され、図示しない
ガスボンベから配管を介して、タンク1内に窒素ガスが
供給される。なお、反応タンク1の周囲には図示しない
が、反応タンク1を加熱する加熱機構(熱媒ジャケッ
ト)が設けられており、また、反応タンク1内の温度は
温度センサ(図示せず)によりモニタされている。
A helical ribbon blade 4 is housed in the reaction tank 1, and its drive source (motor) M is installed at the other opening side of the reaction tank 1. A nitrogen gas supply pipe 6 is connected to the reaction tank 1, and nitrogen gas is supplied into the tank 1 from a gas cylinder (not shown) via the pipe. Although not shown around the reaction tank 1, a heating mechanism (heating medium jacket) for heating the reaction tank 1 is provided, and the temperature inside the reaction tank 1 is monitored by a temperature sensor (not shown). Has been done.

【0023】冷却・成型部Bの冷却部は、前述の取り出
しノズル5の下部にドラム7、プレッシャーロール8が
配設されて構成されている。ドラム7とプレッシャーロ
ール8の間に第1工程で重合したプレポリマーが流入す
る。ドラム7とプレッシャーロール8の内部には各々冷
却水スプレが内蔵されており、ドラム7、プレッシャー
ロール8の内面が冷却される。9は耐熱ベルトで、ドラ
ム7とプレッシャーロール8の間に流入したプレポリマ
ーを圧接しながら、成型部10に送る。耐熱ベルト9の
回転は図示しない回転機構によりローラ15を回転させ
て行う。ドラム7も図示しないモータにより回転する。
成型部10は入口部11、出口部12と内部に収納され
たシートカッターからなり、送られてきたプレポリマー
(シート状のもの)を切断し、ペレットPを作製する。
The cooling section of the cooling / molding section B is constructed by disposing the drum 7 and the pressure roll 8 under the take-out nozzle 5. The prepolymer polymerized in the first step flows between the drum 7 and the pressure roll 8. Cooling water sprays are built in the drum 7 and the pressure roll 8, respectively, and the inner surfaces of the drum 7 and the pressure roll 8 are cooled. Reference numeral 9 denotes a heat-resistant belt, which sends the prepolymer flowing between the drum 7 and the pressure roll 8 to the molding unit 10 while pressing it. The heat-resistant belt 9 is rotated by rotating the roller 15 by a rotation mechanism (not shown). The drum 7 is also rotated by a motor (not shown).
The molding part 10 is composed of an inlet part 11, an outlet part 12 and a sheet cutter housed inside, and cuts the prepolymer (sheet-shaped) that has been sent to produce pellets P.

【0024】反応器Cは、中空多角形の反応タンク(6
型コニカルドライヤー)13とそれを支持する支持台1
4とからなり、反応タンク13には、前述のペレットP
の受け口が設けられる。なお、反応タンク13の周囲に
は図示しないが、反応タンク13を加熱する加熱機構が
設けられている。また、反応タンク13内の温度は温度
センサ(図示せず)によりモニタされている。また、反
応タンク13内には、窒素ガスの吹き付け又は真空引き
のための開口も設けられている。
The reactor C is a hollow polygonal reaction tank (6
Type conical dryer) 13 and a supporting stand 1 for supporting it
4 and the reaction tank 13 has the above-mentioned pellet P.
Is provided with a socket. Although not shown, a heating mechanism for heating the reaction tank 13 is provided around the reaction tank 13. The temperature inside the reaction tank 13 is monitored by a temperature sensor (not shown). Further, the reaction tank 13 is also provided with an opening for blowing nitrogen gas or evacuating.

【0025】以上の構成で、ポリ乳酸を製造するのは次
の様に行う。先ず、L−ラクチド及び触媒を、原料供給
口2より反応タンク1に入れる。このときバルブVは閉
められている。原料供給口2を閉栓し、窒素ガス供給口
6より窒素ガスを供給し、加熱機構(図示せず)及びヘ
リカルリボン翼4を作用させ重合を行う。このとき、重
合温度はモニタされており、一定範囲に制御されてい
る。
With the above constitution, polylactic acid is produced as follows. First, L-lactide and the catalyst are put into the reaction tank 1 through the raw material supply port 2. At this time, the valve V is closed. The raw material supply port 2 is closed, nitrogen gas is supplied from the nitrogen gas supply port 6, and a heating mechanism (not shown) and the helical ribbon blade 4 act to perform polymerization. At this time, the polymerization temperature is monitored and controlled within a certain range.

【0026】一定時間経過して第1工程の重合反応が進
めば、バルブVを開け、ノズル5からドラム7とプレッ
シャーロール8の間に重合物(ポリ乳酸)を供給する。
このときドラム7とプレッシャーロール8は冷却されて
いるので、重合物は冷却される。冷却された重合物はシ
ート状になって成型部10に入る。成型部10でペレッ
トに成形された後、ポリ乳酸は反応タンク13に入る。
反応タンク13に入ると、加熱機構(図示せず)を作動
させて、窒素ガスを吹き上げながら、第3工程の重合を
行う。所定時間経過すれば、重合物を反応タンク13に
入れたまま真空ポンプ(図示せず)で減圧にして未反応
ラクチドを昇華させる。なお、昇華は真空中で必ずしも
行う必要はなく、不活性ガス気流中で行ってもよい。
When the polymerization reaction in the first step proceeds after a certain period of time, the valve V is opened and the polymer (polylactic acid) is supplied from the nozzle 5 between the drum 7 and the pressure roll 8.
At this time, since the drum 7 and the pressure roll 8 are cooled, the polymer is cooled. The cooled polymer is formed into a sheet and enters the molding unit 10. After being molded into pellets by the molding unit 10, the polylactic acid enters the reaction tank 13.
When it enters the reaction tank 13, a heating mechanism (not shown) is operated to carry out the polymerization in the third step while blowing up nitrogen gas. After a lapse of a predetermined time, the unreacted lactide is sublimated by reducing the pressure with a vacuum pump (not shown) while keeping the polymer in the reaction tank 13. The sublimation does not necessarily have to be performed in vacuum, and may be performed in an inert gas stream.

【0027】本発明の方法を以下の実験により確かめ
た。 [実験例1] (第1工程)神鋼パンテック製ダブルヘリカルリボン翼
を持つ、50LのSUS304製の反応器にラクチド5
0kgを仕込んだ。160℃に加熱溶解後、オクチル酸
スズ10ppmを添加した。160℃にて120時間加
熱後、窒素ボンベ1kgf/cm2 の圧をかけ、反応器
より取り出した。
The method of the present invention was confirmed by the following experiments. [Experimental Example 1] (First step) A lactide 5 was added to a 50 L SUS304 reactor having a double helical ribbon blade made by Shinko Pantech.
I charged 0 kg. After heating and melting at 160 ° C., 10 ppm of tin octylate was added. After heating at 160 ° C. for 120 hours, a pressure of 1 kgf / cm 2 of nitrogen cylinder was applied and the container was taken out of the reactor.

【0028】(第2工程)これを三菱化成エンジニアリ
ング製DC−450−08型ドラムクーラーにてシート
状に冷却し、三菱化成エンジニアリング製シートカッタ
ーで3mm角、厚さ1mmのペレットに成形した。この
時のガラス転移温度は52℃、結晶化温度は128℃、
融点は163℃、ポリマーの分子量は12万、比率は9
7.1%であった。
(Second Step) This was cooled into a sheet by a DC-450-08 type drum cooler manufactured by Mitsubishi Kasei Engineering Co., Ltd., and molded into pellets of 3 mm square and 1 mm thickness by a sheet cutter manufactured by Mitsubishi Kasei Engineering Co., Ltd. At this time, the glass transition temperature is 52 ° C, the crystallization temperature is 128 ° C,
Melting point is 163 ° C, molecular weight of polymer is 120,000, ratio is 9
It was 7.1%.

【0029】(第3工程)ペレット20kgを神鋼パン
テック製6型コニカルドライヤーに入れ、135℃で6
5時間、結晶化固相重合を行った。この時容器内は0.
2kgf/cm2の陽圧であった。得られたペレット
は、ガラス転移温度は57℃、結晶化温度は130℃、
融点は166℃、ポリマーの分子量は13万、比率は9
9.0%であった。
(Third step) 20 kg of pellets were put into a 6-type conical dryer manufactured by Shinko Pantech and placed at 135 ° C. for 6 hours.
Crystallization solid phase polymerization was carried out for 5 hours. At this time, the inside of the container is 0.
The positive pressure was 2 kgf / cm 2 . The obtained pellets have a glass transition temperature of 57 ° C, a crystallization temperature of 130 ° C,
The melting point is 166 ° C, the molecular weight of the polymer is 130,000, and the ratio is 9
It was 9.0%.

【0030】(第4工程)これをコニカルドライヤーに
入れたまま真空ポンプで20時間減圧した。得られたペ
レットはガラス転移温度は58℃、結晶化温度は131
℃、融点は167℃、ポリマーの分子量は13万、比率
は99,5%であった。
(Fourth step) While this was placed in a conical dryer, the pressure was reduced by a vacuum pump for 20 hours. The obtained pellet has a glass transition temperature of 58 ° C. and a crystallization temperature of 131.
C., the melting point was 167.degree. C., the molecular weight of the polymer was 130,000, and the ratio was 99.5%.

【0031】[実験例2]第1工程から第3工程までは
上記実験例と同じ方法で行った。
[Experimental Example 2] From the first step to the third step, the same method as in the above experimental example was performed.

【0032】(第4工程)窒素ボンベより窒素をコニカ
ルドライヤーに流入させ、蓋を少しゆるめ排出した。1
35℃で16時間この工程を行った。得られたペレット
は、ガラス転移温度は58℃、結晶化温度は131℃、
融点は166℃、ポリマーの分子量は13万、比率は9
9.5%であった。
(Fourth step) Nitrogen was introduced into the conical dryer from the nitrogen cylinder, the lid was loosened a little, and the conical dryer was discharged. 1
This step was performed at 35 ° C. for 16 hours. The obtained pellets have a glass transition temperature of 58 ° C, a crystallization temperature of 131 ° C,
The melting point is 166 ° C, the molecular weight of the polymer is 130,000, and the ratio is 9
It was 9.5%.

【0033】[実験例3] (第1工程)神鋼パンテック製ダブルヘリカルリボン翼
を持つ、50LのSUS304製の反応器にラクチド3
0kgを仕込んだ。160℃に加熱溶解後、オクチル酸
スズ10ppmを添加した。160℃にて70時間、1
70℃にて20時間加熱後、窒素ボンベ1kgf/cm
2 の圧をかけ、反応器より取り出した。
[Experimental Example 3] (First step) A lactide 3 was added to a 50 L SUS304 reactor having a double helical ribbon blade made by Shinko Pantech.
I charged 0 kg. After heating and melting at 160 ° C., 10 ppm of tin octylate was added. 70 hours at 160 ℃, 1
After heating at 70 ° C for 20 hours, nitrogen cylinder 1kgf / cm
A pressure of 2 was applied and the product was taken out of the reactor.

【0034】(第2工程)これを三菱化成エンジニアリ
ング製DC−450−08型ドラムクーラーにてシート
状に冷却し、三菱化成エンジニアリング製シートカッタ
ーで3mm角、厚さ1mmのペレットに成形した。この
時のガラス転移温度は51℃、結晶化温度は125℃、
融点は166℃、ポリマーの分子量は13万、比率は9
1.0%であった。
(Second step) This was cooled into a sheet by a DC-450-08 type drum cooler manufactured by Mitsubishi Kasei Engineering Co., Ltd., and formed into a pellet of 3 mm square and 1 mm thickness by a sheet cutter manufactured by Mitsubishi Kasei Engineering Co., Ltd. At this time, the glass transition temperature was 51 ° C, the crystallization temperature was 125 ° C,
The melting point is 166 ° C, the molecular weight of the polymer is 130,000, and the ratio is 9
It was 1.0%.

【0035】(第3工程)ペレット20kgを神鋼パン
テック製6型コニカルドライヤーに入れ、80℃で6時
間、100℃で40時間、120℃で70時間、結晶化
固相重合を行った。この時容器内は0.18kgf/c
2 の陽圧であった。得られたペレットは、ガラス転移
温度は54℃、結晶化温度は124℃、融点は169
℃、ポリマーの分子量は13万、比率は96.0%であ
った。
(Third Step) 20 kg of pellets were placed in a Shinko Pantech 6-type conical dryer and subjected to crystallization solid phase polymerization at 80 ° C. for 6 hours, 100 ° C. for 40 hours, and 120 ° C. for 70 hours. At this time, the inside of the container is 0.18 kgf / c
It was a positive pressure of m 2 . The obtained pellets have a glass transition temperature of 54 ° C, a crystallization temperature of 124 ° C and a melting point of 169.
C., the molecular weight of the polymer was 130,000, and the ratio was 96.0%.

【0036】(第4工程)これをコニカルドライヤーに
入れたまま真空ポンプで20時間減圧した。得られたペ
レットはガラス転移温度は58℃、結晶化温度は128
℃、融点は170℃、ポリマーの分子量は13万、比率
は99,0%であった。
(Fourth step) While this was placed in a conical dryer, the pressure was reduced by a vacuum pump for 20 hours. The obtained pellet has a glass transition temperature of 58 ° C. and a crystallization temperature of 128.
C., the melting point was 170.degree. C., the molecular weight of the polymer was 130,000, and the ratio was 99.0%.

【0037】なお、実験例1〜3の分析条件は下記の通
りである。 <GPC測定> (株)島津製作所製 検出器; RID-6A ポンプ; LC-9A カラムオーブン; CTO-6A カラム;Shim-pack GPC-801C,-804C,-806C,-8025C を直
列 分析条件 溶媒;クロロフォルム 流速;1ml/min サンプル量; 200μl(サンプル0.5w/w%をクロロフォ
ルムに溶かした。) カラム温度; 40℃ <DSC測定> (株)島津製作所製 DSC-50 昇温速度; 10℃/min サンプル量; 6〜7mg
The analytical conditions of Experimental Examples 1 to 3 are as follows. <GPC measurement> Shimadzu Corporation detector; RID-6A pump; LC-9A column oven; CTO-6A column; Shim-pack GPC-801C, -804C, -806C, -8025C in series Analysis conditions Solvent; Chloroform Flow rate: 1 ml / min Sample amount: 200 μl (0.5 w / w% sample was dissolved in chloroform) Column temperature: 40 ° C <DSC measurement> Shimadzu Corporation DSC-50 heating rate: 10 ° C / min Sample amount: 6-7mg

【0038】[0038]

【発明の効果】本発明の製造法によれば、着色、分解物
のない分子量20万〜50万の高分子量のポリ乳酸成形
品(ペレット)を製造することができる。
According to the production method of the present invention, it is possible to produce a polylactic acid molded article (pellet) having a high molecular weight of 200,000 to 500,000, which is free from coloring and decomposition products.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の方法を実施する装置の概略図FIG. 1 is a schematic diagram of an apparatus for carrying out the method of the present invention.

【符号の説明】[Explanation of symbols]

A:第1工程を行う反応器 B:第2工程を行う冷
却・成型部 C:第3工程の重合、第4工程の昇華を行う反応器 1:反応タンク 7:ドラム 10:成型部 13:反応タンク
A: Reactor for the first step B: Cooling / molding section for the second step C: Reactor for polymerization in the third step and sublimation in the fourth step 1: Reaction tank 7: Drum 10: Molding section 13: Reaction tank

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ラクチドを主原料とし、溶融重合により
固形のポリ乳酸を得る第1工程と、第1工程で重合し成
形した固形のポリ乳酸をペレット状に成形する第2工程
と、第2工程で得たポリ乳酸ペレットをその融点より低
い温度で固相重合をする第3工程と、第3工程の重合で
未反応のモノマーを昇華する第4工程とからなるポリ乳
酸の製造法。
1. A first step of obtaining solid polylactic acid by melt polymerization using lactide as a main raw material, a second step of molding solid polylactic acid polymerized and molded in the first step into pellets, and a second step. A method for producing polylactic acid, which comprises a third step of solid-phase polymerization of the polylactic acid pellet obtained in the step at a temperature lower than its melting point, and a fourth step of sublimating unreacted monomer in the polymerization of the third step.
JP7034823A 1995-02-23 1995-02-23 Polylactic acid production method Expired - Lifetime JP3055422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7034823A JP3055422B2 (en) 1995-02-23 1995-02-23 Polylactic acid production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7034823A JP3055422B2 (en) 1995-02-23 1995-02-23 Polylactic acid production method

Publications (2)

Publication Number Publication Date
JPH08231688A true JPH08231688A (en) 1996-09-10
JP3055422B2 JP3055422B2 (en) 2000-06-26

Family

ID=12424926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7034823A Expired - Lifetime JP3055422B2 (en) 1995-02-23 1995-02-23 Polylactic acid production method

Country Status (1)

Country Link
JP (1) JP3055422B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000078839A1 (en) * 1999-06-18 2000-12-28 Kanebo, Limited Polylactic acid resin, textile products obtained therefrom, and processes for producing textile products
JP2001064400A (en) * 1999-06-22 2001-03-13 Mitsui Chemicals Inc Preparation of polyhydroxycarboxylic acid
JP2001192446A (en) * 1999-10-27 2001-07-17 Mitsui Chemicals Inc Method for producing aliphatic polyester having excellent stability
JP2002179779A (en) * 2000-12-13 2002-06-26 Nippon Petrochem Co Ltd Method for cooling/solidifying of molten thermotropic liquid crystalline polymer and method for solid phase polymerization of thermotropic liquid crystalline polymer
JPWO2005090438A1 (en) * 2004-03-18 2007-08-09 株式会社クレハ Process for producing aliphatic polyester with less residual cyclic ester
WO2008018474A1 (en) * 2006-08-08 2008-02-14 Teijin Limited Polylactic acid and method for producing the same
WO2008081617A1 (en) * 2006-12-28 2008-07-10 Musashino Chemical Laboratory, Ltd. Process for producing polylactic acid block copolymer
WO2012042993A1 (en) * 2010-09-28 2012-04-05 東レ株式会社 Process for production of poly(lactic acid)-type resin, and poly(lactic acid)-type prepolymer
JP2013536285A (en) * 2010-08-20 2013-09-19 コンパニア レフィナドラ ダ アマゾニア Method for producing polylactic acid and reactor used in the method
US9080008B2 (en) 2011-07-28 2015-07-14 Toray Industries, Inc. Polylactic acid resin and method for producing same
JP2018525478A (en) * 2015-08-11 2018-09-06 ロッテ ケミカル コーポレーション Method for producing polylactic acid

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60334183D1 (en) 2002-09-18 2010-10-28 Toray Industries Fiberboard and process for its production

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7445841B1 (en) 1999-06-18 2008-11-04 Toray Industries, Inc. Polylactic acid resin, textile products obtained therefrom, and processes for producing textile products
JP2005307427A (en) * 1999-06-18 2005-11-04 Toray Ind Inc Polylactic acid staple fiber and method for producing the same
JP2005307428A (en) * 1999-06-18 2005-11-04 Toray Ind Inc Polylactic acid monofilament and method for producing the same
WO2000078839A1 (en) * 1999-06-18 2000-12-28 Kanebo, Limited Polylactic acid resin, textile products obtained therefrom, and processes for producing textile products
US7989061B2 (en) 1999-06-18 2011-08-02 Toray Industries, Inc. Polylactic acid resin, textile products obtained therefrom, and processes for producing textile products
US7608329B2 (en) 1999-06-18 2009-10-27 Toray Industries, Inc. Polylactic acid resin, textile products obtained therefrom, and processes for producing textile products
JP4591202B2 (en) * 1999-06-18 2010-12-01 東レ株式会社 Polylactic acid staple fiber and method for producing the same
JP4591203B2 (en) * 1999-06-18 2010-12-01 東レ株式会社 Polylactic acid monofilament and method for producing the same
JP2001064400A (en) * 1999-06-22 2001-03-13 Mitsui Chemicals Inc Preparation of polyhydroxycarboxylic acid
JP2001192446A (en) * 1999-10-27 2001-07-17 Mitsui Chemicals Inc Method for producing aliphatic polyester having excellent stability
JP4651802B2 (en) * 1999-10-27 2011-03-16 三井化学株式会社 Method for producing aliphatic polyester having excellent stability
JP2002179779A (en) * 2000-12-13 2002-06-26 Nippon Petrochem Co Ltd Method for cooling/solidifying of molten thermotropic liquid crystalline polymer and method for solid phase polymerization of thermotropic liquid crystalline polymer
JP4606573B2 (en) * 2000-12-13 2011-01-05 Jx日鉱日石エネルギー株式会社 Method for cooling and solidifying molten thermotropic liquid crystal polymer, and solid-state polymerization method for thermotropic liquid crystal polymer
JPWO2005090438A1 (en) * 2004-03-18 2007-08-09 株式会社クレハ Process for producing aliphatic polyester with less residual cyclic ester
JP5030585B2 (en) * 2004-03-18 2012-09-19 株式会社クレハ Process for producing aliphatic polyester with less residual cyclic ester
US8658758B2 (en) 2004-03-18 2014-02-25 Kureha Corporation Process for producing aliphatic polyester reduced in residual cyclic ester content
WO2008018474A1 (en) * 2006-08-08 2008-02-14 Teijin Limited Polylactic acid and method for producing the same
WO2008081617A1 (en) * 2006-12-28 2008-07-10 Musashino Chemical Laboratory, Ltd. Process for producing polylactic acid block copolymer
US8211986B2 (en) 2006-12-28 2012-07-03 Musashino Chemical Laboratory, Ltd. Method for producing polylactic acid block copolymer
JP5620061B2 (en) * 2006-12-28 2014-11-05 株式会社武蔵野化学研究所 Process for producing polylactic acid block copolymer
JP2013536285A (en) * 2010-08-20 2013-09-19 コンパニア レフィナドラ ダ アマゾニア Method for producing polylactic acid and reactor used in the method
WO2012042993A1 (en) * 2010-09-28 2012-04-05 東レ株式会社 Process for production of poly(lactic acid)-type resin, and poly(lactic acid)-type prepolymer
US9023953B2 (en) 2010-09-28 2015-05-05 Toray Industries, Inc. Process for production of poly(lactic acid)-type resin, and poly(lactic acid)-type prepolymer
US9080008B2 (en) 2011-07-28 2015-07-14 Toray Industries, Inc. Polylactic acid resin and method for producing same
JP2018525478A (en) * 2015-08-11 2018-09-06 ロッテ ケミカル コーポレーション Method for producing polylactic acid
US10487174B2 (en) 2015-08-11 2019-11-26 Lotte Chemical Corporation Method for preparing polyactic acid

Also Published As

Publication number Publication date
JP3055422B2 (en) 2000-06-26

Similar Documents

Publication Publication Date Title
EP0755956B1 (en) Method for producing polylactic acid
US5508378A (en) Method for producing polylactic acid
US5574129A (en) Process for producing lactic acid polymers and a process for the direct production of shaped articles from lactic acid polymers
Vouyiouka et al. Solid state polymerization
EP0419400B1 (en) Process for crystallization of polyethylene naphthalate
JP3055422B2 (en) Polylactic acid production method
RU2384590C2 (en) Polyester particles having small molecular mass gradient from surface to centre
EP2097469B1 (en) Stable lactide particles
JP2001503094A (en) Method for crystallizing polyethylene naphthalate prepolymer and solid state polymerization of these crystallized prepolymers
KR100543541B1 (en) Method for the removal and recovery of lactide from polylactide
JP3589333B2 (en) Polylactic acid demonomerization method and apparatus
JPH08311175A (en) Production of polylactate
JP2621813B2 (en) Polylactic acid production method
JP3419609B2 (en) Polylactic acid demonomerization apparatus and demonomerization method using the same
JP3127770B2 (en) Polylactic acid production method
US20060147666A1 (en) Production of a polyester hollow body or its preform with a reduced acetaldehyde content
WO2021205961A1 (en) Method for producing aliphatic polyester, aliphatic polyester resin, and aliphatic polyester resin composition
JP3590385B2 (en) Polyester-based polymer processing method and polyester-based polymer with low content of low boiling components
JP2850776B2 (en) Polylactic acid production method
JP2004536918A (en) Method for preparing crystalline polycarbonate oligomer
JP2850775B2 (en) Polylactic acid production method
JP2850780B2 (en) Polylactic acid production equipment
JPH09309948A (en) Production of biodegradable polyester
JP2822906B2 (en) Method and apparatus for producing lactide
US6774208B1 (en) Friction heat, cryogenic quench solid state polymerization

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090414

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 12

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 14

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term