JPH08231465A - Production of high-purity terephthalic acid - Google Patents

Production of high-purity terephthalic acid

Info

Publication number
JPH08231465A
JPH08231465A JP7326738A JP32673895A JPH08231465A JP H08231465 A JPH08231465 A JP H08231465A JP 7326738 A JP7326738 A JP 7326738A JP 32673895 A JP32673895 A JP 32673895A JP H08231465 A JPH08231465 A JP H08231465A
Authority
JP
Japan
Prior art keywords
slurry
dispersion medium
terephthalic acid
replacement
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7326738A
Other languages
Japanese (ja)
Other versions
JP3766708B2 (en
Inventor
Masahito Inari
雅人 稲荷
Fumio Ogoshi
二三夫 大越
Fumiya Arima
文哉 在間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mizushima Aroma Co Ltd
Mitsubishi Gas Chemical Co Inc
Toyobo Co Ltd
Original Assignee
Mizushima Aroma Co Ltd
Mitsubishi Gas Chemical Co Inc
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mizushima Aroma Co Ltd, Mitsubishi Gas Chemical Co Inc, Toyobo Co Ltd filed Critical Mizushima Aroma Co Ltd
Priority to JP32673895A priority Critical patent/JP3766708B2/en
Publication of JPH08231465A publication Critical patent/JPH08231465A/en
Application granted granted Critical
Publication of JP3766708B2 publication Critical patent/JP3766708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: To provide a method for finally producing high-purity terephthalic acid, not installing a plate, etc., in a dispersion medium substitution column, subjecting a raw slurry consisting essentially of terephthalic acid crystal and a raw dispersion medium (a dispersion medium for liquid-phase oxidation reaction or a dispersion medium for purification treatment after the reaction) to dispersion medium substitution while pouring a dispersion medium for substitution from the lower part of the bottom of the column. CONSTITUTION: A raw slurry consisting essentially of terephthalic acid crystal particles obtained by liquid-phase oxidation or purification treatment after the liquid-phase oxidation and a raw dispersion medium is fed from the upper part of a dispersion medium substitution column and a dispersion medium for substitution is supplied from the lower part of the column, the solution at the lower part of the column is stirred into a scurried state uniformly as much as possible, the flow rate in supply of the dispersion medium for substitution and that in taking out the substituted slurry are regulated, both the solutions are brought into contact with each other in a liquid-liquid state while maintaining a slurry state in a concentration higher than that in the middle part of the column. The prepared substituted slurry is taken out from the bottom of the column, the liquid at the middle part of the dispersion medium substitution column is divided into plural flows in parallel or not divided to provide a method for producing high-purity terephthalic acid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は原スラリーの原分散
媒を置換し、高純度テレフタル酸を製造する方法に関す
る。更に詳細には液相酸化反応より得られた粗テレフタ
ル酸スラリー、又は粗テレフタル酸を接触水素化処理や
再結晶処理をすることによって得られたスラリーであっ
て、テレフタル酸結晶粒子と原分散媒とからなる不純物
の多い原スラリーの該原分散媒を他の置換用分散媒と効
率よく置換することのできる分散媒置換方法による高純
度テレフタル酸の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for substituting a raw dispersion medium of a raw slurry to produce high-purity terephthalic acid. More specifically, it is a crude terephthalic acid slurry obtained by a liquid phase oxidation reaction, or a slurry obtained by subjecting crude terephthalic acid to catalytic hydrogenation or recrystallization treatment, wherein terephthalic acid crystal particles and an original dispersion medium are used. The present invention relates to a method for producing high-purity terephthalic acid by a dispersion medium replacement method capable of efficiently replacing the original dispersion medium of a raw slurry containing a large amount of impurities with another dispersion medium for substitution.

【0002】[0002]

【従来の技術】テレフタル酸はp−キシレンを代表とす
るp−アルキルベンゼン等のp−フェニレン化合物の液
相酸化反応により製造されるが、通常は酢酸を溶媒とし
てコバルト、マンガン等の触媒を利用し、またはこれに
臭素化合物、アセトアルデヒドのような促進剤を加えた
触媒が用いられる。しかし、この反応生成物は上記の如
く酢酸を溶媒とし、液相酸化反応によって得られた粗テ
レフタル酸スラリーには4−カルボキシベンズアルデヒ
ド(4CBA)、パラトルイル酸(p−TOL)、安息
香酸等、あるいはその他にも種々の着色性不純物が多く
含まれているため、該スラリーから分離して得られた粗
テレフタル酸にもそれら不純物が混入しており、高純度
のテレフタル酸を得るにはかなり高度の精製技術を必要
とする。
2. Description of the Prior Art Terephthalic acid is produced by a liquid phase oxidation reaction of a p-phenylene compound such as p-alkylbenzene represented by p-xylene. Usually, acetic acid is used as a solvent and a catalyst such as cobalt or manganese is used. Alternatively, a catalyst obtained by adding a bromine compound or a promoter such as acetaldehyde thereto is used. However, this reaction product uses acetic acid as a solvent as described above, and the crude terephthalic acid slurry obtained by the liquid phase oxidation reaction contains 4-carboxybenzaldehyde (4CBA), paratoluic acid (p-TOL), benzoic acid, or the like, or In addition, since various coloring impurities are contained in a large amount, these impurities are also mixed in the crude terephthalic acid obtained by separating from the slurry, which is considerably high to obtain high-purity terephthalic acid. Requires purification technology.

【0003】粗テレフタル酸を精製する方法としては、
粗テレフタル酸を酢酸や水、あるいはこれらの混合溶媒
などに高温、高圧下で溶解し、接触水素化処理、脱カル
ボニル化処理、酸化処理、再結晶処理、あるいはテレフ
タル酸結晶が一部溶解したスラリー状態での高温浸漬処
理などの種々の方法が知られている。液相酸化反応によ
る粗テレフタル酸の製造、あるいはその精製において
は、いずれの場合も最終的にはテレフタル酸結晶を分散
媒から分離する操作が必要となる。
As a method for purifying crude terephthalic acid,
A slurry in which crude terephthalic acid is dissolved in acetic acid, water, or a mixed solvent thereof at high temperature and high pressure, and catalytic hydrogenation treatment, decarbonylation treatment, oxidation treatment, recrystallization treatment, or terephthalic acid crystal is partially dissolved. Various methods such as high temperature immersion treatment in the state are known. In either case of production of crude terephthalic acid by liquid phase oxidation reaction or purification thereof, an operation of finally separating the terephthalic acid crystal from the dispersion medium is required.

【0004】しかるに酸化反応生成スラリー又は粗テレ
フタル酸を精製処理したスラリーの場合に不純物として
存在する4CBA,p−TOL,安息香酸等の酸化物中
間体あるいは着色原因物質等は、高温ではそのほとんど
がスラリー分散媒中に溶解しているが、該スラリーを1
00℃前後まで冷却し、テレフタル酸結晶を含むスラリ
ーを形成せしめると、これらの不純物はテレフタル酸結
晶の中に取り込まれるようになり、高純度のテレフタル
酸を得ることは困難になる。
However, most of the oxide intermediates such as 4CBA, p-TOL, benzoic acid, etc., or the coloring-causing substances, which are present as impurities in the oxidation reaction product slurry or the slurry obtained by purifying the crude terephthalic acid, are high in temperature. Although dissolved in the slurry dispersion medium,
When cooled to around 00 ° C. to form a slurry containing terephthalic acid crystals, these impurities are taken into the terephthalic acid crystals, making it difficult to obtain high-purity terephthalic acid.

【0005】従って、前述の酸化反応後の粗テレフタル
酸スラリーあるいは粗テレフタル酸の精製処理後のスラ
リーについて、可及的高純度のテレフタル酸を分散媒か
ら分離するためには、高温、加圧の条件下において行な
うことが必要となってくる。結晶を含むスラリーから分
散媒を分離する方法として最も一般的に用いられている
のは遠心分離法であり、酸化反応後のスラリーあるいは
精製処理後のスラリーの場合にも遠心分離法が広範に使
用されている。遠心分離法の特徴は、高速回転をしてい
るバスケット中にスラリー溶液を導入し、分散媒を上部
からオーバーフローさせ、結晶は下部へ誘導する方法で
あるが、遠心分離機の構造上及び機能上の制約から、高
温、高圧下での連続運転にはいくつかの困難を伴うこと
が知られている。
Therefore, in order to separate the terephthalic acid having the highest possible purity from the dispersion medium, the crude terephthalic acid slurry after the above-mentioned oxidation reaction or the slurry after the purification treatment of the crude terephthalic acid is subjected to high temperature and pressure. It becomes necessary to do it under the conditions. The most commonly used method for separating the dispersion medium from the crystal-containing slurry is the centrifugal separation method, and the centrifugal separation method is also widely used for the slurry after the oxidation reaction or the slurry after the purification treatment. Has been done. The feature of the centrifugal separation method is that the slurry solution is introduced into the basket rotating at a high speed, the dispersion medium is overflowed from the upper part, and the crystals are guided to the lower part. However, due to the structure and function of the centrifugal separator. It is known that the continuous operation under high temperature and high pressure is accompanied by some difficulties due to the above restrictions.

【0006】まず、遠心分離中又は分離後の結晶のリン
スが難しいので、結晶への分散媒付着量が多くなり易
く、その問題点を解消するために通常は、遠心分離され
たテレフタル酸結晶のケーキを再び新鮮な高温溶媒でス
ラリー化する方法が採られるが、分離操作を複数回行な
わなければならない課題を残している。さらには、高
温、高圧で高速回転を行なうために、遠心分離機の保
全、保守が煩雑、困難であるため、それに対する投資が
増し、この分野の技術としては高度化されているとは言
い難い。
First, since it is difficult to rinse the crystals during or after the centrifugation, the amount of the dispersion medium attached to the crystals tends to increase, and in order to solve the problem, the terephthalic acid crystals that have been centrifugally separated are usually used. A method of making the cake into a slurry with a fresh high-temperature solvent again is adopted, but there is a problem that the separation operation must be performed plural times. Furthermore, since high-speed rotation at high temperature and high pressure makes maintenance and maintenance of the centrifuge complicated and difficult, investment for it has increased, and it cannot be said that the technology in this field has become sophisticated. .

【0007】遠心分離法に代わる分離法として近年、重
力によりテレフタル酸結晶の沈降作用を利用した分散媒
置換装置が提案されている。例えば特開昭57−534
31号公報、特開昭55−87744号公報等である。
特開昭57−53431号公報によると分散媒置換装置
の内部に複数の孔を有する横方向の棚段を設けている。
これはこのような構造を持たせないと装置内流体のチャ
ンネリングまたはバックミキシングによって置換の効率
が望むほどに良くないためと説明されている。また、特
開昭55−87744号公報でも斜面を形成する棚段を
設け置換性能の向上を図っている。しかし、スラリーを
扱う場合、しかも重力沈降を利用した分散媒置換の場
合、このような棚段を設けることは非常に困難を伴う。
即ち、棚への堆積、開孔部の閉塞やバルキングが起こ
り、運転の安定化には多大な労力を要し、とても高度化
された技術とは言い難い。
As a separation method replacing the centrifugal separation method, in recent years, a dispersion medium replacement device has been proposed which utilizes the sedimentation action of terephthalic acid crystals due to gravity. For example, JP-A-57-534
31 and JP-A-55-87744.
According to Japanese Patent Laid-Open No. 57-53431, a dispersion medium replacement device is provided with a horizontal shelf having a plurality of holes.
It is explained that without such a structure, the efficiency of replacement is not as good as desired due to channeling or back mixing of the fluid in the device. Also, in Japanese Patent Laid-Open No. 55-87744, a shelf for forming a slope is provided to improve the replacement performance. However, it is very difficult to provide such a tray when handling a slurry and when replacing the dispersion medium using gravity sedimentation.
That is, accumulation on shelves, blockage of open holes, and bulking occur, and a lot of labor is required to stabilize the operation, which is not a highly advanced technology.

【0008】[0008]

【発明が解決しようとする課題】従って本発明の課題
は、分散媒置換塔内に棚段等を設けることなく、テレフ
タル酸結晶粒子と原分散媒を主成分として含む原スラリ
ーを重力沈降法で、しかも分散媒置換塔底部下部より置
換のための分散媒(置換用分散媒)を注入しつつ分散媒
置換を効率的に行わしめ、最終的には高純度テレフタル
酸を得ることのできる方法を見出そうとするものであ
る。
Therefore, an object of the present invention is to provide a raw slurry containing terephthalic acid crystal particles and a raw dispersion medium as main components by a gravity sedimentation method without providing a tray or the like in the dispersion medium substitution column. In addition, a method for efficiently performing the dispersion medium replacement while injecting the dispersion medium for replacement (dispersion medium for replacement) from the bottom of the dispersion medium replacement column bottom, and finally obtaining high-purity terephthalic acid It is the one trying to find out.

【0009】[0009]

【課題を解決するための手段】本発明者らはこの課題を
解決するするため鋭意検討を重ねた結果、驚くべきこと
に棚段のない装置であっても分散媒置換塔底部に攪拌装
置を設け、さらに底部における置換用分散媒の供給流量
及び置換スラリーの排出流量を調節し、底部のスラリー
濃度が装置(塔)中間部のスラリー濃度よりも高くなる
ようにすることによって飛躍的に置換効率が良くなるこ
とが判明した。従来、このような装置において無段構造
である場合には、バックミキシングを避けるため装置の
内部はなるべく静的状態に保とうとして来たので、上記
本発明のごとく、たとえ底部だけとは言え攪拌する方が
効率が上がると言うのは誠に意外なことであった。
Means for Solving the Problems As a result of intensive studies made by the present inventors in order to solve this problem, surprisingly, even if the apparatus does not have trays, a stirring apparatus is installed at the bottom of the dispersion medium replacement column. By setting the supply flow rate of the dispersion medium for substitution and the discharge flow rate of the substitution slurry at the bottom so that the concentration of the slurry at the bottom becomes higher than the concentration of the slurry at the middle of the device (tower), the substitution efficiency is dramatically improved. Turned out to be better. Conventionally, in the case of such a device having a stepless structure, it has been attempted to keep the inside of the device in a static state as much as possible in order to avoid back mixing. It was truly unexpected to say that doing it would be more efficient.

【0010】本発明の要旨は次の通りである。 (第1)パラ位にカルボキシル基及び/又はカルボキシ
ル基生成性被酸化性置換基を有するp−フェニレン化合
物を液相酸化し、得られた粗テレフタル酸スラリーを落
圧、降温して120〜180℃に調節されたスラリー、
または該粗テレフタル酸スラリーから分離して得られた
粗テレフタル酸を水または酢酸あるいはこれらの混合溶
媒などで高温、高圧下で溶解し、精製処理し、落圧、降
温を行って120〜220℃の温度に調節されたスラリ
ーであり、テレフタル酸結晶粒子と原分散媒とを主成分
とする原スラリーを分散媒置換塔上部より、又置換用分
散媒を同塔下部よりそれぞれ導入し、原スラリーの原分
散媒を置換して同塔上部より原分散媒を抜き出し、同塔
下部液を攪拌して可及的に均一なスラリー状態とし、且
つ置換用分散媒供給流量及び置換スラリーの抜き出し流
量の調節により、同塔中間部よりも高濃度のスラリー状
態に維持しつつ、テレフタル酸結晶粒子と置換用分散媒
を主成分とする置換スラリーを同塔下部より抜き出し、
該置換スラリーからテレフタル酸結晶粒子を分離する高
純度テレフタル酸の製造方法。 (第2)分散媒置換塔中間部のスラリーが、平行な複数
個の流れに分断されて行われる上記第1記載の高純度テ
レフタル酸の製造方法。
The gist of the present invention is as follows. (First) Liquid phase oxidation of a p-phenylene compound having a carboxyl group and / or a carboxyl group-forming oxidizable substituent at the para position, and the obtained crude terephthalic acid slurry is depressurized and cooled to 120 to 180 Slurry adjusted to ℃,
Alternatively, crude terephthalic acid obtained by separating from the crude terephthalic acid slurry is dissolved in water, acetic acid, or a mixed solvent thereof at high temperature and high pressure, purified, and subjected to pressure reduction and temperature reduction to 120 to 220 ° C. The temperature of the slurry is adjusted to the above, and the raw slurry containing terephthalic acid crystal particles and the raw dispersion medium as main components is introduced from the upper part of the dispersion medium substitution tower, and the substitution dispersion medium is introduced from the lower part of the tower to obtain the raw slurry. The original dispersion medium is replaced by extracting the original dispersion medium from the upper part of the tower, the lower part of the tower is stirred to make the slurry state as uniform as possible, and the replacement dispersion medium supply flow rate and the replacement slurry withdrawal flow rate are By adjusting, while maintaining a slurry state of a higher concentration than the middle part of the tower, withdrawing the replacement slurry containing terephthalic acid crystal particles and the dispersion medium for replacement as the main components from the lower part of the tower,
A method for producing high-purity terephthalic acid, which comprises separating terephthalic acid crystal particles from the substitution slurry. (2) The method for producing high-purity terephthalic acid according to the above 1, wherein the slurry in the middle part of the dispersion medium substitution column is divided into a plurality of parallel streams.

【0011】[0011]

【発明の実施の形態】以下本発明の内容を詳細に説明す
る。本発明に係る高純度テレフタル酸の製造方法は、テ
レフタル酸結晶粒子及び原分散媒を主成分とする原スラ
リーを無段の分散媒置換塔上部より導入し、又原分散媒
を置換しようとする他の分散媒である置換用分散媒を同
塔下部よりそれぞれ導入し、両液を液/液接触状態に置
き、その状態でテレフタル酸結晶粒子を原分散媒から置
換用分散媒に重力沈降手段により移行させ、同塔上部よ
り原分散媒を抜き出す一方、置換用分散媒とテレフタル
酸結晶粒子からなる置換スラリーを同塔下部より抜き出
し、テレフタル酸結晶粒子を分離する方法に係るもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The contents of the present invention will be described in detail below. The method for producing high-purity terephthalic acid according to the present invention attempts to replace the raw dispersion medium by introducing a raw slurry containing terephthalic acid crystal particles and a raw dispersion medium as main components from the upper part of a continuously variable dispersion medium replacement tower. The other dispersion medium, the dispersion medium for substitution, is introduced respectively from the lower part of the tower, both liquids are placed in a liquid / liquid contact state, and in that state, terephthalic acid crystal particles are gravity settling means from the original dispersion medium to the dispersion medium for substitution. The present invention relates to a method of separating the terephthalic acid crystal particles by extracting the raw dispersion medium from the upper part of the tower and extracting the substitutional slurry consisting of the dispersion medium for substitution and the terephthalic acid crystal particles from the lower part of the tower.

【0012】本発明に係る方法は重力沈降現象を利用す
るものであるため、塔底部のスラリー密度を最も高くし
て塔内密度勾配としては安定な状態を形成することが好
ましい。このような安定な状態の必要性について説明す
る。分散媒置換を連続操作で行うことが作業効率上好ま
しいことは当然であるが、この連続操作を行う場合は、
塔下部では分散媒置換された高濃度スラリーの排出と、
分散媒置換のための置換用分散媒の供給を同時に行う必
要があり、ともすれば塔下部に置換用分散媒による部分
的なスラリー濃度の希薄な場所が生じるなど不均一な状
態になり易い。この状態では、スラリー濃度の低い(低
比重)部分が不均一に存在する塔下部の上に、スラリー
濃度の高い(高比重)塔中間部が位置し、非常に不安定
な系を形成することになり、結局塔中間部と塔下部との
間でスラリーの大きい移動が起こり、その際、原スラリ
ーをも塔中間部に巻き込む現象を誘発し易くなり、分散
媒置換機能は正常に発揮されないことになる。
Since the method according to the present invention utilizes the gravity settling phenomenon, it is preferable to maximize the slurry density at the bottom of the tower to form a stable state as the density gradient in the tower. The necessity of such a stable state will be described. It is natural that it is preferable to perform the dispersion medium replacement in a continuous operation in terms of work efficiency, but in the case of performing this continuous operation,
At the bottom of the tower, discharge the high-concentration slurry with the dispersion medium replaced,
It is necessary to supply the replacement dispersion medium for replacement of the dispersion medium at the same time. If this happens, a non-uniform state is likely to occur, such as a portion where the slurry concentration is partially diluted by the replacement dispersion medium at the bottom of the column. In this state, the middle part of the tower with a high slurry concentration (high specific gravity) is located above the lower part of the tower where the part with a low slurry concentration (low specific gravity) is non-uniform, forming a very unstable system. In the end, a large movement of the slurry occurs between the middle part of the tower and the lower part of the tower, and at that time, it becomes easy to induce the phenomenon that the raw slurry is also caught in the middle part of the tower, and the dispersion medium replacement function is not normally exhibited. become.

【0013】本発明者らはこのような塔下部における問
題を先ず解決する方法として、塔下部の置換スラリーと
供給された置換用分散媒とを速やかに、かつ可及的に均
一な状態にする混合攪拌操作を付加したが、この付加は
分散媒置換され、沈静化し始めた濃厚スラリーの攪乱を
起こすものであり、前述のごとく重力沈降現象を利用す
る分散媒置換操作では従来考えられなかった方法であ
る。
As a method for first solving the problem in the lower part of the tower, the present inventors make the replacement slurry in the lower part of the tower and the supplied dispersion medium for replacement promptly and as uniformly as possible. A mixing and stirring operation was added, but this addition causes the disturbance of the thick slurry that has started to settle due to the replacement of the dispersion medium, and as previously mentioned, a method not previously considered in the dispersion medium replacement operation utilizing the gravity sedimentation phenomenon. Is.

【0014】この分散媒置換塔下部における攪拌方法と
しては、特に限定された手段をとる必要はないが、攪拌
翼による攪拌があり、同塔外部攪拌方法としては該塔下
部外部に循環パイプを設置し、置換スラリー及び置換用
分散媒を共に抽き出し、再び同じ塔下部に戻す方法があ
る。この循環パイプを使用する場合は、循環の途中に更
に攪拌翼による攪拌装置を介在させる方法も好ましく採
られる方法である。もっとも、攪拌の影響が塔中間部の
スラリーの安定性に影響しないようにすることは重要で
あり、そのため塔中間部工程を長くする方法の他、置換
用分散媒供給とか前記循環パイプの戻りを塔下部の可及
的に低い位置において行う方法などが簡単な手段として
採られるが、本発明に係る方法はこれらに限定されるも
のではない。
As a stirring method in the lower part of the dispersion medium substitution tower, it is not necessary to take a particularly limited means, but there is stirring by a stirring blade, and as the external stirring method of the same tower, a circulation pipe is installed outside the lower part of the tower. However, there is a method in which both the substitution slurry and the dispersion medium for substitution are extracted and returned to the lower part of the same tower again. When this circulation pipe is used, a method of further interposing a stirring device with stirring blades in the middle of circulation is also preferably adopted. However, it is important to prevent the influence of stirring from affecting the stability of the slurry in the middle part of the tower, and therefore, in addition to the method of lengthening the middle part of the tower process, the supply of the dispersion medium for replacement or the return of the circulation pipe is required. A method such as a method performed at a position as low as possible in the lower part of the tower is adopted as a simple means, but the method according to the present invention is not limited to these.

【0015】前記バックミキシングを抑制するため本発
明においては、塔下部における置換用分散媒の供給流量
と置換スラリーの排出流量の調節をして、塔中間部にお
けるスラリー比重、つまりスラリー濃度を塔下部のスラ
リー比重、つまりスラリー濃度よりも絶えず低く保持す
ることを要件としている。置換用分散媒の供給流量と置
換スラリーの排出流量は安定操作時にはほぼ同じである
が、これらの流量が多くなり過ぎると、排出される結晶
流量に比べ置換用分散媒の液流量が増大することから、
塔下部の比重は低下し、塔中間部の比重より低くなる可
能性があり、逆に流量が少なくなり過ぎると塔下部の置
換スラリー濃度が非常に高くなり、スラリーの取扱いが
困難になるので好ましくない。更に具体的に述べると、
塔中間部のスラリー濃度は通常1〜50重量%、好まし
くは3〜20重量%で操作され、塔下部は当該中間部ス
ラリー濃度以上で且つ、1〜50重量%、好ましくは1
0〜40重量%の条件下で運転される。この場合、上記
流量調節は具体的数値の範囲として特定できるものでは
なくて、塔中間部の比重よりも塔下部の比重を高く保つ
ような流量であればよい。
In order to suppress the back mixing, in the present invention, the supply flow rate of the dispersion medium for replacement and the discharge flow rate of the replacement slurry in the lower part of the tower are adjusted so that the slurry specific gravity in the middle part of the tower, that is, the slurry concentration, is adjusted to the lower part of the tower. The specific gravity of the slurry must be kept lower than the slurry concentration. The supply flow rate of the replacement dispersion medium and the discharge flow rate of the replacement slurry are almost the same during stable operation, but if these flow rates become too high, the liquid flow rate of the replacement dispersion medium will increase compared to the discharged crystal flow rate. From
The specific gravity of the lower part of the column is lowered, and may be lower than the specific gravity of the middle part of the column. Conversely, if the flow rate is too low, the concentration of the replacement slurry in the lower part of the column becomes extremely high, which makes it difficult to handle the slurry. Absent. More specifically,
The slurry concentration in the middle part of the tower is usually operated at 1 to 50% by weight, preferably 3 to 20% by weight, and the lower part of the tower is at or above the middle part slurry concentration and 1 to 50% by weight, preferably 1%.
It is operated under the condition of 0 to 40% by weight. In this case, the flow rate adjustment cannot be specified as a range of specific numerical values, and may be a flow rate that keeps the specific gravity of the lower part of the column higher than the specific gravity of the middle part of the column.

【0016】第2の発明は、この第1の発明をさらに効
率的に行わせるための方法であり、第1の発明における
分散媒置換塔中間部のスラリーが、上下方向に平行な複
数個に分断されて行われるようにした分散媒置換方法で
ある。この分断は、塔下部における前記攪拌とか、比重
の不均一性の影響が塔中間部及び塔上部に可及的に及ば
ないようにするためにも役立つものであり、例えば塔中
間部に縦方向に間仕板を設ける方法があるが、この方法
の場合、断面形状、断面積がほぼ同じになるように間仕
切り、稠密に集合した通路を形成することが好ましい。
A second aspect of the present invention is a method for more efficiently carrying out the first aspect of the present invention, in which the slurry in the middle part of the dispersion medium substitution column in the first aspect of the invention is divided into a plurality of pieces parallel to the vertical direction. This is a dispersion medium replacement method that is performed by being divided. This division is also useful for preventing the influence of the agitation in the lower part of the tower and the non-uniformity of the specific gravity from reaching the middle part of the tower and the upper part of the tower as much as possible. Although there is a method of providing a partition plate in this case, in this method, it is preferable to form a densely aggregated passage by partitioning so that the cross-sectional shape and the cross-sectional area are almost the same.

【0017】この塔中間部のスラリーの縦方向分断は、
終極的にはテレフタル酸結晶粒子の沈降を可及的に整流
化された定常状態で行わしめようとするものであるが、
原理的には、各操作を行う上で避けることのできない逆
混合流れを小空間内に制約することにより、バックミキ
シング現象を極力抑えつつ、分散媒置換を連続的に行わ
しめようとするものである。逆に、上記分断をすること
なく塔中間部を広面積の状態で分散媒置換をしようとす
れば、逆混合流れは塔中間部のほぼ全体を通じて生じる
ことになり、バックミキシング現象を大いに促進するた
め、分散媒を置換するという目的からすると好ましくな
い。
The vertical division of the slurry in the middle part of the tower is
Ultimately, it is intended to settle the terephthalic acid crystal particles in a steady state rectified as much as possible.
In principle, by restricting the backmixing flow, which is unavoidable in each operation, to a small space, the backmixing phenomenon is suppressed as much as possible, and the dispersion medium replacement is attempted continuously. is there. On the contrary, if an attempt is made to replace the dispersion medium in a large area in the middle part of the tower without the above-mentioned division, the reverse mixing flow will occur almost throughout the middle part of the tower, which greatly promotes the back mixing phenomenon. Therefore, it is not preferable for the purpose of replacing the dispersion medium.

【0018】第1及び第2の発明において取り扱われる
原スラリーは、液相酸化反応生成スラリー又は粗テレフ
タル酸を精製処理した後のスラリーであって、テレフタ
ル酸結晶粒子と原分散媒とを主成分とするが、該原スラ
リーを構成する原分散媒の主成分は、液相酸化反応溶媒
又は精製処理溶媒である。この液相酸化反応には通常、
酢酸、水等が使用されるが、より好ましくは水を含んだ
酢酸が用いられ、また、精製溶媒には通常、水、酢酸等
が使用されるが、より好ましくは水が用いられる。一
方、置換用分散媒は原スラリーの原分散媒即ち、液相酸
化反応溶媒又は精製処理溶媒と同じ物質又は組成物であ
ってもよいし、異なる物質又は組成物であってもよい
が、通常は水、酢酸又はこれらの混合物が使用される。
なお、置換用分散媒には、置換によって少なくとも精製
効果が得られる程度にまでは不純物を除去したものを使
用することが望ましい。
The raw slurry treated in the first and second aspects of the invention is a liquid phase oxidation reaction product slurry or a slurry obtained by purifying crude terephthalic acid, and contains terephthalic acid crystal particles and an original dispersion medium as main components. However, the main component of the raw dispersion medium constituting the raw slurry is a liquid phase oxidation reaction solvent or a purification treatment solvent. This liquid-phase oxidation reaction is usually
Acetic acid, water and the like are used, more preferably acetic acid containing water is used, and as the purification solvent, water, acetic acid and the like are usually used, but water is more preferably used. On the other hand, the dispersion medium for substitution may be the same material or composition as the original dispersion medium of the original slurry, that is, the liquid-phase oxidation reaction solvent or the purification treatment solvent, or may be a different material or composition, Is water, acetic acid or a mixture thereof.
It should be noted that it is desirable to use, as the dispersion medium for substitution, one from which impurities have been removed to the extent that the purification effect can be obtained at least by substitution.

【0019】本発明の装置では沈降するテレフタル酸結
晶粒子と向流して、つまり装置下部から上部に向かって
置換スラリーの微弱な流れを設けることが好適に行われ
る。これは、原分散媒が装置下方に拡散することを防ぐ
ための措置である。本装置の運転温度は、本発明の装置
の構造が簡単であり閉鎖系の装置であることから加圧で
の運転が容易であるため運転圧力下での各分散媒の沸点
以下の温度であれば好適に使用できる。
In the apparatus of the present invention, it is preferable to provide a weak flow of the substitution slurry countercurrently with the precipitated terephthalic acid crystal particles, that is, from the lower part to the upper part of the device. This is a measure for preventing the raw dispersion medium from diffusing below the apparatus. The operating temperature of this device is not higher than the boiling point of each dispersion medium under operating pressure because the device of the present invention has a simple structure and is a closed system, and therefore can easily be operated under pressure. It can be preferably used.

【0020】本発明者らが施した、底部の強制的攪拌、
均一分散化、スラリー濃度差をつくるという措置は系の
安定化に寄与し、そのために置換性能が向上したものと
考えられる。また、本発明者らが検討を続けた結果、塔
中間部の液の流れを縦に分割して、より好ましくは、ほ
ぼ同断面形状、同面積に分割して長尺通路を設けること
によってさらに置換の性能が上がることが明らかになっ
た。縦方向の長尺通路を設けることで置換率が向上する
原因は、このような構造物がバックミキシングを抑える
整流作用を持つためと考えられるが詳細なメカニズムは
不明である。
Forced agitation of the bottom, performed by the inventors,
It is considered that the measures such as uniform dispersion and difference in slurry concentration contributed to the stabilization of the system, and therefore the substitution performance was improved. In addition, as a result of the inventors' continued study, by further dividing the flow of the liquid in the middle part of the tower vertically, and more preferably, by dividing the flow into almost the same cross-sectional shape and the same area to provide a long passage, It became clear that the performance of the replacement is improved. The reason why the replacement rate is improved by providing the long passages in the vertical direction is considered to be that such a structure has a rectifying action to suppress back mixing, but the detailed mechanism is unknown.

【0021】本発明に係る方法を適用できる分散媒置換
塔は大きく分けて塔上部室、塔下部室及び塔中間部室か
らなり、塔上部室は先ず、原分散媒とテレフタル酸結晶
粒子からなる原スラリーの導入部を有するが、この導入
部は塔上部室内壁に開口していてもよいが、塔上部室内
に延びて開口する筒状導入部である方が原分散媒の抜き
出し操作を妨害しない点で好ましい。さらにこの開口先
端部は下向きに設置されている方が、原スラリーと置換
スラリーの均一な接触をさせやすいので好ましい。な
お、開口先端部には液流分散用邪魔板(又は遮蔽板)を
設置すれば、原スラリーが塔内に広く且つ均一に供給さ
れることになり、分散媒置換操作がより順調に進められ
る。塔上部室には更に、原分散媒抜き出し部を備え、テ
レフタル酸結晶粒子を殆ど含まない、原分散媒が抜き出
され、所定の処理室に導かれる。本発明が対象とするテ
レフタル酸結晶粒子の形状については特に限定されるも
のではない。
The dispersion medium substitution column to which the method according to the present invention can be roughly divided is composed of a column upper chamber, a column lower chamber and a column intermediate chamber, and the column upper chamber is composed of a raw dispersion medium and terephthalic acid crystal particles. Although it has an introduction part for the slurry, this introduction part may be opened to the inner wall of the upper part of the tower, but a cylindrical introduction part that extends and opens in the upper part of the tower does not interfere with the operation of extracting the raw dispersion medium. It is preferable in terms. Further, it is preferable that the tip end portion of the opening is installed downward because it is easy to make the original slurry and the replacement slurry come into uniform contact with each other. If a baffle plate (or a shielding plate) for liquid flow dispersion is installed at the tip of the opening, the raw slurry can be widely and uniformly supplied into the tower, and the dispersion medium replacement operation can proceed more smoothly. . The tower upper chamber is further provided with a raw dispersion medium extraction unit, and the raw dispersion medium containing almost no terephthalic acid crystal particles is extracted and introduced into a predetermined processing chamber. The shape of the terephthalic acid crystal particles targeted by the present invention is not particularly limited.

【0022】塔下部室には置換用分散媒導入部と、該置
換用分散媒で置換されてなる置換スラリーの抜き出し
部、置換用分散媒導入流量及び置換スラリー抜き出し流
量の調節部並びに塔下部室内液攪拌装置を備えている。
置換用分散媒導入部は、置換操作により新たな分散媒と
なる液の導入部であり、テレフタル酸結晶粒子は含まず
低比重であるため、置換スラリーとの混合をよくするた
め塔下部室の下方に開口することが好ましい。又、置換
用分散媒で置換されてなる置換スラリーの抜き出し部
は、置換スラリーが高比重であるため、位置的には上記
同様塔下部室の下方に近い方が好ましい。
In the lower part of the tower, a replacement dispersion medium introduction part, a part for extracting the replacement slurry replaced with the replacement dispersion medium, a part for adjusting the replacement dispersion medium introduction flow rate and the replacement slurry removal flow rate, and the lower part chamber of the tower. A liquid stirring device is provided.
The replacement dispersion medium introduction part is a part for introducing a liquid that becomes a new dispersion medium by the replacement operation, and has a low specific gravity without containing terephthalic acid crystal particles, so that the mixing with the replacement slurry is facilitated, It is preferable to open downward. In addition, the withdrawal portion of the substitution slurry substituted with the substitution dispersion medium is preferably closer to the lower part of the lower column chamber in terms of position because the substitution slurry has a high specific gravity.

【0023】置換用分散媒導入流量及び置換スラリー抜
き出し流量の調節は塔下部室内の置換スラリーの比重コ
ントロールを可能にしている。これら両者の流量を調節
する調節部の設置は安定した置換操作上重要であり、置
換用分散媒導入流量及び置換スラリーの抜き出し流量の
コントロールが塔下部室内のスラリー比重と、塔中間部
室内のスラリー比重の相対的関係に影響し、結果として
分散媒置換効率及び置換スラリーのハンドリングの難易
に関係する。
Adjustment of the flow rate of the disperse medium for substitution and the flow rate of withdrawal of the substitution slurry make it possible to control the specific gravity of the substitution slurry in the lower chamber of the tower. The installation of a control unit for adjusting the flow rates of both of these is important for stable replacement operation, and the control of the flow rate of the dispersion medium for replacement and the flow rate of withdrawing the replacement slurry is controlled by the slurry specific gravity in the lower tower chamber and the slurry in the middle tower chamber. It affects the relative relationship of the specific gravities, and as a result, is related to the dispersion medium replacement efficiency and the difficulty of handling the replacement slurry.

【0024】又、塔下部室には、該室内スラリー攪拌装
置を備えている。この攪拌装置は塔下部室内スラリーの
分散状態を可及的に均一化させようとするものである。
この均一化の目的は、塔下部室内のスラリーの部分的低
比重化による塔中間部と塔下部室との間の密度勾配上の
不安定化等を防止することにあるが、この防止の必要性
については既に説明した通りである。
The lower chamber of the tower is equipped with the indoor slurry agitator. This stirrer is intended to make the dispersion state of the slurry in the lower part of the tower as uniform as possible.
The purpose of this homogenization is to prevent instability in the density gradient between the middle part of the tower and the lower part of the tower due to the partial reduction of the specific gravity of the slurry in the lower part of the tower. The sex is as described above.

【0025】この攪拌装置としては特に限定された装置
を必要とはしないが、分散媒置換塔の下部室内に攪拌翼
を有する通常の攪拌機を設置してもよいが、この攪拌を
助勢するためバッフルを入れることも好適に行なわれ、
更に他の攪拌手段として該塔下部室外部に循環パイプを
設置し、塔下部室内液を抽き出し、また塔下部内に戻す
手段も好適に使用し得、この循環の途中に更に攪拌翼に
よる攪拌装置を介在させることも好ましく採られる手段
であることは前述の通りである。
This agitating device does not need to be a particularly limited device, but an ordinary agitator having an agitating blade may be installed in the lower chamber of the dispersion medium substitution column, but a baffle is provided to assist the agitation. It is also suitable to put
As another stirring means, a circulation pipe may be installed outside the lower part of the tower, and means for extracting the liquid inside the lower part of the tower and returning it to the lower part of the tower may be suitably used. As described above, interposing a stirrer is also a preferable means.

【0026】次に、塔中間部室は塔上部室と塔下部室を
上下方向に連結する通路であるが、第2の発明として後
述するごとく、複数の平行且つ稠密に配置された通路に
形成されてなるもの、更には長尺であるほど好ましい。
なお、ここで縦方向の長尺通路は棚段などのない垂直方
向の管状構造であることから、棚段設置の場合のごとく
テレフタル酸結晶粒子の堆積や閉塞を気遣う必要が無い
メリットを有する。
Next, the tower middle chamber is a passage that vertically connects the tower upper chamber and the tower lower chamber. As will be described later as the second invention, it is formed in a plurality of parallel and densely arranged passages. It is more preferable that the length is longer than that.
Here, since the long longitudinal passage has a vertical tubular structure without a shelf or the like, there is an advantage that there is no need to worry about the deposition or blockage of the terephthalic acid crystal particles as in the case of installing the shelf.

【0027】上記本発明の方法による分散媒置換運転温
度は、上記装置の構造が簡単であり、閉鎖系であり加圧
下での運転が容易であることから、運転圧力下での各分
散媒の沸点以下であればよい。また、供給原スラリーの
温度と置換用分散媒の温度は同じであってもよいし、異
なっていてもよいが、置換用分散媒の温度を供給原スラ
リーの温度よりも低くすれば、塔下部室のスラリーの比
重が供給原スラリーの比重よりも高くなり、より安定し
た系を形成するので好ましい。
The operating temperature of the dispersion medium replacement according to the above method of the present invention is simple because the structure of the above apparatus is simple and the operation under pressure is easy. It may be below the boiling point. The temperature of the feed raw slurry and the temperature of the substitution dispersion medium may be the same or different, but if the temperature of the substitution dispersion medium is lower than the temperature of the feed raw slurry, the lower part of the tower The specific gravity of the slurry in the chamber becomes higher than that of the feed raw slurry, and a more stable system is formed, which is preferable.

【0028】本発明に係る第2の方法においては、分散
媒置換塔中間部のスラリーが、平行な複数個の流れに分
断されて行われるが、この方法の実施に好適な装置とし
ては、内部に縦方向に構成された仕切り壁により、平行
な複数個の長尺通路を構成するものであればその断面形
状は特に問わず、管束状、蜂の巣状または格子状の仕切
りでもよく、通路態様はこれらにより制限されるもので
はない。上記細い通路を設けることにより置換率が向上
する原因は定かではないが、広域にわたるバックミキシ
ングが一体的に発生することを抑え、且つ塔中間部内の
液の整流作用を持つためと考えられる。
In the second method according to the present invention, the slurry in the middle part of the dispersion medium substitution column is divided into a plurality of parallel streams, and the apparatus suitable for carrying out this method is as follows. The partition wall formed in the vertical direction, the cross-sectional shape is not particularly limited as long as it constitutes a plurality of parallel long passages, may be a tube bundle, honeycomb-shaped or lattice-shaped partition, the passage mode It is not limited by these. The reason why the replacement rate is improved by providing the narrow passage is not clear, but it is considered that the back mixing over a wide area is suppressed from being integrally generated, and the liquid has a rectifying action in the middle part of the tower.

【0029】以下、実施例で本発明の内容を説明する。The contents of the present invention will be described below with reference to examples.

【実施例】【Example】

(実施例1)本発明に係る方法及びその実施のための装
置の一例について説明する。図1に示す分散媒置換装置
は、概略的には分散媒置換塔Aを中心とし、この塔に供
給される原スラリーのための原スラリー槽8及び置換用
分散媒槽11、排出される置換された原分散媒を受ける
溢流分散媒槽9、抜き出された置換スラリーを受ける置
換スラリー槽10が接続されると共に、必要な送液用及
び攪拌用ポンプ12、13及び14が設置されている。
分散媒置換塔Aは垂直方向に長い構造をしている内径が
100mmのステンレス製筒状塔である。上端(塔頂
部)側及び下端(塔底部)側にはそれぞれ上部側中空室
2及び下部側中空室3が構成され、塔外からの原スラリ
ー導入室及び塔外への置換スラリー排出室となってい
る。上部側中空室2の内部に原スラリー導入部4が挿入
されている。原スラリー槽8に接続する原スラリー受け
入れ口4aと上部側中空室下方に延びる原スラリー導入
口4bとからなり、4bの先端にはスラリー分散を助け
る遮蔽板4cが設置されている。原分散媒とテレフタル
酸結晶からなる原スラリーは原スラリー槽8から原スラ
リー輸送ポンプ12を経て原スラリー導入部4に達し、
原スラリー導入口4bから上部側中空室2内に散布され
る。散布された原スラリーの内、テレフタル酸結晶粒子
は概ね筒状塔1内を沈降して行き、テレフタル酸結晶粒
子の内の一部で特に微細なものと原分散媒は上部側中空
室2の側面上部の原スラリー分散媒溢流部5より溢流分
散媒槽9に溢流する。塔の下部側中空室3には攪拌用ポ
ンプ13が接続されており、置換スラリー抜き出し部7
aから該ポンプ13を通してリサイクル戻り口7bに至
る循環流れにより下部側中空室3内液を攪拌する。該中
空室3からの置換を終えたスラリーの抜き出しは攪拌用
ポンプ13の吐出口を通じて分岐したラインから行い、
抜き出したスラリーは置換スラリー槽10に貯められ
る。置換する置換用分散媒は置換用分散媒槽11より置
換用分散媒輸送ポンプ14を経由して下部側中空室3の
側面の置換用分散媒供給口6より供給される。
Example 1 An example of the method according to the present invention and an apparatus for carrying out the method will be described. The dispersion medium replacement device shown in FIG. 1 has a dispersion medium replacement tower A as a center, and a raw slurry tank 8 for a raw slurry supplied to this tower, a replacement dispersion medium tank 11, and a discharged replacement medium. An overflow dispersion medium tank 9 for receiving the original dispersion medium and a substitution slurry tank 10 for receiving the extracted substitution slurry are connected, and necessary liquid feeding and stirring pumps 12, 13 and 14 are installed. There is.
The dispersion medium replacement tower A is a stainless steel cylindrical tower having a vertically long structure and an inner diameter of 100 mm. An upper hollow chamber 2 and a lower hollow chamber 3 are formed on the upper end (column top) side and the lower end (column bottom) side, respectively, and serve as a raw slurry introduction chamber from the outside of the tower and a replacement slurry discharge chamber to the outside of the tower. ing. The raw slurry introducing section 4 is inserted into the upper hollow chamber 2. A raw slurry receiving port 4a connected to the raw slurry tank 8 and a raw slurry introducing port 4b extending below the upper hollow chamber are provided, and a shield plate 4c for assisting the slurry dispersion is installed at the tip of 4b. The raw slurry composed of the raw dispersion medium and the terephthalic acid crystal reaches the raw slurry introducing section 4 from the raw slurry tank 8 through the raw slurry transport pump 12.
The raw slurry is introduced into the upper hollow chamber 2 through the inlet 4b. Of the dispersed raw slurry, the terephthalic acid crystal particles generally settle down in the cylindrical tower 1, and a part of the terephthalic acid crystal particles, which is particularly fine, and the raw dispersion medium are in the upper hollow chamber 2. The raw slurry dispersion medium overflow portion 5 on the upper side surface overflows into the overflow dispersion medium tank 9. A stirring pump 13 is connected to the lower hollow chamber 3 of the tower, and a replacement slurry withdrawal section 7 is provided.
The liquid in the lower hollow chamber 3 is agitated by the circulating flow from a to the recycling return port 7b through the pump 13. Slurry that has been replaced from the hollow chamber 3 is extracted from a line branched through the discharge port of the stirring pump 13,
The extracted slurry is stored in the replacement slurry tank 10. The replacement dispersion medium to be replaced is supplied from the replacement dispersion medium tank 11 via the replacement dispersion medium transport pump 14 through the replacement dispersion medium supply port 6 on the side surface of the lower hollow chamber 3.

【0030】このような装置を用いて液相酸化反応で得
られた粗テレフタル酸結晶スラリーの分散媒を新鮮な含
水酢酸で置換する実験を行なった。原料のテレフタル酸
結晶粒子と原分散媒からなる原スラリーは、商業規模の
装置を使って含水酢酸溶媒中でパラキシレンを空気酸化
して製造したものである。酸化工程において、酸化反応
触媒には酢酸マンガン、酢酸コバルト及び臭化水素酸を
用いて酸化反応を行った後、晶析工程を経由して最終的
には90℃に降温された粗テレフタル酸結晶スラリーを
採取して分散媒置換実験の原料の原スラリーとしたが、
テレフタル酸結晶粒子の濃度は30重量%、分散媒中の
水分濃度は11重量%、マンガン濃度は364ppmで
あった。まず塔下部側中空部3にテレフタル酸結晶を仕
込み、ここに11重量%の水を含んだ新鮮な酢酸を置換
用分散媒輸送ポンプ14より熱交換器15を通して16
0℃に加熱して供給し、攪拌用ポンプ13を起動して攪
拌を開始しテレフタル酸結晶濃度が30重量%となるよ
うに分散させた。原スラリー分散媒溢流口5まで液面が
達したところで原スラリー輸送ポンプ12を起動し、原
スラリーの供給を開始すると同時に置換スラリー槽10
への抜き出しを開始した。原料の原スラリーは途中、熱
交換器16で160℃に加熱した。各供給量及び抜き出
し量は以下の通りとした。 原スラリー供給量 40.0Kg/h 置換用分散媒供給量 33.4Kg/h 溢流分散媒抜き出し量 34.2Kg/h 置換スラリー抜き出し量 39.2Kg/h 数時間運転を継続して、系内の液流れが十分に定常状態
に達してから、置換スラリー槽10内の液を分析したと
ころ、分散媒中のマンガン濃度が30ppmであった。
従って、本実施例での分散媒置換率は92%であった。
この時、筒状塔内(塔中間部)のスラリー濃度は8重量
%、下部側中空部3内のスラリー濃度は30重量%であ
った(第1表)。
An experiment was conducted by using such an apparatus to replace the dispersion medium of the crude terephthalic acid crystal slurry obtained by the liquid phase oxidation reaction with fresh hydrous acetic acid. The raw slurry consisting of the raw material terephthalic acid crystal particles and the raw dispersion medium was produced by air-oxidizing paraxylene in a hydrous acetic acid solvent using a commercial-scale apparatus. In the oxidation step, manganese acetate, cobalt acetate, and hydrobromic acid were used as the oxidation reaction catalyst to carry out the oxidation reaction, and the crude terephthalic acid crystal finally cooled to 90 ° C via the crystallization step. The slurry was collected and used as the raw slurry of the raw material for the dispersion medium replacement experiment,
The concentration of terephthalic acid crystal particles was 30% by weight, the concentration of water in the dispersion medium was 11% by weight, and the concentration of manganese was 364 ppm. First, a terephthalic acid crystal was charged into the hollow portion 3 on the lower side of the tower, and fresh acetic acid containing 11% by weight of water was charged into the hollow portion 3 from the dispersion medium transport pump 14 for substitution through a heat exchanger 15.
The mixture was heated to 0 ° C. and supplied, and the stirring pump 13 was started to start stirring to disperse the terephthalic acid crystal concentration to 30% by weight. When the liquid level reaches the raw slurry dispersion medium overflow port 5, the raw slurry transport pump 12 is started to start the supply of the raw slurry, and at the same time, the replacement slurry tank 10 is started.
I started to pull out. The raw slurry of the raw material was heated to 160 ° C. by the heat exchanger 16 on the way. The supply amount and the withdrawal amount were as follows. Raw slurry supply amount 40.0 Kg / h Dispersion medium supply amount 33.4 Kg / h Overflow dispersion medium withdrawal amount 34.2 Kg / h Displacement slurry withdrawal amount 39.2 Kg / h Continuous operation for several hours After the liquid flow of No. 2 reached a steady state sufficiently, the liquid in the substitution slurry tank 10 was analyzed and the manganese concentration in the dispersion medium was 30 ppm.
Therefore, the dispersion medium substitution rate in this example was 92%.
At this time, the slurry concentration in the cylindrical tower (middle portion) was 8% by weight, and the slurry concentration in the lower hollow portion 3 was 30% by weight (Table 1).

【0031】(比較例1)図2に示す如く、実施例1で
使用した装置を使用したが、置換スラリー抜き出し部7
aから抜き出したスラリーの全量を置換スラリー槽10
に抜き出し、ポンプ循環による攪拌を行わない以外は実
施例1と同じ条件で実験したところ、置換スラリー槽1
0内の液中マンガン濃度は100ppmで分散媒置換率
は73%であった。この時、筒状塔1内のスラリー濃度
は8重量%、下部側中空室3のスラリー濃度は3%であ
った(第1表)。
(Comparative Example 1) As shown in FIG. 2, the apparatus used in Example 1 was used.
The entire amount of the slurry extracted from a is replaced with the replacement slurry tank 10
An experiment was conducted under the same conditions as in Example 1 except that the slurry was extracted into a tank and stirred by pump circulation.
The liquid manganese concentration in 0 was 100 ppm, and the dispersion medium substitution rate was 73%. At this time, the slurry concentration in the cylindrical tower 1 was 8% by weight, and the slurry concentration in the lower hollow chamber 3 was 3% (Table 1).

【0032】(実施例2)図3に示すごとく、実施例1
で使用した分散媒置換装置を用いて、パラキシレンをコ
バルト、マンガン、臭素触媒の存在下空気酸化して得た
粗テレフタル酸を水溶媒下で接触水添、再結晶によって
精製することで得た精製テレフタル酸結晶粒子の分散媒
を新鮮な水で置換する実験を行なった。ここで用いた原
スラリーは、商業規模の装置を使用し、含水酢酸中でパ
ラキシレンを酸化工程で、酸化反応触媒には酢酸マンガ
ン、酢酸コバルト及び臭化水素酸を用い、空気酸化を
し、晶析の後、結晶を分離し、乾燥して製造した粗テレ
フタル酸結晶粒子を熱水に溶解し、水素共存下、活性炭
に担持させたパラジウム触媒により不純物を接触水添処
理した後、晶析工程を経て100℃まで冷却して得たも
のである。
(Embodiment 2) As shown in FIG.
The crude terephthalic acid obtained by air-oxidizing para-xylene in the presence of cobalt, manganese, and bromine catalysts by using the dispersion medium replacement device used in 1. was purified by catalytic hydrogenation and recrystallization in a water solvent. An experiment was conducted to replace the dispersion medium of the purified terephthalic acid crystal particles with fresh water. The raw slurry used here uses a commercial-scale apparatus, paraxylene is oxidized in hydrous acetic acid in the oxidation step, and manganese acetate, cobalt acetate and hydrobromic acid are used as oxidation reaction catalysts, and air oxidation is performed. After crystallization, the crystals were separated and dried to dissolve the crude terephthalic acid crystal particles, which were dissolved in hot water and subjected to catalytic hydrogenation treatment with impurities using a palladium catalyst supported on activated carbon in the presence of hydrogen, followed by crystallization. It was obtained by cooling to 100 ° C. through the steps.

【0033】まず塔下部側中空部3に精製されたテレフ
タル酸結晶を仕込み、ここに水を置換用分散媒輸送ポン
プ14より熱交換器15を通して150℃に加熱して供
給し、攪拌用ポンプ13を起動して攪拌を開始しテレフ
タル酸結晶濃度が30重量%となるように分散させた。
原スラリー分散媒溢流部5まで液面が達したところで原
スラリー輸送ポンプ12を起動し、原スラリーの供給を
開始すると同時に置換スラリー槽10への抜き出しを開
始した。原料の原スラリーは途中、熱交換器16で15
0℃に加熱した。各供給量及び抜き出し量は以下の通り
とした。 原スラリー供給量 40.0Kg/h 置換用分散媒供給量 33.4Kg/h 溢流分散媒抜き出し量 34.2Kg/h 置換スラリー抜き出し量 39.2Kg/h 分散媒置換塔に導入したスラリーの分散媒中の不純物安
息香酸は240ppmであった。数時間運転を継続し
て、系内の液流れが十分に定常状態に達してから、置換
スラリー槽10内の液を分析したところ分散媒中の安息
香酸濃度が20ppmであった。従って、本実施例での
分散媒置換率は92%であった。なお、この時の筒状塔
内のスラリー濃度は6重量%、下部側中空部3内のスラ
リー濃度は30重量%であった(第1表)。
First, purified terephthalic acid crystals are charged into the hollow portion 3 on the lower side of the tower, and water is heated and supplied from the dispersion medium transport pump 14 for substitution through the heat exchanger 15 to 150 ° C., and the stirring pump 13 is used. Was started to start stirring, and the terephthalic acid crystal was dispersed so as to have a concentration of 30% by weight.
When the liquid level reached the raw slurry dispersion medium overflow portion 5, the raw slurry transport pump 12 was started to start the supply of the raw slurry and at the same time to start the extraction to the replacement slurry tank 10. The raw slurry of the raw material is 15
Heated to 0 ° C. The supply amount and the withdrawal amount were as follows. Raw slurry supply amount 40.0 Kg / h Dispersion medium supply amount 33.4 Kg / h Overflow dispersion medium withdrawal amount 34.2 Kg / h Displacement slurry withdrawal amount 39.2 Kg / h Dispersion of slurry introduced into dispersion medium substitution tower Impurity benzoic acid in the medium was 240 ppm. After the operation was continued for several hours and the liquid flow in the system reached a sufficiently steady state, the liquid in the displacement slurry tank 10 was analyzed and the benzoic acid concentration in the dispersion medium was 20 ppm. Therefore, the dispersion medium substitution rate in this example was 92%. At this time, the slurry concentration in the cylindrical tower was 6% by weight, and the slurry concentration in the lower hollow portion 3 was 30% by weight (Table 1).

【0034】(比較例2)図4に示す如く、実施例1で
使用した分散媒置換装置を用い、置換スラリー抜き出し
部7aから抜き出したスラリーの全量を置換スラリー槽
10に抜き出したが、ポンプ循環による攪拌を行わない
以外は実施例2と同じ条件で実験したところ、置換スラ
リー槽10内の液中安息香酸濃度は70ppmで、分散
媒置換率は71%であった。なお、この時の筒状塔1内
のスラリー濃度は6重量%、下部側中空部3のスラリー
濃度は3重量%であった(第1表)。なお、ここで使用
した原スラリーは実施例2で用いたものと同じものであ
る。
(Comparative Example 2) As shown in FIG. 4, by using the dispersion medium replacement device used in Example 1, the entire amount of the slurry extracted from the replacement slurry extracting section 7a was extracted into the replacement slurry tank 10, but pump circulation was performed. When an experiment was performed under the same conditions as in Example 2 except that the stirring was not performed according to Example 2, the benzoic acid concentration in the liquid in the substitution slurry tank 10 was 70 ppm, and the dispersion medium substitution ratio was 71%. At this time, the slurry concentration in the tubular tower 1 was 6% by weight, and the slurry concentration in the lower hollow portion 3 was 3% by weight (Table 1). The raw slurry used here is the same as that used in Example 2.

【0035】(実施例3)図5に示す如く、図3の分散
媒置換装置の筒状塔内に断面十字型の縦方向仕切り板1
7を組み込んだ装置(図8は図5の筒状塔部、即ち塔中
間部の横断面図を示す)を用い、実験手順、条件共に実
施例2と同様にして実験を行なった。その結果、置換ス
ラリー槽10内の液中の安息香酸濃度は7ppmであ
り、分散媒置換率は97%であった。なお、この時の筒
状塔1内のスラリー濃度は6重量%、下部側中空部3内
のスラリー濃度は30重量%であった(第1表)。
(Embodiment 3) As shown in FIG. 5, a vertical partition plate 1 having a cross-shaped cross section is provided in the cylindrical tower of the dispersion medium replacement device of FIG.
An experiment was conducted in the same manner as in Example 2 by using an apparatus incorporating 7 (FIG. 8 shows a cross-sectional view of the cylindrical tower portion of FIG. 5, that is, the tower middle portion) in the same experimental procedure and conditions. As a result, the benzoic acid concentration in the liquid in the substitution slurry tank 10 was 7 ppm, and the dispersion medium substitution ratio was 97%. At this time, the slurry concentration in the cylindrical tower 1 was 6% by weight, and the slurry concentration in the lower hollow portion 3 was 30% by weight (Table 1).

【0036】(実施例4)図6に示す如く、実施例3で
使用した分散媒置換装置に、パラキシレンを空気酸化し
て得たテレフタル酸の原スラリーの母液である酢酸を、
置換用分散媒の水で置換する実験を行なった。なお、使
用原スラリーは、酸化反応の触媒に酢酸マンガン、酢酸
コバルト及び臭化水素酸を用い、反応後にスラリーを9
0℃まで冷却して得たものである。該原スラリー濃度は
30重量%、原スラリーの供給温度は150℃、置換用
分散媒の水の供給温度は150℃であった以外は実施例
1と同様の条件、手順で実験を行なった。各供給量及び
抜き出し量は以下の通りとした。 原スラリー供給量 40.0Kg/h 置換用分散媒供給量 33.4Kg/h 溢流分散媒抜き出し量 34.2Kg/h 置換スラリー抜き出し量 39.2Kg/h 数時間運転を継続して、系内の液流れが充分に定常状態
に達してから、置換スリー槽へ抜き出されているスラリ
ーの分散媒中の酢酸濃度を測定すると1.8重量%であっ
た。従って、分散媒置換率は98%であった。なお、こ
の時の筒状塔内のスラリー濃度は6重量%、下部側中空
部3内のスラリー濃度は30重量%であった(第1
表)。
(Example 4) As shown in FIG. 6, acetic acid, which is a mother liquor of an original slurry of terephthalic acid obtained by air-oxidizing paraxylene, was added to the dispersion medium replacement device used in Example 3.
An experiment was carried out in which the replacement dispersion medium was replaced with water. The raw slurry used was manganese acetate, cobalt acetate and hydrobromic acid as catalysts for the oxidation reaction, and the slurry was used after the reaction.
It was obtained by cooling to 0 ° C. An experiment was carried out under the same conditions and procedures as in Example 1 except that the concentration of the raw slurry was 30% by weight, the feed temperature of the raw slurry was 150 ° C., and the feed temperature of water for the dispersion medium for substitution was 150 ° C. The supply amount and the withdrawal amount were as follows. Raw slurry supply amount 40.0 Kg / h Dispersion medium supply amount 33.4 Kg / h Overflow dispersion medium withdrawal amount 34.2 Kg / h Displacement slurry withdrawal amount 39.2 Kg / h Continuous operation for several hours After the liquid flow in (1) reached a sufficient steady state, the acetic acid concentration in the dispersion medium of the slurry withdrawn to the substitution three tank was measured and found to be 1.8% by weight. Therefore, the dispersion medium substitution rate was 98%. At this time, the slurry concentration in the cylindrical tower was 6% by weight, and the slurry concentration in the lower hollow portion 3 was 30% by weight (first
table).

【0037】(比較例3)図7に示す如く、実施例4で
使用した原スラリーと分散媒置換装置を用いたが、置換
スラリー抜き出し部7aから抜き出したスラリーの全量
を置換スラリー槽10に抜き出したが、ポンプ循環によ
る攪拌を行わない以外は実施例4と同じ条件で実験した
ところ、置換スラリー中の分散媒の酢酸濃度は35重量
%であり、分散媒置換率は61%であった。なお、この
時の筒状塔1内のスラリー濃度は6重量%、下部側中空
部3のスラリー濃度は3重量%であった(第1表)。
(Comparative Example 3) As shown in FIG. 7, the original slurry and the dispersion medium replacement device used in Example 4 were used, but the entire amount of the slurry extracted from the replacement slurry extracting section 7a was extracted into the replacement slurry tank 10. However, when an experiment was conducted under the same conditions as in Example 4 except that stirring by pump circulation was not carried out, the acetic acid concentration of the dispersion medium in the substitution slurry was 35% by weight, and the substitution rate of the dispersion medium was 61%. At this time, the slurry concentration in the tubular tower 1 was 6% by weight, and the slurry concentration in the lower hollow portion 3 was 3% by weight (Table 1).

【0038】[0038]

【表1】 [Table 1]

【0039】以上の実施例及び比較例の結果から次のよ
うなことが言える。 (1)下部側中空部を攪拌して均一化し、且つ、置換用
分散媒の供給流量及び置換スラリーの抜き出し流量を調
節して置換スラリー濃度を置換塔内スラリー濃度よりも
高くすることで分散媒置換率は向上している(実施例1
と比較例1、実施例2と比較例2、実施例4と比較例
3)。 (2)上記(1)同様下部側中空部の攪拌をし、スラリ
ー濃度勾配を付けた他、筒状塔内部に仕切り板を設置す
ると分散媒置換率は更に向上した。(実施例1及び2と
実施例3及び4)
The following can be said from the results of the above Examples and Comparative Examples. (1) The lower hollow portion is agitated to be uniform, and the supply flow rate of the replacement dispersion medium and the withdrawal flow rate of the replacement slurry are adjusted to make the concentration of the replacement slurry higher than the concentration of the slurry in the replacement tower. The replacement rate is improved (Example 1)
Comparative Example 1, Example 2 and Comparative Example 2, and Example 4 and Comparative Example 3). (2) In the same manner as in (1) above, the lower hollow portion was agitated to give a slurry concentration gradient, and a partition plate was installed inside the cylindrical tower to further improve the dispersion medium substitution rate. (Examples 1 and 2 and Examples 3 and 4)

【0040】[0040]

【発明の効果】上述のごとく、長尺筒状の分散媒置換塔
上部から分散媒置換の必要なテレフタル酸結晶粒子含有
原スラリーを導入し、置換塔下部からは所望の置換用分
散媒を供給し、原スラリー中の上記結晶粒子を置換塔下
部側に重力沈降させて分散媒置換するに際し、置換塔下
部の置換スラリー及び供給される置換用分散媒を攪拌し
て均一分散状態にし、且つ、置換スラリー抜き出し流量
及び置換用分散媒供給流量を調節することにより、上記
均一化されたスラリーの濃度を筒状塔内部のスラリー濃
度よりも高くすることにより、更に好ましくは塔中間部
には区画された複数の液流を形成させることにより、分
散媒の置換能力を極めて高くすることができ、分散媒置
換法による高純度テレフタル酸の製造には好適な方法と
言える。この分散媒置換法の形態は、重力沈降濃縮法に
置換機能を付与せしめた新規な展開技術と言うことが出
来る。
As described above, the terephthalic acid crystal particle-containing raw slurry which requires the dispersion medium replacement is introduced from the upper part of the long cylindrical dispersion medium replacement column, and the desired replacement dispersion medium is supplied from the lower part of the substitution column. Then, when the crystal particles in the original slurry are gravity settled to the lower side of the substitution tower to substitute the dispersion medium, the substitution slurry at the bottom of the substitution tower and the supplied dispersion medium for substitution are stirred to be in a uniform dispersion state, and, By adjusting the replacement slurry withdrawal flow rate and the replacement dispersion medium supply flow rate to make the concentration of the homogenized slurry higher than the slurry concentration inside the cylindrical tower, it is more preferable to partition in the middle part of the tower. By forming a plurality of liquid streams, the substitution ability of the dispersion medium can be made extremely high, and it can be said that this method is suitable for producing high-purity terephthalic acid by the dispersion medium substitution method. This form of the dispersion medium replacement method can be said to be a new development technology in which a replacement function is added to the gravity sedimentation concentration method.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る方法の実施に使用する分散媒置換
装置及びそのフローの一例を示す。
FIG. 1 shows an example of a dispersion medium replacement device used for carrying out a method according to the present invention and an example of the flow thereof.

【図2】置換スラリー及び置換用分散媒の混合攪拌をし
ない分散媒置換装置及びそのフローの一例を示す。
FIG. 2 shows an example of a dispersion medium replacement device that does not mix and stir a replacement slurry and a dispersion medium for replacement, and an example of the flow thereof.

【図3】本発明に係る方法の実施に使用する分散媒置換
装置及びそのフローの一例を示す。
FIG. 3 shows an example of a dispersion medium replacement device used for carrying out the method according to the present invention and its flow.

【図4】置換スラリー及び置換用分散媒の混合攪拌をし
ない分散媒置換装置及びそのフローの一例を示す。
FIG. 4 shows an example of a dispersion medium replacement device that does not mix and stir a replacement slurry and a dispersion medium for replacement, and an example of the flow thereof.

【図5】本発明に係る方法の実施に使用する分散媒置換
装置及びそのフローの一例を示す。
FIG. 5 shows an example of a dispersion medium replacement device used for carrying out the method according to the present invention and its flow.

【図6】本発明に係る方法の実施に使用する分散媒置換
装置及びそのフローの一例を示す。
FIG. 6 shows an example of a dispersion medium replacement device used for carrying out the method according to the present invention and its flow.

【図7】置換スラリー及び置換用分散媒の混合攪拌をし
ない分散媒置換装置及びそのフローの一例を示す。
FIG. 7 shows an example of a dispersion medium replacement device that does not mix and stir a replacement slurry and a dispersion medium for replacement, and an example of the flow thereof.

【図8】本発明に係る方法の実施に使用する分散媒置換
装置を構成する分散媒置換塔の筒状塔の中央部の横断面
図を示す。
FIG. 8 shows a transverse cross-sectional view of a central portion of a cylindrical tower of a dispersion medium replacement column that constitutes a dispersion medium replacement device used for carrying out the method according to the present invention.

【符号の説明】[Explanation of symbols]

A・・・・分散媒置換塔 1・・・・筒状塔 2・・・・上部側中空室 3・・・・下部側中空室 4・・・・原スラリー導入部 4a・・・原スラリー受け入れ口 4b・・・原スラリー導入口 4c・・・遮蔽板 5・・・・原スラリー分散媒溢流部 6・・・・置換用分散媒供給口 7a・・・置換スラリー抜き出し部 7b・・・リサイクル戻り口 8・・・・原スラリー槽 9・・・・溢流分散媒槽 10・・・置換スラリー槽 11・・・置換用分散媒槽 12・・・原スラリー輸送ポンプ 13・・・攪拌用ポンプ 14・・・置換用分散媒輸送ポンプ 15・・・熱交換器 16・・・熱交換器 17・・・仕切板 17a・・通路 A ... Dispersion medium replacement tower 1 ... Cylindrical tower 2 ... Upper hollow chamber 3 ... Lower hollow chamber 4 ... Raw slurry introduction part 4a ... Raw slurry Receiving port 4b ... Raw slurry introducing port 4c ... Shielding plate 5 ... Raw slurry dispersion medium overflow 6 ... Replacement dispersion medium supply port 7a ... Replacement slurry withdrawing unit 7b ...・ Recycle return port 8 ・ ・ ・ Original slurry tank 9 ・ ・ ・ Overflow dispersion medium tank 10 ・ ・ ・ Replacement slurry tank 11 ・ ・ ・ Replacement dispersion medium tank 12 ・ ・ ・ Original slurry transport pump 13 ・ ・ ・Stirring pump 14 ... Dispersion medium transport pump 15 ... Heat exchanger 16 ... Heat exchanger 17 ... Partition plate 17a ...

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大越 二三夫 岡山県倉敷市水島海岸通3丁目10番 三菱 瓦斯化学株式会社水島工場内 (72)発明者 在間 文哉 岡山県倉敷市水島海岸通3丁目10番 三菱 瓦斯化学株式会社水島工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Fumio Ogoshi 3-10 Mizushima Kaigan Dori, Kurashiki City, Okayama Prefecture Mitsubishi Gas Chemical Co., Ltd. Mizushima Plant (72) Inventor Fumiya Arama, Mizushima Kaigan Dori, Kurashiki City, Okayama Prefecture No. 10 Mitsubishi Gas Chemical Co., Ltd. Mizushima Plant

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】パラ位にカルボキシル基及び/又はカルボ
キシル基生成性被酸化性置換基を有するp−フェニレン
化合物を液相酸化し、得られた粗テレフタル酸スラリー
を落圧、降温して120〜180℃に調節されたスラリ
ー、または該粗テレフタル酸スラリーから分離して得ら
れた粗テレフタル酸を水または酢酸あるいはこれらの混
合溶媒などで高温、高圧下で溶解し、精製処理し、落
圧、降温を行って120〜220℃の温度に調節された
スラリーであり、テレフタル酸結晶粒子と原分散媒とを
主成分とする原スラリーを分散媒置換塔上部より、又置
換用分散媒を同塔下部よりそれぞれ導入し、原スラリー
の原分散媒を置換して同塔上部より原分散媒を抜き出
し、同塔下部液を攪拌して可及的に均一なスラリー状態
とし、且つ置換用分散媒供給流量及び置換スラリーの抜
き出し流量の調節により、同塔中間部よりも高濃度のス
ラリー状態に維持しつつ、テレフタル酸結晶粒子と置換
用分散媒を主成分とする置換スラリーを同塔下部より抜
き出し、該置換スラリーからテレフタル酸結晶粒子を分
離することを特徴とする高純度テレフタル酸の製造方
法。
1. A p-phenylene compound having a carboxyl group and / or a carboxyl group-forming oxidizable substituent at the para position is subjected to liquid-phase oxidation, and the resulting crude terephthalic acid slurry is depressurized and cooled to 120 to 120 ° C. Slurry adjusted to 180 ° C., or crude terephthalic acid obtained by separating from the crude terephthalic acid slurry is dissolved in water or acetic acid or a mixed solvent thereof at high temperature and high pressure, purified, and subjected to pressure reduction, A slurry whose temperature is lowered to 120 to 220 ° C. and which is a slurry whose main components are terephthalic acid crystal particles and an original dispersion medium is provided from the upper part of the dispersion medium replacement tower, and the replacement dispersion medium is also provided in the same tower. Introduce each from the lower part, replace the original dispersion medium of the original slurry and withdraw the original dispersion medium from the upper part of the tower, stir the lower part liquid of the same tower to make the slurry state as uniform as possible, and perform the dispersion for replacement. By adjusting the supply flow rate and the withdrawal flow rate of the replacement slurry, the replacement slurry containing terephthalic acid crystal particles and the dispersion medium for replacement as the main components is withdrawn from the lower part of the tower while maintaining a slurry state with a higher concentration than the middle part of the tower. A method for producing high-purity terephthalic acid, which comprises separating terephthalic acid crystal particles from the substitution slurry.
【請求項2】分散媒置換塔中間部のスラリーが、平行な
複数個の流れに分断されて行われる請求項1記載の高純
度テレフタル酸の製造方法。
2. The method for producing high-purity terephthalic acid according to claim 1, wherein the slurry in the middle part of the dispersion medium substitution column is divided into a plurality of parallel streams.
JP32673895A 1994-12-26 1995-12-15 Method for producing high purity terephthalic acid Expired - Fee Related JP3766708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32673895A JP3766708B2 (en) 1994-12-26 1995-12-15 Method for producing high purity terephthalic acid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP32195094 1994-12-26
JP6-321950 1994-12-26
JP32673895A JP3766708B2 (en) 1994-12-26 1995-12-15 Method for producing high purity terephthalic acid

Publications (2)

Publication Number Publication Date
JPH08231465A true JPH08231465A (en) 1996-09-10
JP3766708B2 JP3766708B2 (en) 2006-04-19

Family

ID=26570639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32673895A Expired - Fee Related JP3766708B2 (en) 1994-12-26 1995-12-15 Method for producing high purity terephthalic acid

Country Status (1)

Country Link
JP (1) JP3766708B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018272A (en) * 2000-07-05 2002-01-22 Mitsubishi Gas Chem Co Inc Dispersing medium substituting method and method for manufacturing high purity terephthalic acid
WO2005033058A1 (en) * 2003-10-02 2005-04-14 Mitsubishi Gas Chemical Company, Inc. Method for producing high purity terephthalic acid
US7030270B2 (en) 2001-12-04 2006-04-18 Akzo Nobel N.V. Process for preparing monochloroacetic acid
WO2007145149A1 (en) 2006-06-12 2007-12-21 Mitsubishi Gas Chemical Company, Inc. Method of replacing dispersion medium
WO2008013100A1 (en) * 2006-07-24 2008-01-31 Mitsubishi Gas Chemical Company, Inc. Method of replacing dispersion medium
JP2008290948A (en) * 2007-05-22 2008-12-04 Mitsubishi Gas Chem Co Inc Method for replacing dispersion medium of isophthalic acid stock slurry
US9144750B2 (en) 2006-06-12 2015-09-29 Mitsubishi Gas Chemical Company, Ltd. Method of replacing dispersion medium and apparatus therefor
KR20190046866A (en) 2016-09-14 2019-05-07 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Method for producing high purity terephthalic acid

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4643801B2 (en) * 2000-07-05 2011-03-02 三菱瓦斯化学株式会社 Dispersion medium replacement method and high purity terephthalic acid production method
JP2002018272A (en) * 2000-07-05 2002-01-22 Mitsubishi Gas Chem Co Inc Dispersing medium substituting method and method for manufacturing high purity terephthalic acid
US7030270B2 (en) 2001-12-04 2006-04-18 Akzo Nobel N.V. Process for preparing monochloroacetic acid
WO2005033058A1 (en) * 2003-10-02 2005-04-14 Mitsubishi Gas Chemical Company, Inc. Method for producing high purity terephthalic acid
US7262323B2 (en) 2003-10-02 2007-08-28 Mitsubishi Gas Chemical Company, Inc. Method for producing high purity terephthalic acid
JP5047501B2 (en) * 2003-10-02 2012-10-10 三菱瓦斯化学株式会社 Method for producing high purity terephthalic acid
JP2012158614A (en) * 2003-10-02 2012-08-23 Mitsubishi Gas Chemical Co Inc Process for producing high-purity terephthalic acid
EP2455360A1 (en) 2006-06-12 2012-05-23 Mitsubishi Gas Chemical Company, Inc. Apparatus for replacing dispersion medium
US8247604B2 (en) 2006-06-12 2012-08-21 Mitsubishi Gas Chemical Company, Inc. Method of replacing dispersion medium
WO2007145149A1 (en) 2006-06-12 2007-12-21 Mitsubishi Gas Chemical Company, Inc. Method of replacing dispersion medium
JP5291459B2 (en) * 2006-06-12 2013-09-18 三菱瓦斯化学株式会社 Dispersion medium replacement method
US9144750B2 (en) 2006-06-12 2015-09-29 Mitsubishi Gas Chemical Company, Ltd. Method of replacing dispersion medium and apparatus therefor
WO2008013100A1 (en) * 2006-07-24 2008-01-31 Mitsubishi Gas Chemical Company, Inc. Method of replacing dispersion medium
JP5412831B2 (en) * 2006-07-24 2014-02-12 三菱瓦斯化学株式会社 Dispersion medium replacement method
KR101419071B1 (en) * 2006-07-24 2014-07-11 미츠비시 가스 가가쿠 가부시키가이샤 Method of replacing dispersion medium
JP2008290948A (en) * 2007-05-22 2008-12-04 Mitsubishi Gas Chem Co Inc Method for replacing dispersion medium of isophthalic acid stock slurry
KR20190046866A (en) 2016-09-14 2019-05-07 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 Method for producing high purity terephthalic acid
US10683253B2 (en) 2016-09-14 2020-06-16 Mitsubishi Gas Chemical Company, Inc. Method for producing high-purity terephthalic acid

Also Published As

Publication number Publication date
JP3766708B2 (en) 2006-04-19

Similar Documents

Publication Publication Date Title
KR100352693B1 (en) Method for producing high purity terephthalic acid
KR100518258B1 (en) Manufacturing method of high purity terephthalic acid using dispersion medium replacement device
JP3979505B2 (en) Method for producing high purity terephthalic acid
JP2001513102A (en) Production of terephthalic acid
JPS6383046A (en) Production of aromatic carboxylic acid
JP2012158614A (en) Process for producing high-purity terephthalic acid
JP3766708B2 (en) Method for producing high purity terephthalic acid
EP2050732B1 (en) Method of replacing dispersion medium
EP2455360B1 (en) Apparatus for replacing dispersion medium
JPH06239780A (en) Method for hydration of cyclic olefin
JP5162960B2 (en) Dispersion medium replacement method for isophthalic acid raw slurry
JP3232774B2 (en) Method for producing high-purity terephthalic acid
JP5173474B2 (en) Method for producing terephthalic acid
WO2017169564A1 (en) Method for producing terephthalic acid
US9144750B2 (en) Method of replacing dispersion medium and apparatus therefor
KR20180033124A (en) Method for producing high purity terephthalic acid
KR20220050984A (en) Method for preparing 4,4'-dichlorodiphenyl sulfone
JP3774912B2 (en) Dispersion medium replacement method and apparatus
KR20070022330A (en) Improved filtrate preparation process for terephthalic acid filtrate treatment

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 19951215

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20021113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060130

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100203

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110203

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120203

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130203

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140203

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees