JPH0823110A - Manufacture of thin film solar cell - Google Patents

Manufacture of thin film solar cell

Info

Publication number
JPH0823110A
JPH0823110A JP6154382A JP15438294A JPH0823110A JP H0823110 A JPH0823110 A JP H0823110A JP 6154382 A JP6154382 A JP 6154382A JP 15438294 A JP15438294 A JP 15438294A JP H0823110 A JPH0823110 A JP H0823110A
Authority
JP
Japan
Prior art keywords
semiconductor layer
type
chalcopyrite
thin film
type compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP6154382A
Other languages
Japanese (ja)
Inventor
Kimiko Oki
貴美子 大木
Takayuki Watanabe
隆行 渡辺
Masahiro Matsui
正宏 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP6154382A priority Critical patent/JPH0823110A/en
Publication of JPH0823110A publication Critical patent/JPH0823110A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PURPOSE:To provide a satisfactory junction a P-type semiconductor layer and an n-type semiconductor layer and improve the conversion efficiency, by forming the P-type semiconductor layer made of chalcopyrite-type compound, dipping the p-type semiconductor layer with an ammonia solution and forming the n-type semiconductor layer thereon. CONSTITUTION:A metal electrode layer 2 of molybdenum is formed on a glass substrate 1. A P-type chalcopyrite-type compound semiconductor layer 3 of CuInS2 or CuInSe2 and an n-type semiconductor layer 4 are sequentially formed on the metal electrode layer 2. Then, a transparent electrode layer 5 is provided on the n-type semiconductor layer 4. After the P-type chalcopyrite-type compound semiconductor layer 3 is formed and then dipped in an ammonia solution, the n-type semiconductor layer 4 is formed thereon. By thus dipping the P-type chalcopyrite-type compound semiconductor layer 3 in the ammonia solution, a needle crystal due to a different phase produced on the surface of the P-type chalcopyrite-type compound semiconductor layer 3 can be selectively removed by etching. Thus, the chalcopyrite-type compound semiconductor layer without having a different phase on the surface thereof can be produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カルコパイライト型化
合物半導体層からなる薄膜太陽電池の製造方法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a thin film solar cell comprising a chalcopyrite type compound semiconductor layer.

【0002】[0002]

【従来の技術】カルコパイライト型化合物半導体、例え
ば銅インジウムダイサルファイド(CuInS2 )、銅
インジウムダイセレナイド(CuInSe2 )等は、高
変換効率の太陽電池を達成できる材料として注目されて
いる。図1は、カルコパイライト型化合物半導体を用い
た従来技術の薄膜太陽電池の断面図である。厚さ0.5
〜1.5mmのガラス基板1上に、約1μmのモリブデ
ン(Mo)等の金属電極層2を成膜する。金属電極層2
上に厚さ1〜3μmのCuInS2 、CuInSe2
のp型カルコパイライト型化合物半導体層3、厚さ5〜
100nmの硫化カドミウム(CdS)、酸化亜鉛(Z
nO)等のn型半導体層4を順に形成し、さらにこのn
型半導体層4の上に約1μmのインジウム−スズ酸化物
(ITO)、アルミニウム添加の酸化亜鉛(ZnO:A
l)等の透明電極層5を設ける。
2. Description of the Related Art Chalcopyrite type compound semiconductors such as copper indium disulphide (CuInS 2 ) and copper indium diselenide (CuInSe 2 ) have been attracting attention as materials capable of achieving solar cells with high conversion efficiency. FIG. 1 is a cross-sectional view of a conventional thin film solar cell using a chalcopyrite type compound semiconductor. Thickness 0.5
A metal electrode layer 2 of molybdenum (Mo) or the like having a thickness of about 1 μm is formed on a glass substrate 1 having a thickness of about 1.5 mm. Metal electrode layer 2
A p-type chalcopyrite type compound semiconductor layer 3 of CuInS 2 , CuInSe 2 or the like having a thickness of 1 to 3 μm and a thickness of 5 to
100 nm cadmium sulfide (CdS), zinc oxide (Z
nO) and other n-type semiconductor layers 4 are sequentially formed.
Approximately 1 μm of indium-tin oxide (ITO) and aluminum-added zinc oxide (ZnO: A) on the type semiconductor layer 4.
The transparent electrode layer 5 such as 1) is provided.

【0003】カルコパイライト型化合物半導体薄膜の成
膜方法としては種々挙げられるが、例えば電極層2の上
に、スパッタリング法によって銅(Cu)、銀(Ag)
等のIb族金属層とインジウム(In)、ガリウム(G
a)等のIIIb族金属層を積層させ、それをH2 S、
2 Se等カルコゲン元素を含むガスを用いてアニール
を行うという周知の技術がある。
There are various methods for forming a chalcopyrite type compound semiconductor thin film. For example, copper (Cu) or silver (Ag) is formed on the electrode layer 2 by a sputtering method.
Ib group metal layer such as Indium (In), gallium (G
a) a group IIIb metal layer such as a) is laminated, and the layer is applied with H 2 S,
There is a known technique of performing annealing using a gas containing a chalcogen element such as H 2 Se.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
ような方法でカルコパイライト型化合物半導体薄膜を成
膜すると、例えばCuInS2 薄膜ならば、最表面にC
uIn5 8 、Cu2 S、In2 3 等の異相がCuI
nS2 と同時に生成し、CdS等のn型半導体層をその
上に成膜した場合に、接合特性の低下原因となる問題が
あった。
However, when a chalcopyrite type compound semiconductor thin film is formed by the above method, for example, if it is a CuInS 2 thin film, C is formed on the outermost surface.
Different phases such as uIn 5 S 8 , Cu 2 S, In 2 S 3 are CuI
When the n-type semiconductor layer such as CdS is formed at the same time as nS 2 is formed thereon, there is a problem that causes deterioration of the junction characteristics.

【0005】本発明の目的は、カルコパイライト型化合
物半導体層からなる太陽電池において、簡便な方法で上
記の問題を解決し、接合特性を改善することのできる薄
膜太陽電池の製造方法を提供することにある。
An object of the present invention is to provide a method for producing a thin film solar cell, which is a solar cell comprising a chalcopyrite type compound semiconductor layer and which can solve the above-mentioned problems by a simple method and improve the junction characteristics. It is in.

【0006】[0006]

【課題を解決するための手段】かかる状況下において、
本発明者らは、カルコパイライト型化合物半導体層表面
の異相を除去する方法について鋭意検討した結果、成膜
したカルコパイライト型化合物半導体層をアンモニア水
に浸漬すると、異相を選択的にエッチング除去できるこ
とを見いだし本発明をなすに至った。
In such a situation,
As a result of diligent studies on a method of removing a heterogeneous phase on the surface of a chalcopyrite type compound semiconductor layer, the present inventors have found that, when the formed chalcopyrite type compound semiconductor layer is immersed in ammonia water, the heterogeneous phase can be selectively removed by etching. The present invention has been completed.

【0007】即ち本発明は、カルコパイライト型化合物
からなるp型半導体層を成膜後にアンモニア水に浸漬し
た後、n型半導体層を積層することを特徴とする薄膜太
陽電池の製造方法である。本発明の薄膜太陽電池の断面
図は、図1と同じである。厚さ0.5〜1.5mmのガ
ラス基板1上に、約1μmのモリブデン(Mo)等の金
属電極層2を成膜する。金属電極層2上に厚さ1〜3μ
mのCuInS2 、CuInSe2 等のp型カルコパイ
ライト型化合物半導体層3、厚さ5〜100nmの硫化
カドミウム(CdS)、酸化亜鉛(ZnO)等のn型半
導体層4を順に形成し、さらにこのn型半導体層4の上
に約1μmのインジウム−スズ酸化物(ITO)、アル
ミニウム添加の酸化亜鉛(ZnO:Al)等の透明電極
層5を設ける。
That is, the present invention is a method of manufacturing a thin film solar cell, which comprises depositing a p-type semiconductor layer made of a chalcopyrite type compound, immersing it in aqueous ammonia, and then laminating an n-type semiconductor layer. The cross-sectional view of the thin film solar cell of the present invention is the same as that of FIG. A metal electrode layer 2 of molybdenum (Mo) or the like having a thickness of about 1 μm is formed on a glass substrate 1 having a thickness of 0.5 to 1.5 mm. 1 ~ 3μ thickness on the metal electrode layer 2
m of p-type chalcopyrite type compound semiconductor layer 3 such as CuInS 2 or CuInSe 2 and an n-type semiconductor layer 4 of 5 to 100 nm thick such as cadmium sulfide (CdS) and zinc oxide (ZnO) are formed in this order. A transparent electrode layer 5 of indium-tin oxide (ITO), aluminum-added zinc oxide (ZnO: Al) or the like having a thickness of about 1 μm is provided on the n-type semiconductor layer 4.

【0008】本発明におけるカルコパイライト型化合物
とは、Cu、Ag等の元素周期律表Ib族金属、Al、
Ga、In等の元素周期律表IIIb族金属及びS、S
e、Teのカルコゲン元素からなり、カルコパイライト
(黄銅鉱)型構造をとる化合物を総称したものである。
カルコパイライト型化合物には多くの種類があるが、そ
れらのうち、CuInS2 、CuInSe2 、CuIn
Te2 、CuGaSe2 、CuGaTe2 、AgInS
2 、AgInSe2 、AgInTe2 、AgGaS
2 、AgGaTe 2 或いはそれらの固溶体等が、適当
なバンドギャップを持っており、薄膜太陽電池用の材料
として好ましい。さらに好ましくは、CuInS2 、C
uInSe2、CuGaSe2 が挙げられる。
Chalcopyrite type compound in the present invention
Is a group Ib metal of the periodic table of elements such as Cu and Ag, Al,
Group IIIb metals and S, S of the periodic table of elements such as Ga and In
Chalcopyrite composed of e and Te chalcogen elements
It is a general term for compounds having a (chalcopyrite) type structure.
There are many types of chalcopyrite-type compounds.
Of these, CuInS2, CuInSe2, CuIn
Te2, CuGaSe2, CuGaTe2, AgInS
2, AgInSe2, AgInTe2, AgGaS
e2, AgGaTe 2Or their solid solutions are suitable
It has a wide band gap and is a material for thin-film solar cells.
Is preferred as More preferably CuInS2, C
uInSe2, CuGaSe2Is mentioned.

【0009】カルコパイライト型化合物半導体層の成膜
方法としては、カルコパイライト型化合物そのものを蒸
発源として蒸着させる真空蒸着法、カルコパイライト型
化合物そのものをターゲットとして用いるスパッタリン
グ法、カルコパイライト型化合物の成分元素を別々に蒸
着させる多元の真空蒸着法、カルコパイライト型化合物
の成分元素を別々にターゲットとして用いるマルチスパ
ッタリング法、或いは構成金属の積層薄膜、例えばCu
−In薄膜のカルコゲナイド化等、特に限定されるもの
ではないが、構成金属の積層薄膜をカルコゲナイド化す
る方法を用いた場合、異相がカルコパイライト化合物半
導体層の表面に生成しやすく、本発明の効果がより顕著
に現れる。
The chalcopyrite type compound semiconductor layer is formed by a vacuum deposition method in which the chalcopyrite type compound itself is evaporated as an evaporation source, a sputtering method using the chalcopyrite type compound itself as a target, and a component element of the chalcopyrite type compound. Multi-source vacuum vapor deposition method in which each element is vapor-deposited separately, multi-sputtering method in which component elements of chalcopyrite type compound are separately used as targets, or laminated thin films of constituent metals such as Cu
Although not particularly limited, such as chalcogenization of the -In thin film, when a method of chalcogenizing a laminated thin film of constituent metals is used, a different phase is easily generated on the surface of the chalcopyrite compound semiconductor layer, and the effect of the present invention Appears more prominently.

【0010】本発明において、アンモニア水の濃度及び
温度については、特に限定されないが、濃度も温度も高
くするほど異相をエッチング除去する速度は大きくなる
が、アンモニアの揮発が激しくなる傾向がある。従っ
て、濃度としては、0.01〜50%が好ましく、より
好ましくは、0.1〜30%である。また、温度につい
ては5〜80℃が好ましく、より好ましくは10〜60
℃である。
In the present invention, the concentration and temperature of the ammonia water are not particularly limited, but the higher the concentration and the temperature, the higher the speed of removing the different phase by etching, but the volatilization of ammonia tends to become severe. Therefore, the concentration is preferably 0.01 to 50%, more preferably 0.1 to 30%. Moreover, about temperature, 5-80 degreeC is preferable, More preferably, it is 10-60.
° C.

【0011】また、本発明において、アンモニア水に浸
漬する時間については、短すぎると異相を十分にエッチ
ング除去できず、長すぎても効果には変わりがないの
で、0.1〜50時間が好ましく、より好ましくは1〜
40時間である。本発明において、n型半導体層の材料
としては、禁制帯幅が、接合を形成する相手となるカル
コパイライト型化合物半導体より大きいものが好まし
く、例えば、CdS、ZnS、ZnSe、In2 3
のカルコゲナイド化合物、ZnO,SnO2 ,ZrO2
等の酸化物等が挙げられる。
Further, in the present invention, if the immersion time in the ammonia water is too short, the heterogeneous phase cannot be sufficiently removed by etching, and if it is too long, the effect does not change, so 0.1 to 50 hours is preferable. , More preferably 1
40 hours. In the present invention, the material of the n-type semiconductor layer is preferably one having a forbidden band width larger than that of a chalcopyrite type compound semiconductor which is a partner to form a junction, and examples thereof include CdS, ZnS, ZnSe and In 2 S 3 . Chalcogenide compound, ZnO, SnO 2 , ZrO 2
And the like.

【0012】n型半導体層の成膜方法としては、蒸着
法、スパッタリング法、溶液成長法等、特に限定されな
いが、溶液成長法は、低温で被覆性よく成膜できるた
め、良好な接合を形成する上で好ましい。本発明の特徴
は、カルコパイライト型化合物半導体薄膜をアンモニア
水に接触させ、例えばCuInS2 薄膜ならばCuIn
5 8 、Cu2 S、In2 3 等の異相を選択的にエッ
チング除去して、異相のないカルコパイライト化合物半
導体薄膜を最表面に出すことにより、n型半導体層との
接合特性の良好な薄膜太陽電池を作製できることであ
る。
The method for forming the n-type semiconductor layer is not particularly limited, such as the vapor deposition method, the sputtering method and the solution growth method. However, the solution growth method can form a good bond because it can form a film with good coverage at a low temperature. It is preferable to do so. A feature of the present invention is that a chalcopyrite type compound semiconductor thin film is brought into contact with aqueous ammonia, and for example, a CuInS 2 thin film is CuIn
Good bonding characteristics with n-type semiconductor layer by selectively etching away different phases such as 5 S 8 , Cu 2 S, In 2 S 3 and exposing a chalcopyrite compound semiconductor thin film without any different phases on the outermost surface. That is, a thin film solar cell can be manufactured.

【0013】[0013]

【実施例】以下に、この発明の実施例を具体的に説明す
る。
EXAMPLES Examples of the present invention will be specifically described below.

【0014】[0014]

【実施例1】図1と同様の構造の薄膜太陽電池を作製し
た。まず、厚さ1mmのガラス基板1上に厚さ1μmの
Mo電極層2をスパッタリング法により形成した。次に
Mo電極層上の所定領域に、スパッタリング法によって
Cu薄膜とIn薄膜を積層した後(組成比 Cu/In
=0.95 日本電子(株)製 JCXA−733で測
定))、それを5mol%のH2 Sガスを含むArガス
雰囲気中550℃にて3時間熱処理を行って厚さ2μm
のCuInS 2 薄膜3を形成した。その後、温度25℃
の25%アンモニア水に20時間浸漬した。
Example 1 A thin film solar cell having a structure similar to that shown in FIG. 1 was prepared.
Was. First, a glass substrate 1 having a thickness of 1 mm has a thickness of 1 μm.
The Mo electrode layer 2 was formed by the sputtering method. next
By a sputtering method on a predetermined area on the Mo electrode layer
After stacking Cu thin film and In thin film (composition ratio Cu / In
= 0.95 Measured with JCXA-733 manufactured by JEOL Ltd.
)), 5 mol% H2Ar gas containing S gas
Heat treatment at 550 ° C for 3 hours in an atmosphere to a thickness of 2 μm
CuInS 2The thin film 3 was formed. After that, the temperature is 25 ℃
Was immersed in 25% aqueous ammonia for 20 hours.

【0015】アンモニア水浸漬前後のCuInS2 薄膜
について、電子顕微鏡((株)日立製作所製 S−27
00)観察及びX線回折スペクトル((株)リガク製
RU−200B)の測定を行った。アンモニア水浸漬前
には、CuInS2 薄膜表面に異相による針状結晶がみ
られると共に、X線回折でCuIn5 8 相が検出され
たのに対し、浸漬後は、針状結晶がほとんど除去されて
おり、X線回折スペクトルにはCuInS2 以外のピー
クがなくなった。また、CuInS2 のX線回折ピーク
強度や半値幅には、アンモニア水浸漬前後で変化がなか
った。
Regarding the CuInS 2 thin film before and after the immersion in ammonia water, an electron microscope (S-27 manufactured by Hitachi, Ltd.) was used.
00) Observation and X-ray diffraction spectrum (manufactured by Rigaku Corporation)
RU-200B) was measured. Before immersion in ammonia water, needle-like crystals due to a different phase were observed on the surface of the CuInS 2 thin film, and the CuIn 5 S 8 phase was detected by X-ray diffraction, whereas after immersion, the needle-like crystals were mostly removed. Therefore, the X-ray diffraction spectrum has no peaks other than CuInS 2 . In addition, the X-ray diffraction peak intensity and the half width of CuInS 2 did not change before and after the immersion in ammonia water.

【0016】次に、アンモニア水に浸漬後のCuInS
2 薄膜上に、溶液成長法により50nmのn型CdS層
4を形成し、次いでスパッタリング法により0.5μm
のITO透明電極層5を成膜した。このようにして作製
した薄膜太陽電池素子のITOとMo間の電流・電圧特
性を測定した結果、良好なダイオード特性が認められ
た。正方向/逆方向の4Vにおける電流比は約500で
あった。また、この素子にAM1.5の光を照射したと
ころ、変換効率は、7.5%であった。
Next, CuInS after soaking in ammonia water
2 Form a 50 nm n-type CdS layer 4 on the thin film by the solution growth method, and then form 0.5 μm by the sputtering method.
The ITO transparent electrode layer 5 was formed. As a result of measuring the current / voltage characteristics between ITO and Mo of the thin film solar cell element thus manufactured, good diode characteristics were confirmed. The current ratio at 4V in the forward / reverse direction was about 500. When this device was irradiated with light of AM 1.5, the conversion efficiency was 7.5%.

【0017】[0017]

【比較例1】H2 Sガス中で熱処理したCuInS2
膜をアンモニア水に浸漬する処理を行わないこと以外
は、実施例1と同様にして、p型CuInS2 とn型C
dSからなる薄膜太陽電池を作製した。CuInS2
膜表面に、異相であるCuIn 5 8 の針状結晶が存在
するために、作製した素子のITOとMo間の電流・電
圧特性を測定した場合に逆バイアス印加時の電流量が大
きく、正方向/逆方向の4Vにおける電流比は約100
であった。また、作製した太陽電池素子にAM1.5の
光を照射したところ、変換効率は、4.3%であった。
Comparative Example 1 H2CuInS heat treated in S gas2Thin
Except not to immerse the membrane in ammonia water
In the same manner as in Example 1, p-type CuInS2And n-type C
A thin film solar cell made of dS was produced. CuInS2Thin
On the film surface, a different phase CuIn FiveS8There are needle crystals
In order to achieve
When measuring the pressure characteristics, the amount of current when a reverse bias is applied is large.
The current ratio at 4V in the forward / reverse direction is about 100
Met. In addition, AM1.5 was added to the manufactured solar cell element.
When irradiated with light, the conversion efficiency was 4.3%.

【0018】[0018]

【発明の効果】本発明によれば、表面に異相のないカル
コパイライト型化合物半導体薄膜をつくることができ、
この薄膜を用いて作製された薄膜太陽電池は、n型半導
体層との接合特性が良好で変換効率が高かく、有用であ
る。
According to the present invention, it is possible to form a chalcopyrite type compound semiconductor thin film having no foreign phase on the surface,
A thin-film solar cell manufactured using this thin film is useful because it has good junction characteristics with the n-type semiconductor layer and high conversion efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明及び従来の技術における薄膜太陽電池の
素子構造の1例を示す断面図である。
FIG. 1 is a cross-sectional view showing an example of an element structure of a thin film solar cell according to the present invention and a conventional technique.

【符号の説明】[Explanation of symbols]

1.ガラス基板 2.金属電極層 3.カルコパイライト型化合物半導体層 4.n型半導体層 5.透明電極層 1. Glass substrate 2. Metal electrode layer 3. Chalcopyrite type compound semiconductor layer 4. n-type semiconductor layer 5. Transparent electrode layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 カルコパイライト型化合物からなるp型
半導体層を成膜後にアンモニア水に浸漬した後、n型半
導体層を積層することを特徴とする薄膜太陽電池の製造
方法。
1. A method for manufacturing a thin-film solar cell, comprising depositing a p-type semiconductor layer made of a chalcopyrite type compound, immersing the p-type semiconductor layer in ammonia water, and then stacking an n-type semiconductor layer.
JP6154382A 1994-07-06 1994-07-06 Manufacture of thin film solar cell Withdrawn JPH0823110A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6154382A JPH0823110A (en) 1994-07-06 1994-07-06 Manufacture of thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6154382A JPH0823110A (en) 1994-07-06 1994-07-06 Manufacture of thin film solar cell

Publications (1)

Publication Number Publication Date
JPH0823110A true JPH0823110A (en) 1996-01-23

Family

ID=15582926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6154382A Withdrawn JPH0823110A (en) 1994-07-06 1994-07-06 Manufacture of thin film solar cell

Country Status (1)

Country Link
JP (1) JPH0823110A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196771A (en) * 2005-01-14 2006-07-27 Honda Motor Co Ltd Chalcopyrite thin film solar cell and manufacturing method thereof
JP2012151432A (en) * 2010-06-28 2012-08-09 Kyocera Corp Photoelectric conversion element and photoelectric conversion device, and method of manufacturing photoelectric conversion element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196771A (en) * 2005-01-14 2006-07-27 Honda Motor Co Ltd Chalcopyrite thin film solar cell and manufacturing method thereof
JP4549193B2 (en) * 2005-01-14 2010-09-22 本田技研工業株式会社 Chalcopyrite thin film solar cell and manufacturing method thereof
JP2012151432A (en) * 2010-06-28 2012-08-09 Kyocera Corp Photoelectric conversion element and photoelectric conversion device, and method of manufacturing photoelectric conversion element

Similar Documents

Publication Publication Date Title
US6534704B2 (en) Solar cell
US5078804A (en) I-III-VI2 based solar cell utilizing the structure CuInGaSe2 CdZnS/ZnO
JP3249408B2 (en) Method and apparatus for manufacturing thin film light absorbing layer of thin film solar cell
JP2922466B2 (en) Thin film solar cell
JP2003318424A (en) Thin film solar battery and method of manufacturing same
JP2922465B2 (en) Manufacturing method of thin film solar cell
JP2001044464A (en) METHOD OF FORMING Ib-IIIb-VIb2 COMPOUND SEMICONDUCTOR LAYER AND MANUFACTURE OF THIN-FILM SOLAR CELL
JP2004047860A (en) Thin film solar cell and its manufacture
JPH11177112A (en) Photovoltaic device and its manufacture
JP2015099884A (en) Method of manufacturing cigs solar cell
JP2000332273A (en) Solar battery and manufacture thereof
JPH0823110A (en) Manufacture of thin film solar cell
JP2000012883A (en) Manufacture of solar cell
JP2975693B2 (en) Method for producing chalcopyrite-type compound thin film
JP2015504611A (en) Method for improving the conductivity of molybdenum thin films using electron beam irradiation
JPH11204810A (en) Compd. semiconductor solar cell
JP2004327849A (en) Solar cell and its manufacturing method
JPH11224953A (en) Photovolatic device and manufacture thereof
JP2815723B2 (en) Manufacturing method of thin film solar cell
JPH11330507A (en) Solar cell
JP2815729B2 (en) Manufacturing method of thin film solar cell
JPH06252433A (en) Thin film solar cell
JPH0888379A (en) Chalcopyrite type compound thin film solar battery
JPH11168227A (en) Photovoltaic device and manufacture thereof
JPWO2017068923A1 (en) Photoelectric conversion element

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20011002