JPH0822775B2 - Zirconia sintered body - Google Patents

Zirconia sintered body

Info

Publication number
JPH0822775B2
JPH0822775B2 JP61280897A JP28089786A JPH0822775B2 JP H0822775 B2 JPH0822775 B2 JP H0822775B2 JP 61280897 A JP61280897 A JP 61280897A JP 28089786 A JP28089786 A JP 28089786A JP H0822775 B2 JPH0822775 B2 JP H0822775B2
Authority
JP
Japan
Prior art keywords
sintered body
ceo
zro
tetragonal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61280897A
Other languages
Japanese (ja)
Other versions
JPS63139048A (en
Inventor
孝次 津久間
努 高畑
清志 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP61280897A priority Critical patent/JPH0822775B2/en
Publication of JPS63139048A publication Critical patent/JPS63139048A/en
Publication of JPH0822775B2 publication Critical patent/JPH0822775B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、強度,破壊靭性,耐クリープ性などの機械
的性質に優れ、かつ透光性に優れたジルコニア焼結体に
関する。
TECHNICAL FIELD The present invention relates to a zirconia sintered body which is excellent in mechanical properties such as strength, fracture toughness, and creep resistance, and is excellent in translucency.

(従来の技術) 近年正方晶ジルコニアを主構成成分とする高靭性焼結
体が開発されている。一般に、この焼結体に含有される
正方晶ジルコニア粒子は、微細でなければならない。た
とえば、特開昭56−134564号公報には、Y2O3−ZrO2系に
おいて、正方晶でなければならないという条件が記載さ
れている。粒径が2μmよりも大きくなると、正方晶の
安定性が低くなり、単斜晶に変態する。たとえば、200
℃近傍に長時間置くことによって、この変態による熱劣
化現象を示すこととなる。すなわち、大きな正方晶粒子
からなる、安定性のよい焼結体は知られていなかったの
である。
(Prior Art) In recent years, a high toughness sintered body containing tetragonal zirconia as a main constituent has been developed. Generally, the tetragonal zirconia particles contained in this sintered body should be fine. For example, Japanese Unexamined Patent Publication No. 56-134564 describes the condition that the Y 2 O 3 —ZrO 2 system must be tetragonal. If the particle size is larger than 2 μm, the stability of the tetragonal crystal becomes low and it transforms into a monoclinic crystal. For example, 200
If it is left in the vicinity of ° C for a long time, a thermal deterioration phenomenon due to this transformation will be exhibited. That is, there was no known sintered body having large tetragonal grains and good stability.

(発明が解決しようとする問題点) 従来の、正方晶粒子から構成されたジルコニア焼結体
は、粒子が微細であるがゆえに、機械的には高温変形を
生じやすいという欠点を、また光学的には十分な透光性
がえがたいという欠点を有していた。本発明は、正方晶
粒子の粒径が大きいにもかかわらず安定性の高い焼結体
によって、上記二つの欠点を改善することを目的とす
る。
(Problems to be Solved by the Invention) A conventional zirconia sintered body composed of tetragonal grains has a drawback that mechanical deformation easily occurs at high temperature because of fine grains, Had a drawback in that it was difficult to obtain sufficient translucency. It is an object of the present invention to improve the above two drawbacks by using a sintered body having high stability even though the size of tetragonal grains is large.

(問題点を解決するための手段) すなわち、本発明者らは、CeO2−ZrO2系においてCeO2
/ZrO2モル比を14/86〜20/80とすることによって、正方
晶粒子の平均粒径が5μm以上であっても十分安定であ
ることを見出した。
(Means for Solving Problems) That is, the present inventors have found that CeO 2 -ZrO 2 system has CeO 2
It was found that by setting the / ZrO 2 molar ratio to 14/86 to 20/80, it is sufficiently stable even if the average particle size of the tetragonal crystal particles is 5 μm or more.

上記モル比が14/86未満になると正方晶が不安定とな
って単斜晶に転移し、いっぽう20/80をこえると立方晶
が混ざることとなる。
When the above molar ratio is less than 14/86, the tetragonal crystal becomes unstable and is transformed into a monoclinic crystal, while when it exceeds 20/80, the cubic crystal is mixed.

ここに平均粒径とは、試料の研磨面をエッチングした
のち、走査型電子顕微鏡によって観察し、下記の式によ
り求めた値である。
Here, the average particle size is a value obtained by observing with a scanning electron microscope after etching the polished surface of the sample and using the following formula.

r=1.5 r:平均粒径 l:任意の引いた線分を横切る50個以上の粒子の平均長さ 本発明の焼結体は、つぎのようにして製造することが
できる。
r = 1.5 r: average particle size l: average length of 50 or more particles crossing an arbitrary drawn line segment The sintered body of the present invention can be manufactured as follows.

原料粉末は、高純度であることが望ましく、またZrO2
にCeO2が固溶したもの、あるいはZrO2粉末とCeO2粉末と
を混合したもののいずれでもよい。その中のCeO2/ZrO2
モル比は、14/86〜20/80でなければならない。この粉末
をラバープレス、スリップキャストなどの成形法で所定
の形状に成形したのち、焼成する。この焼成の温度が高
いほどかつその時間が長いほどえられる焼結体中の粒子
は、大きくなる。たとえば、焼成の温度1550℃の場合は
焼成時間を10時間以上、1650℃の場合は1時間以上とす
ることによって、平均粒径5μm以上の正方晶粒子から
なる焼結体がえられる。高い透光性をえるには、空気中
よりも酸素中で焼成するのがよい。一段と高い透光性を
えるために、ホットアイソスタティック処理することも
可能である。その場合の処理条件として、圧力媒体アル
ゴンガス、圧力50MPa以上、温度1400〜1600℃を選ぶの
がよい。CeO2−ZrO2系焼結体は、ホットアイソスタティ
ック処理によって還元され、脱安定化されやすいので、
CeO2などの粉末中に埋め込んで処理しなければならな
い。
It is desirable that the raw material powder be of high purity and that ZrO 2
It may be either a solid solution of CeO 2 or a mixture of ZrO 2 powder and CeO 2 powder. CeO 2 / ZrO 2 in it
The molar ratio should be between 14/86 and 20/80. This powder is molded into a predetermined shape by a molding method such as rubber pressing or slip casting, and then fired. The higher the firing temperature and the longer the firing time, the larger the particles in the sintered body obtained. For example, when the firing temperature is 1550 ° C., the firing time is 10 hours or longer, and when the firing temperature is 1650 ° C., 1 hour or longer, so that a sintered body composed of tetragonal grains having an average grain size of 5 μm or more can be obtained. In order to obtain high translucency, firing in oxygen is better than in air. It is also possible to perform hot isostatic treatment in order to obtain a higher transparency. In that case, it is preferable to select a pressure medium of argon gas, a pressure of 50 MPa or more, and a temperature of 1400 to 1600 ° C. as processing conditions. The CeO 2 -ZrO 2 system sintered body is easily reduced and stabilized by hot isostatic treatment,
It must be processed by embedding it in a powder such as CeO 2 .

(発明の効果) 本発明の焼結体は、すぐれた機械特性と良好な透光性
を有している。機械特性としては、とくに破壊靭性およ
び耐クリープ性にすぐれている。したがって、ノズル,
ダイス,摺動部品などの機械構造用部品および断熱エン
ジン部品などの高温構造材料として利用することができ
る。また、透光性を有し、かつ透光性アルミナよりも機
械的特性にすぐれているので、透光性アルミナが利用さ
れている分野、たとえば、電子治具部品などに透光性ア
ルミナよりも有利に利用することができる。
(Effects of the Invention) The sintered body of the present invention has excellent mechanical properties and good translucency. The mechanical properties are particularly excellent in fracture toughness and creep resistance. Therefore, the nozzle,
It can be used as high-temperature structural materials such as machine structural parts such as dies and sliding parts, and heat insulating engine parts. Further, since it has a light-transmitting property and is superior to the light-transmitting alumina in mechanical properties, it is more useful than the light-transmitting alumina in the fields where the light-transmitting alumina is used, such as electronic jig parts. It can be used to advantage.

(実施例) 以下の実施例において、曲げ強度はJIS R 1601(198
1)による室温3点曲げ強度値であり、破壊靭性は、イ
ンデンテーション法によって測定した室温破壊靭性値で
ある。
(Example) In the following examples, the bending strength is JIS R 1601 (198
It is the room temperature three-point bending strength value according to 1), and the fracture toughness is the room temperature fracture toughness value measured by the indentation method.

<粉末の製造> オキシ塩化ジルコニウムと塩化セリウムとの所定割合
の混合水溶液を煮沸することによって、加水分解し、え
られたゾルを乾燥し、粉砕して、CeO2−ZrO2系微粉末を
えた、 該微粉末の組成および粒度を下表に示す。
<Production of powder> By hydrolyzing a mixed aqueous solution of zirconium oxychloride and cerium chloride in a predetermined ratio, the resulting sol is dried and pulverized to obtain a CeO 2 -ZrO 2 -based fine powder. The composition and particle size of the fine powder are shown in the table below.

<試験例1> このようにしてえられた粉末を、金型とラバープレス
によって、板状成形体とし、管状炉に入れ、大気中で温
度を100℃/hrの速度で上げ、1650℃に2時間保持したの
ち、降温した。
<Test Example 1> The powder thus obtained is formed into a plate-shaped compact by a die and a rubber press, placed in a tubular furnace, and the temperature is raised in the atmosphere at a rate of 100 ° C / hr to 1650 ° C. After holding for 2 hours, the temperature was lowered.

えられた焼結体の結晶相は、いずれも正方晶100%の
ものであった。その平均粒径、曲げ強度および破壊靭性
を下表に示す。
The crystal phases of the obtained sintered bodies were all tetragonal crystals. The average particle size, bending strength and fracture toughness are shown in the table below.

<試験例2> 実施例2における粉末を上記試験例1と同様の方法で
薄い成形体とし、管状炉に入れ、酸素を流通させなが
ら、温度を50℃/hrの速度で上げ、1650℃に4時間保持
したのち、降温した。えられた焼結体を鏡面研磨し、厚
さ0.5mmにした。
<Test Example 2> The powder in Example 2 was made into a thin compact by the same method as in Test Example 1 above, put in a tubular furnace, and the temperature was raised at a rate of 50 ° C / hr while flowing oxygen to 1650 ° C. After holding for 4 hours, the temperature was lowered. The obtained sintered body was mirror-polished to have a thickness of 0.5 mm.

研磨したものは、透光性を有していた。また、可視光
域での光透過率を測定したところ13%であり、透過波長
域は0.35〜7μmであった。
The polished product had translucency. Further, the light transmittance in the visible light range was 13%, and the transmission wavelength range was 0.35 to 7 μm.

<試験例3> 試験例1の実施例2でえた焼結体から作製した曲げ試
験片を用いて、温度1200℃、クロスヘッド速度0.005mm/
minの条件で抗折試験を行なった、比較のために粒径0.5
μm,Y2O33モル%含有のジルコニア焼結体についても同
条件で試験した。試験後、上記Y2O3含有焼結体は大きく
塑性変形して曲ったが、本発明のものは弾性破断し塑性
変形を示さなかった。これは、本発明の焼結体が従来の
微小な粒径からなる高靭性焼結体に比較して耐クリープ
性に優れていることを示すものである。
<Test Example 3> Using a bending test piece manufactured from the sintered body obtained in Example 2 of Test Example 1, a temperature of 1200 ° C and a crosshead speed of 0.005 mm /
The bending test was conducted under the condition of min, and the particle size was 0.5 for comparison.
A zirconia sintered body containing μm and Y 2 O 3 3 mol% was also tested under the same conditions. After the test, the Y 2 O 3 -containing sintered body was largely plastically deformed and bent, but the one of the present invention elastically fractured and showed no plastic deformation. This shows that the sintered body of the present invention is superior in creep resistance as compared with the conventional high toughness sintered body having a minute grain size.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】CeO2とZrO2とを、CeO2/ZrO2モル比14/86〜
20/80の割合で含む、平均粒径5μm以上の正方晶粒子
からなる、ジルコニア焼結体。
1. A CeO 2 / ZrO 2 molar ratio of CeO 2 and ZrO 2 of 14/86 to
A zirconia sintered body composed of tetragonal grains having an average grain size of 5 μm or more, which is contained in a ratio of 20/80.
JP61280897A 1986-11-27 1986-11-27 Zirconia sintered body Expired - Fee Related JPH0822775B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61280897A JPH0822775B2 (en) 1986-11-27 1986-11-27 Zirconia sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61280897A JPH0822775B2 (en) 1986-11-27 1986-11-27 Zirconia sintered body

Publications (2)

Publication Number Publication Date
JPS63139048A JPS63139048A (en) 1988-06-10
JPH0822775B2 true JPH0822775B2 (en) 1996-03-06

Family

ID=17631466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61280897A Expired - Fee Related JPH0822775B2 (en) 1986-11-27 1986-11-27 Zirconia sintered body

Country Status (1)

Country Link
JP (1) JPH0822775B2 (en)

Also Published As

Publication number Publication date
JPS63139048A (en) 1988-06-10

Similar Documents

Publication Publication Date Title
JP5685846B2 (en) Transparent zirconia sintered body, method for producing the same, and use thereof
US4835123A (en) Magnesia partially-stabilized zirconia
JP4806952B2 (en) Translucent ceramics
JPS6126562A (en) Zirconia sintered body
JPH03218967A (en) High-strength alumina-zirconia-based ceramics sintered body
JP2000203933A (en) Production of transparent yttrium/aluminum/garnet sintered body by dry mixing method
JPH0822775B2 (en) Zirconia sintered body
JP2645894B2 (en) Method for producing zirconia ceramics
JPS63103864A (en) Sintered formed body comprising partially stabilized zirconium oxide and manufacture
JPH0772102B2 (en) Method for manufacturing zirconia sintered body
JPS60226457A (en) Manufacture of high strength zirconia sintered body
JP2000095564A (en) Zirconia sintered body, its production and material for pulverizing member
EP0458286A1 (en) Method for preparing a sintered body of light-transmitting cordierite
JPS647030B2 (en)
JP3101972B2 (en) Alumina sintered body and method for producing the same
JP2854340B2 (en) Ceramic composite sintered body and method of manufacturing the same
JP2002121070A (en) Sintered low temperature thermal deterioration resistant zirconia compact and method of manufacturing for the same
KR950009441B1 (en) Method of complex sintering materials of low friction al2o3-zro2 system
JP2581128B2 (en) Alumina-sialon composite sintered body
JP2000169222A (en) Sintered zirconia having high elasticity modulus at elevated temperature, the base powder thereof and production thereof
JPH01290558A (en) Zirconia sintered body
JP2006346188A (en) Orthodontics bracket and its production method
JP3109341B2 (en) MgO partially stabilized ZrO2 sintered body and method for producing the same
JPH03112854A (en) Production of high strength alumina-zirconia system ceramic
JP3009046B2 (en) Ceramic composite sintered body and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees