JPH08227719A - Electrode for zinc-bromine battery and its manufacture - Google Patents

Electrode for zinc-bromine battery and its manufacture

Info

Publication number
JPH08227719A
JPH08227719A JP7033432A JP3343295A JPH08227719A JP H08227719 A JPH08227719 A JP H08227719A JP 7033432 A JP7033432 A JP 7033432A JP 3343295 A JP3343295 A JP 3343295A JP H08227719 A JPH08227719 A JP H08227719A
Authority
JP
Japan
Prior art keywords
electrode
bromine
zinc
battery
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7033432A
Other languages
Japanese (ja)
Inventor
Kaoru Kitakizaki
薫 北寄崎
Hoki Haba
方紀 羽場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP7033432A priority Critical patent/JPH08227719A/en
Publication of JPH08227719A publication Critical patent/JPH08227719A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)

Abstract

PURPOSE: To provide an electrode for zinc-bromine battery in which a metal is adapted as the electrode material for a zinc-bromine battery to satisfy bromine resistance and electric characteristic, and the downsizing and higher efficiency of the battery itself can be attained, and a method for manufacturing it. CONSTITUTION: A metal base plate 33 is adapted as base material base for electrode, and a material having a carbon thin film adhered on the surface of the base plate 33 so as to impart bromine resistance by the sputtering means of a graphite electrode 36 using a high frequency power source 35 is used. As the manufacturing method, a base holder 32 and the graphite electrode 36 are arranged in a vacuum vessel 31, the bases 33 plate as the base material are juxtaposed on the base holder 32, and the incident power having a reflected power based on the slippage of load impedance is applied to the graphite electrode 36 from the high frequency power source 35 under the present of an inert gas, whereby the base plate 33 is coated with carbon particles in a thin film form by sputtering means from the graphite electrode 36.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は電解液循環型積層二次電
池としての亜鉛−臭素電池用電極とその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrode for a zinc-bromine battery as an electrolyte circulating type laminated secondary battery and a method for producing the same.

【0002】[0002]

【従来の技術】亜鉛−臭素電池は正極活物質に臭素、負
極活物質に亜鉛を用いた2次電池であり、この電池は例
えば電力の昼と夜のアンバランスを解決させるために、
電力需要が少ない夜間に電力を貯蔵して、昼間に放出さ
せるため等に使用される。
2. Description of the Related Art A zinc-bromine battery is a secondary battery that uses bromine as a positive electrode active material and zinc as a negative electrode active material.
It is used to store electricity at night when electricity demand is low and to release it in the daytime.

【0003】充電時に正極電極側で発生した臭素は、電
解液に添加した臭素錯化剤と反応し、オイル状の沈殿物
となって正極側貯蔵槽へ戻され、放電時はポンプで単電
池内へ送り込まれ還元される。電解液の成分はZnBr
2水溶液と、抵抗を下げるためのNH4Cl等の塩と、負
極亜鉛側のデンドライトを防止し、均一な電着を促進さ
せるためのPb,Sn,4級アンモニウム塩類と、臭素
錯化剤とである。正極電極と負極電極の間にはセパレー
タを介挿してあり、正極電極で発生した臭素が負極電極
へ拡散して亜鉛と反応することによる自己放電を防止し
ている。
Bromine generated on the positive electrode side at the time of charging reacts with the bromine complexing agent added to the electrolytic solution to form an oily precipitate which is returned to the positive electrode side storage tank, and at the time of discharging it is pumped to the unit cell. It is sent in and returned. The component of the electrolytic solution is ZnBr
2 aqueous solution, a salt such as NH 4 Cl for reducing resistance, Pb, Sn, quaternary ammonium salts for preventing dendrite on the negative electrode zinc side and promoting uniform electrodeposition, and a bromine complexing agent Is. A separator is inserted between the positive electrode and the negative electrode to prevent self-discharge caused by the bromine generated in the positive electrode diffusing into the negative electrode and reacting with zinc.

【0004】この亜鉛−臭素電池の化学反応は、The chemical reaction of this zinc-bromine battery is

【0005】[0005]

【化1】充電時……正極:2Br-→Br2+2e-,負
極:Zn+++2e-→Zn 放電時……正極:2Br-←Br2+2e-,負極:Zn
+++2e-←Zn で表される。
[Chemical Formula 1] During charging: Positive electrode: 2Br → Br 2 + 2e , Negative electrode: Zn ++ + 2e → Zn During discharging: Positive electrode: 2Br ← Br 2 + 2e , Negative electrode: Zn
It is represented by ++ + 2e ← Zn.

【0006】この亜鉛−臭素電池は、主に電極をバイポ
ーラ型とし、複数個の単電池(単セル)を電気的に直列
に積層した電池本体と、電解液貯蔵槽と、これらの間に
電解液を循環させるポンプおよび配管系とで構成されて
いる。
In this zinc-bromine battery, the electrodes are mainly of a bipolar type, a battery main body in which a plurality of single cells (single cells) are electrically stacked in series, an electrolytic solution storage tank, and an electrolytic solution interposed therebetween. It is composed of a pump and a piping system for circulating the liquid.

【0007】図2は上記亜鉛−臭素電池を構成する電池
本体の一例を示す分解斜視図であり、矩形平板状のバイ
ポーラ型中間電極1の電極部1aの外周に絶縁性の枠体
1bが配置され、同様に矩形平板状のセパレータ板2
は、セパレータ3の外周に枠体2aが形成されている。
そして上記中間電極1にセパレータ板2及び必要に応じ
てパッキン4,スペーサメッシュ5を重ねて単セルを構
成し、この単セルを複数個積層して電池本体が構成され
ている。
FIG. 2 is an exploded perspective view showing an example of a battery main body constituting the zinc-bromine battery, in which an insulating frame 1b is arranged on the outer periphery of an electrode portion 1a of a rectangular flat bipolar intermediate electrode 1. Similarly, a rectangular flat plate-shaped separator plate 2
The frame 2a is formed on the outer periphery of the separator 3.
The separator plate 2 and, if necessary, the packing 4 and the spacer mesh 5 are stacked on the intermediate electrode 1 to form a single cell, and a plurality of the single cells are stacked to form a battery body.

【0008】積層された電池本体の両端部には、集電メ
ッシュ6を有する集電電極7と、一対の締付端板8と、
その内側に位置する押さえ用の積層端板9とが配置され
ている。そして両締付端板8,8間に締付用のボルトを
通して、このボルトを締め付けることにより、一体的に
積層固定された電池本体が構成される。
A collector electrode 7 having a collector mesh 6 and a pair of tightening end plates 8 are provided at both ends of the stacked battery bodies.
A pressing laminated end plate 9 located inside thereof is arranged. Then, a bolt for tightening is passed between both tightening end plates 8 and 8 and tightened to form a battery body integrally laminated and fixed.

【0009】上記のように構成された電池本体の各単セ
ル内には、各中間電極1及びセパレータ板2の枠体2a
の上下2箇所の隅角部に形成した正極マニホールド10
と、負極マニホールド11より、セパレータ板2の枠体
2aに設けられたチャンネル12及びマイクロチャンネ
ル13を介して電解液が夫々流入排出する。
Inside each unit cell of the battery body constructed as described above, the frame 2a of each intermediate electrode 1 and separator plate 2 is provided.
Positive electrode manifold 10 formed in two corners above and below
Then, the electrolytic solution flows in and out from the negative electrode manifold 11 through the channels 12 and the microchannels 13 provided in the frame body 2a of the separator plate 2, respectively.

【0010】通常上記の締付端板8は、繊維強化プラス
チック樹脂(FRP)が採用され、中間電極1の枠体1
bは塩化ビニル樹脂(PVC)が、セパレータ板2には
比較的硬いポリエチレン樹脂が採用されている。
Usually, the tightening end plate 8 is made of fiber reinforced plastic resin (FRP), and the frame body 1 of the intermediate electrode 1 is used.
A vinyl chloride resin (PVC) is used for b, and a relatively hard polyethylene resin is used for the separator plate 2.

【0011】上記の亜鉛−臭素電池は、50KW級電池
における電池効率として約80%、総合エネルギー効率
として約70%が確認されている。
The above zinc-bromine battery has been confirmed to have a battery efficiency of about 80% and a total energy efficiency of about 70% in a 50 KW class battery.

【0012】図3は上記亜鉛−臭素電池の作動原理を説
明するための概要図であり、図中の14は正極側貯蔵槽
であって該正極側貯蔵槽14内に正極電解液15と臭素
錯化合物16とが貯蔵されている。17は負極側貯蔵槽
であって該負極側貯蔵槽17内に負極電解液18が貯蔵
されている。そして正極電解液15は正極側ポンプ19
の駆動に伴って、四方弁20を介して図中の矢印に示し
た如く電池本体の正極マニホールド10から単セル内を
流通し、正極側貯蔵槽14に還流する一方、負極電解液
18は負極側ポンプ21の駆動に伴って、電池本体の負
極マニホールド11からセパレータ3に隔てられた単セ
ル内を流通して負極側貯蔵槽17に還流する。
FIG. 3 is a schematic diagram for explaining the operating principle of the above zinc-bromine battery, in which 14 is a positive electrode side storage tank in which the positive electrode electrolyte solution 15 and bromine are contained. Complex compound 16 is stored. Reference numeral 17 denotes a negative electrode side storage tank in which the negative electrode electrolytic solution 18 is stored. The positive electrode electrolyte solution 15 is supplied to the positive electrode side pump 19
In accordance with the driving of the above, the single cell flows from the positive electrode manifold 10 of the battery main body through the four-way valve 20 as shown by the arrow in the figure and flows back to the positive electrode side storage tank 14, while the negative electrode electrolyte solution 18 As the side pump 21 is driven, the side pump 21 flows through the unit cell separated from the negative electrode manifold 11 of the battery body to the separator 3 and returns to the negative electrode side storage tank 17.

【0013】上記の集電電極7は、絶縁枠にカーボンプ
ラスチック電極と真ちゅう製の集電メッシュとを順次重
ね合わせて、所定の温度と圧力条件下でのヒートプレス
手段に基づいて一体化されて製造されている。又、正極
側中間電極としては活性炭クロスにカーボンプラスチッ
ク電極を張り合わせた材料が用いられ、負極側中間電極
としては平滑面を持つカーボンプラスチック電極が用い
られている。
The current collecting electrode 7 is formed by sequentially stacking a carbon plastic electrode and a brass current collecting mesh on an insulating frame, and integrating them by heat pressing under a predetermined temperature and pressure condition. Being manufactured. A material obtained by laminating activated carbon cloth with a carbon plastic electrode is used as the positive electrode side intermediate electrode, and a carbon plastic electrode having a smooth surface is used as the negative electrode side intermediate electrode.

【0014】[0014]

【発明が解決しようとする課題】このような亜鉛−臭素
電池の場合、電池自体の小型化をはかるために前記中間
電極1として厚さ1mm程度の材料が用いられており、
この中間電極1の製作時にもヒートプレス手段が採用さ
れているため、該中間電極1には無数の微小な空孔が存
在している。そのため電池を長期に亙って使用している
間に正極及び負極電解液が空孔中に浸入して該中間電極
1の膨潤現象を引き起こすことがあり、それに伴って電
極自体の変形とか割れ等が発生しやすくなって電池とし
ての寿命低下を招来してしまうという問題点がある。特
に亜鉛−臭素電池は、電力用としての使用が主用途とな
っているため、一旦設置した後は長年月に亙って使用す
ることが要求される。
In the case of such a zinc-bromine battery, a material having a thickness of about 1 mm is used as the intermediate electrode 1 in order to downsize the battery itself.
Since the heat pressing means is also used when the intermediate electrode 1 is manufactured, the intermediate electrode 1 has innumerable minute holes. Therefore, while the battery is used for a long period of time, the positive electrode and the negative electrode electrolytic solution may infiltrate into the pores and cause the swelling phenomenon of the intermediate electrode 1, which causes deformation or cracking of the electrode itself. Is more likely to occur, leading to a decrease in the life of the battery. In particular, zinc-bromine batteries are mainly used for electric power, and therefore, once installed, they are required to be used for many years.

【0015】そこで中間電極の材料として電解液によっ
て膨潤しない金属板を採用することが可能であれば上記
の問題点は解消されるが、しかし亜鉛−臭素電池用電解
液に含まれている臭素はきわめて腐食性が強く、中間電
極1として実用上採用可能なほど耐臭素性の大きな金属
は見いだされていないのが現状である。
Therefore, if a metal plate that does not swell with an electrolytic solution can be used as the material of the intermediate electrode, the above problems can be solved, but bromine contained in the electrolytic solution for a zinc-bromine battery can be eliminated. At present, no metal having extremely strong corrosiveness and bromine resistance enough to be practically adopted as the intermediate electrode 1 has been found.

【0016】特に中間電極1として金属板を採用した場
合には、従来の活性炭クロスにカーボンプラスチック電
極を張り合わせた材料に比して電気抵抗がはるかに小さ
くなり、電流密度が増大して電池性能が向上する上、電
池自体の小型化と高効率化が期待されるものと思われ
る。
In particular, when a metal plate is used as the intermediate electrode 1, the electric resistance is much smaller than that of the conventional material in which a carbon plastic electrode is bonded to activated carbon cloth, the current density is increased, and the battery performance is improved. In addition to improvement, it is expected that miniaturization and high efficiency of the battery itself are expected.

【0017】本発明は上記の点に鑑みてなされたもので
あり、電極の材料として金属を採用し、しかも耐臭素性
が高く、電気抵抗の低減と電流密度の増大をはかって電
池性能を向上させるとともに、電池自体の小型化と高効
率化を可能とした亜鉛−臭素電池用電極とその製造方法
を提供することを目的とするものである。
The present invention has been made in view of the above points, and employs a metal as a material for electrodes, has high bromine resistance, and improves battery performance by reducing electric resistance and increasing current density. It is an object of the present invention to provide an electrode for a zinc-bromine battery and a method for manufacturing the same, which enables miniaturization and high efficiency of the battery itself.

【0018】[0018]

【課題を解決するための手段】本発明は上記目的を達成
するために、平板状の中間電極にセパレータ板を重ねて
単セルを形成し、この単セルを複数個積層して電池本体
を構成するとともに、該電池本体の両端部に、集電メッ
シュを有する集電電極と一対の締付端板とを配置し、両
締付端板間をボルト締めすることによって各積層部材間
を液密下にシールするようにした亜鉛−臭素電池におい
て、先ず請求項1として、前記中間電極の母材基板とし
て金属を採用し、この金属基板の表面上に、高周波電源
を用いたグラファイトのスパッタリング手段によって耐
臭素性を付与するためのカーボン薄膜を付着した材料を
用いた亜鉛−臭素電池用電極を提供する。
In order to achieve the above object, the present invention forms a single cell by stacking a separator plate on a flat intermediate electrode and stacking a plurality of the single cells to form a battery body. At the same time, a current collecting electrode having a current collecting mesh and a pair of tightening end plates are arranged at both ends of the battery body, and a bolt between the tightening end plates is tightened by bolts to ensure liquid-tightness between the laminated members. In a zinc-bromine battery which is sealed below, first, as claim 1, a metal is adopted as a base material substrate of the intermediate electrode, and a graphite sputtering means using a high frequency power source is provided on the surface of the metal substrate. Provided is an electrode for a zinc-bromine battery, which uses a material having a carbon thin film for imparting bromine resistance.

【0019】請求項2として、真空容器内に基板ホルダ
を配備するとともに、該基板ホルダと対向する位置にグ
ラファイト電極を配置し、基板ホルダ上に母材としての
金属基板を並置して不活性ガスの存在下で高周波電源か
ら負荷インピーダンスのずれに基づく反射電力を有する
入射電力を上記グラファイト電極に印加することによ
り、該グラファイト電極からスパッタリング手段により
金属基板に炭素粒子を薄膜状にコーティングする亜鉛−
臭素電池用電極の製造方法を提供する。
According to a second aspect of the present invention, a substrate holder is arranged in a vacuum container, a graphite electrode is arranged at a position facing the substrate holder, and a metal substrate as a base material is juxtaposed on the substrate holder to form an inert gas. In the presence of a high frequency power source, an incident electric power having a reflected electric power based on a deviation of a load impedance is applied to the graphite electrode to coat the metal substrate with a thin film of carbon particles by a sputtering means from the zinc electrode.
Provided is a method for manufacturing an electrode for a bromine battery.

【0020】上記スパッタリング時における高周波電源
からの入射電力を200〜600Wとし、入射電力に対
する反射電力の割合を0〜15%、成膜時の基板温度を
500℃〜650℃とする。又、上記不活性ガスとし
て、アルゴンガスと窒素ガスの混合ガスを用いており、
上記高周波電源からの入射電力に対する反射電力の割合
を0〜10%とする。
The incident power from the high frequency power source during the sputtering is 200 to 600 W, the ratio of the reflected power to the incident power is 0 to 15%, and the substrate temperature during film formation is 500 to 650 ° C. Further, as the inert gas, a mixed gas of argon gas and nitrogen gas is used,
The ratio of the reflected power to the incident power from the high frequency power source is 0 to 10%.

【0021】[0021]

【作用】かかる請求項1記載の亜鉛−臭素電池用電極に
よれば、ステンレス等金属基板の表面にカーボンを薄膜
状にコーティングしたことにより、金属自体が亜鉛−臭
素電池用の電解液にさらされることがなく、カーボン膜
が成膜された基板を亜鉛−臭素水溶液中に長時間浸漬し
ても浸漬後の表面抵抗に変化が生じない上、カーボン膜
の劣化現象が発生せず、成膜されたカーボンの耐臭素性
を有効に利用した中間電極が得られる。
According to the electrode for a zinc-bromine battery according to claim 1, the metal itself is exposed to the electrolytic solution for a zinc-bromine battery by coating the surface of a metal substrate such as stainless steel with carbon in a thin film form. Even if the substrate on which the carbon film is formed is immersed in an aqueous zinc-bromine solution for a long time, the surface resistance after immersion does not change, and the deterioration phenomenon of the carbon film does not occur. An intermediate electrode effectively utilizing the bromine resistance of carbon can be obtained.

【0022】請求項2記載の亜鉛−臭素電池用電極の製
造方法を採用したことにより、グラファイト電極に印加
される高周波電力が負荷インピーダンスからずれたこと
による反射電力を有していて、スパッタリングによって
基板上に成膜されたカーボン膜が柱状構造になることが
防止され、得られたカーボン膜の緻密性が高く、且つ耐
臭素性が良好になる製造条件が確立される。
By adopting the method for manufacturing a zinc-bromine battery electrode according to claim 2, the high frequency power applied to the graphite electrode has reflected power due to deviation from the load impedance, and the substrate is formed by sputtering. The carbon film formed above is prevented from having a columnar structure, and the manufacturing conditions are established such that the obtained carbon film has high density and good bromine resistance.

【0023】高周波電源からの入射電力に対する反射電
力の割合が10%の時に表面電気抵抗の増加が最も小さ
く、反射電力の割合が0%の場合と比較してカーボン膜
の耐臭素性を高めるために必要な反射電力の範囲は0〜
15%である。又、成膜時の基板温度が400℃以下で
は基板との接合性が低下して耐臭素性と電気抵抗特性も
悪くなり、温度を700℃以上にすると、カーボン膜が
グラッシーカーボン膜にならずに耐臭素性が劣化するの
で、成膜温度は500℃〜650℃として良好なカーボ
ン薄膜が得られる。
When the ratio of the reflected power to the incident power from the high frequency power source is 10%, the increase in the surface electric resistance is the smallest, and the bromine resistance of the carbon film is increased as compared with the case where the ratio of the reflected power is 0%. The range of reflected power required for
15%. Further, when the substrate temperature during film formation is 400 ° C. or lower, the bondability with the substrate is deteriorated and bromine resistance and electric resistance characteristics are deteriorated. When the temperature is 700 ° C. or higher, the carbon film does not become a glassy carbon film. Since the bromine resistance is deteriorated, the film forming temperature is set to 500 ° C to 650 ° C to obtain a good carbon thin film.

【0024】更に不活性ガス(スパッタリングガス)と
してアルゴンガスと窒素ガスの混合ガスを用いると、成
膜後の表面抵抗がほとんど増加せず、しかも硬度が大き
いカーボン薄膜が得られる。
Further, when a mixed gas of argon gas and nitrogen gas is used as the inert gas (sputtering gas), a carbon thin film having a high hardness with almost no increase in surface resistance after film formation can be obtained.

【0025】[0025]

【実施例】以下本発明にかかる亜鉛−臭素電池用電極と
その製造方法に関して具体的な実施例に基づいて説明す
る。本実施例では前記中間電極1の母材基板として各種
ステンレス鋼もしくはニッケル等の金属を採用し、この
金属基板の表面に耐臭素性を付与するためのカーボンを
スパッタリング手段によって薄膜状にコーティングした
材料を用いたことが特徴となっている。
EXAMPLES Hereinafter, a zinc-bromine battery electrode and a method for producing the same according to the present invention will be described based on specific examples. In the present embodiment, a metal such as various stainless steels or nickel is adopted as a base material substrate of the intermediate electrode 1, and a material in which carbon for imparting bromine resistance to the surface of the metal substrate is coated in a thin film by a sputtering means. It is characterized by using.

【0026】これを具体的に述べると、上記ステンレス
鋼もしくはニッケル等の金属基板の表面にカーボンを薄
膜状にコーティングしたことにより、金属自体は電解液
にさらされることがなく、成膜されたカーボンの耐臭素
性を有効に利用した中間電極が提供される。以下に本発
明にかかる電極とその製造方法の各種実施例を説明す
る。
More specifically, by coating the surface of the metal substrate such as stainless steel or nickel with carbon in a thin film form, the metal itself is not exposed to the electrolytic solution, and the deposited carbon film is formed. Provided is an intermediate electrode that effectively utilizes the bromine resistance of the. Various examples of the electrode and the method for manufacturing the same according to the present invention will be described below.

【0027】〔実施例1〕母材金属としてステンレス鋼
(SUS304)を採用して、これを所定の大きさ(1
0mm×20mm×1.0mmt)に截断して基板と
し、この基板の両面を1.0μmのアルミナ粒子を用い
てパフ研磨を行った。次に該基板の両面に高周波スパッ
タリング装置を用いて薄膜状のカーボンをコーティング
した。
[Embodiment 1] Stainless steel (SUS304) was adopted as a base metal, and this was made into a predetermined size (1
The substrate was cut into pieces of 0 mm × 20 mm × 1.0 mmt), and both surfaces of the substrate were puff-polished using alumina particles of 1.0 μm. Next, both surfaces of the substrate were coated with thin film carbon using a high frequency sputtering device.

【0028】図1は本実施例で用いた高周波マグネトロ
ンスパッタリング装置の概略図であり、図中の31は真
空容器、32は該真空容器31内に配備された基板ホル
ダであって該基板ホルダ32と接地部Eとが直流的に接
続されている。33は前記ステンレス鋼を用いた基板、
36は基板ホルダ32と対向する位置に配置された負荷
としてのグラファイト電極であり、このグラファイト電
極36に高周波電源35を接続する。34は真空ポンプ
である。
FIG. 1 is a schematic view of a high frequency magnetron sputtering apparatus used in this embodiment. In the figure, 31 is a vacuum container, 32 is a substrate holder arranged in the vacuum container 31, and the substrate holder 32 is shown. And the ground portion E are connected in a direct current manner. 33 is a substrate using the stainless steel,
Reference numeral 36 denotes a graphite electrode as a load arranged at a position facing the substrate holder 32, and the high frequency power source 35 is connected to the graphite electrode 36. 34 is a vacuum pump.

【0029】そして基板ホルダ32上にステンレス鋼
(SUS304)を用いた基板33,33を複数枚並置
し、真空ポンプ34を充分に稼働してから不活性ガスの
存在下で高周波電源(13.56MHz)35を起動し
て、グラファイト電極36からステンレス鋼33,33
に炭素粒子のプラズマ37の放射を行った。
A plurality of substrates 33, 33 made of stainless steel (SUS304) are juxtaposed on the substrate holder 32, the vacuum pump 34 is sufficiently operated, and a high frequency power source (13.56 MHz) is supplied in the presence of an inert gas. ) 35 to activate the stainless steel 33, 33 from the graphite electrode 36.
The plasma 37 of carbon particles was radiated.

【0030】通常上記のスパッタリング装置を用いる
と、基板33上に成膜されたカーボン膜がミクロ的にみ
てコラムナー(柱状)構造になりやすく、そのために基
板33に熱サイクルが加えられると柱状構造の境界部か
らクラックが発生し易いという問題があるが、本実施例
にかかる成膜条件を採用したことにより、成膜されたカ
ーボン膜が柱状構造となることがなく、しかも耐臭素性
が良好なスパッタリング条件を確立したことが本実施例
の特徴の一つとなっている。
Normally, when the above-mentioned sputtering apparatus is used, the carbon film formed on the substrate 33 tends to have a columnar (columnar) structure in a microscopic view. Therefore, when a thermal cycle is applied to the substrate 33, the carbon film has a columnar structure. Although there is a problem that cracks are likely to occur from the boundary portion, by adopting the film forming conditions according to the present embodiment, the formed carbon film does not have a columnar structure, and the bromine resistance is good. One of the features of this embodiment is that the sputtering conditions are established.

【0031】グラファイト電極36に印加される高周波
電力は高周波電源35から特性インピーダンス50Ωの
同軸ケーブルで取り出され、負荷インピーダンスが50
Ωの場合に最も効率良く高周波電源35から負荷に高周
波電力を取り出すことができる。一般に負荷インピーダ
ンスが50Ωからずれると反射電力が発生し、高周波電
力の出力損失が増大するので、通常はマッチングボック
スを使用して負荷インピーダンスを50Ωに変換し、高
周波電源から効率的に電力を取り出す方法で成膜を行っ
ている。しかし本実施例では負荷インピーダンスを故意
的に50Ωからずらして反射電力を発生させながら成膜
すると、得られたカーボン薄膜の柱状構造が消失して、
緻密性が高く且つ耐臭素性の良好なカーボン膜が得られ
るという知見を得た。
The high frequency power applied to the graphite electrode 36 is taken out from the high frequency power source 35 through a coaxial cable having a characteristic impedance of 50Ω and a load impedance of 50.
In the case of Ω, the high frequency power can be extracted from the high frequency power supply 35 to the load most efficiently. Generally, if the load impedance deviates from 50Ω, reflected power is generated and the output loss of high frequency power increases, so usually a matching box is used to convert the load impedance to 50Ω and efficiently extract power from the high frequency power supply. The film is formed in. However, in this example, when the load impedance was intentionally shifted from 50Ω to form the film while generating the reflected power, the columnar structure of the obtained carbon thin film disappeared,
It was found that a carbon film having high density and good bromine resistance can be obtained.

【0032】本実施例によるスパッタリングの条件は以
下の通りである。 (1)ターゲット:φ100グラファイト電極 (2)電極間距離:20mm (3)入射高周波電力:200W (4)スパッタリングガス:アルゴンガス(ガス流量5
ccm) (5)成膜時の真空度:0.15Torr 尚、基板温度は400℃,500℃,600℃,700
℃として成膜時間を調整し、膜厚はそれぞれ2.0μm
としてSUS基板の両面に上記の条件でスパッタリング
を行った。次にSUS基板33の外周部を耐臭素性の高
いエポキシ系樹脂でシールし、両面にカーボン膜が成膜
した上記基板33を、カーボン膜の耐臭素性の加速寿命
試験用に作成された臭素濃度の高い亜鉛−臭素水溶液中
に500時間浸漬して、カーボン膜の表面電気抵抗を4
深針法で測定した。この亜鉛−臭素水溶液の組成は、Z
nBr2:0.7(mol/l),Br2:1.5(mol
/l),NH4Cl:2.0(mol/l)である。
The sputtering conditions according to this embodiment are as follows. (1) Target: φ100 graphite electrode (2) Distance between electrodes: 20 mm (3) Incident high frequency power: 200 W (4) Sputtering gas: Argon gas (gas flow rate 5
ccm) (5) Degree of vacuum during film formation: 0.15 Torr The substrate temperature is 400 ° C, 500 ° C, 600 ° C, 700
The film formation time was adjusted to ℃ and the film thickness was 2.0 μm each.
As a result, sputtering was performed on both surfaces of the SUS substrate under the above conditions. Next, the outer periphery of the SUS substrate 33 was sealed with an epoxy resin having high bromine resistance, and the above-mentioned substrate 33 on which carbon films were formed on both sides was prepared using a bromine prepared for bromine resistance accelerated life test of the carbon film. Immerse in a high concentration zinc-bromine aqueous solution for 500 hours to reduce the surface electrical resistance of the carbon film to 4
It was measured by the deep needle method. The composition of this zinc-bromine aqueous solution is Z
nBr 2: 0.7 (mol / l ), Br 2: 1.5 (mol
/ L), NH 4 Cl: a 2.0 (mol / l).

【0033】表1により、各成膜条件と成膜後及び亜鉛
−臭素水溶液へ浸漬後の表面抵抗(Ω・cm)及び表面抵
抗の増加分を一覧表として示す。
Table 1 shows a list of film forming conditions, surface resistance (Ω · cm) after film formation, and increase in surface resistance after immersion in an aqueous zinc-bromine solution.

【0034】[0034]

【表1】 [Table 1]

【0035】表1によれば、すべての測定温度において
入射電力に対する反射電力の割合が10%の時に表面電
気抵抗の増加が最も小さく、20%まで反射電力を高め
ると逆に反射電力0%の場合よりも電気抵抗が増加し
た。この理由は、反射電力の割合を高めすぎると、カー
ボン膜と基板との接合強度を向上させるために必要とす
る基板に垂直なカーボン粒子の運動エネルギーが減少す
るためと考えられる。
According to Table 1, the increase in the surface electric resistance is smallest when the ratio of the reflected power to the incident power is 10% at all the measured temperatures, and when the reflected power is increased to 20%, the reflected power becomes 0%. The electrical resistance increased more than in the case. The reason for this is considered to be that if the ratio of the reflected power is increased too much, the kinetic energy of the carbon particles perpendicular to the substrate, which is necessary for improving the bonding strength between the carbon film and the substrate, decreases.

【0036】反射電力の割合が0%の場合と比較してカ
ーボン膜の耐臭素性を高めるために必要な反射電力の範
囲は0〜15%である。
The range of the reflected power required to improve the bromine resistance of the carbon film is 0 to 15% as compared with the case where the ratio of the reflected power is 0%.

【0037】成膜時の基板温度に関しては、400℃以
下では基板との接合性が低下することによって耐臭素性
が悪く、成膜されたカーボン膜の電気抵抗値も現状で使
用されているカーボンプラスチック入りポリエチレン樹
脂よりも高くなってしまうため、温度は500℃以上に
しなければならない。又、温度を700℃以上にする
と、成膜されたカーボン膜がグラッシーカーボン膜では
なく、グラファイト構造となり、耐臭素性が劣化するこ
とが判明した。従って成膜温度は500℃〜650℃で
あることが望ましい。
Regarding the substrate temperature at the time of film formation, if the temperature is 400 ° C. or lower, the bromine resistance is poor due to the decrease in the bondability with the substrate, and the electric resistance value of the formed carbon film is the carbon currently used. The temperature must be 500 ° C or higher because it will be higher than that of polyethylene-containing polyethylene resin. It was also found that when the temperature was 700 ° C. or higher, the formed carbon film had a graphite structure instead of the glassy carbon film, and the bromine resistance deteriorated. Therefore, it is desirable that the film forming temperature be 500 ° C to 650 ° C.

【0038】〔実施例2〕実施例1において成膜温度は
500℃〜650℃が望ましいことが判明したので、成
膜温度を600℃として入射電力を100W,200
W,400W,600Wとして成膜実験を行った。表2
に各成膜条件と成膜後及び亜鉛−臭素水溶液へ浸漬後の
表面抵抗(Ω・cm)及び表面抵抗の増加分を一覧表とし
て示す。
[Embodiment 2] In Embodiment 1, it was found that the film forming temperature is preferably 500 ° C. to 650 ° C. Therefore, the film forming temperature is 600 ° C. and the incident power is 100 W, 200.
The film forming experiment was performed with W, 400 W, and 600 W. Table 2
Table 1 shows the film forming conditions, the surface resistance (Ω · cm) after film formation, and the increase in surface resistance after immersion in a zinc-bromine solution.

【0039】[0039]

【表2】 [Table 2]

【0040】表2によれば、入射電力が100Wの場合
は膜と基板との密着性が悪いため、全ての試料膜が基板
から剥離した。200W,400Wと入射電力を高める
と、表面抵抗の増加が小さくなった。これは200Wか
ら400Wまで入射電力を高めるのに伴って基板とグラ
ッシーカーボン膜の付着強度が強くなったためと考えら
れる。又、入射電力が600Wでは成膜されたカーボン
膜がグラファイト構造であることがラマンスペクトルの
分析結果から確認された。反射電力に関しては実施例1
と同様に亜鉛−臭素液に浸漬した後の電気抵抗値は、反
射電力10%の時が最も増加分が少なく、反射電力を2
0%まで増加すると浸漬後の電気抵抗値が増加した。
According to Table 2, when the incident power was 100 W, the adhesion between the film and the substrate was poor, so that all sample films were peeled from the substrate. When the incident power was increased to 200 W and 400 W, the increase in surface resistance decreased. It is considered that this is because the adhesion strength between the substrate and the glassy carbon film became stronger as the incident power was increased from 200 W to 400 W. Further, it was confirmed from the analysis result of the Raman spectrum that the carbon film formed at the incident power of 600 W had a graphite structure. Example 1 regarding the reflected power
Similarly, the electric resistance value after immersion in a zinc-bromine solution showed the smallest increase when the reflected power was 10%, and the reflected power was 2%.
When it increased to 0%, the electric resistance value after immersion increased.

【0041】以上説明した実施例1,2によって以下の
成膜条件が確立された。即ち、スパッタリング条件とし
て入射電力に対する反射電力の割合を0〜15%、成膜
時の基板温度を500℃〜650℃、入射電力は200
〜600Wとする。
The following film forming conditions were established by the first and second embodiments described above. That is, as a sputtering condition, the ratio of reflected power to incident power is 0 to 15%, the substrate temperature during film formation is 500 to 650 ° C., and the incident power is 200.
~ 600W.

【0042】〔実施例3〕上記実施例1,2の場合に
は、スパッタリング条件(4)の不活性ガス(スパッタ
リングガス)として純アルゴンガス(ガス流量5ccm)
を用いていたが、本実施例3では、スパッタリングガス
としてアルゴンガス(ガス流量4.5ccm)と、これに窒
素ガス(ガス流量0.5ccm)を加えた混合ガスを用い
た。これ以外のスパッタリング条件は前記実施例1,2
と同一にした。
[Embodiment 3] In the case of Embodiments 1 and 2, pure argon gas (gas flow rate 5 ccm) is used as the inert gas (sputtering gas) under the sputtering condition (4).
However, in the present Example 3, a mixed gas obtained by adding an argon gas (gas flow rate: 4.5 ccm) and a nitrogen gas (gas flow rate: 0.5 ccm) as the sputtering gas was used. Other sputtering conditions are the same as those in Examples 1 and 2 above.
Same as.

【0043】表3は成膜温度を400℃,500℃,6
00℃,700℃とし、夫々スパッタリングガスとして
アルゴンガス(ガス流量5ccm)のみを用いた場合と、
アルゴンガス(ガス流量4.5ccm)と窒素ガス(ガス流
量0.5ccm)との混合ガスを用いて入射電力200W
とした場合の成膜後の表面抵抗(Ω・cm)とカーボン薄
膜硬度を測定した結果を示す。
Table 3 shows film forming temperatures of 400 ° C., 500 ° C. and 6 ° C.
When the temperature is set to 00 ° C and 700 ° C, and only argon gas (gas flow rate 5 ccm) is used as the sputtering gas,
Incident power of 200 W using a mixed gas of argon gas (gas flow rate 4.5 ccm) and nitrogen gas (gas flow rate 0.5 ccm)
The results of measuring the surface resistance (Ω · cm) and the hardness of the carbon thin film after film formation are shown below.

【0044】[0044]

【表3】 [Table 3]

【0045】尚、表3中のカーボン薄膜硬度は、成膜温
度400℃,入射電力200W,スパッタリングガスと
してアルゴンガス100%(ガス流量5ccm)を用いた
場合を基準とし、その相対硬度として示している。カー
ボン薄膜の硬度は、島津ダイナミック超微小硬度計(D
UH−201)を用いて測定した。
The hardness of the carbon thin film in Table 3 is shown as a relative hardness based on the case where the film forming temperature is 400 ° C., the incident power is 200 W, and the sputtering gas is 100% argon gas (gas flow rate 5 ccm). There is. The hardness of the carbon thin film is Shimadzu dynamic ultra micro hardness tester (D
It was measured using UH-201).

【0046】表3によれば、スパッタリングガスとして
アルゴンガス(ガス流量4.5ccm)と窒素ガス(ガス流
量0.5ccm)との混合ガスを用いると、成膜後の表面
抵抗がそれほど増加せず、しかも硬度が大きいカーボン
薄膜が得られた。このカーボン薄膜を分析した所、薄膜
中に窒素原子が含有されていることが確認された。
According to Table 3, when a mixed gas of argon gas (gas flow rate 4.5 ccm) and nitrogen gas (gas flow rate 0.5 ccm) is used as the sputtering gas, the surface resistance after film formation does not increase so much. Moreover, a carbon thin film having a high hardness was obtained. Analysis of this carbon thin film confirmed that the thin film contained nitrogen atoms.

【0047】〔実施例4〕上記の実施例3と同様にスパ
ッタリングガスとしてアルゴンガス(ガス流量4.5cc
m)と窒素ガス(ガス流量0.5ccm)の混合ガスを用い
て、基板温度を600℃の一定にし、入射電力を変化さ
せて成膜実験を行った。これ以外のスパッタリング条件
は実施例1,2と同一にした。
[Embodiment 4] Similar to Embodiment 3 above, argon gas (gas flow rate: 4.5 cc) was used as a sputtering gas.
Using a mixed gas of m) and nitrogen gas (gas flow rate 0.5 ccm), the substrate temperature was kept constant at 600 ° C., and the incident power was changed to carry out a film forming experiment. The other sputtering conditions were the same as in Examples 1 and 2.

【0048】表4は入射電力を100W,200W,4
00W,600Wとし、スパッタリングガスとしてアル
ゴンガス(ガス流量5ccm)のみを用いた場合と、アル
ゴンガスと窒素ガスとの混合ガスを用いた場合の成膜後
の表面抵抗(Ω・cm)とカーボン薄膜硬度を測定した結
果を示す。表4中のカーボン薄膜硬度は、成膜温度40
0℃,入射電力200Wでスパッタリングガスとしてア
ルゴンガス100%(ガス流量5ccm)を用いた場合を
基準として相対硬度で示している。
Table 4 shows incident power of 100 W, 200 W, 4
00W and 600W, surface resistance (Ω · cm) and carbon thin film after film formation when using only argon gas (gas flow rate 5 ccm) as sputtering gas and when using mixed gas of argon gas and nitrogen gas The result of having measured hardness is shown. The hardness of the carbon thin film in Table 4 is 40 at the film forming temperature.
The relative hardness is shown with reference to the case where argon gas 100% (gas flow rate 5 ccm) is used as a sputtering gas at 0 ° C. and incident power 200 W.

【0049】[0049]

【表4】 [Table 4]

【0050】表4によればスパッタリングガスとしてア
ルゴンガス(ガス流量4.5ccm)と窒素ガス(ガス流量
0.5ccm)との混合ガスを用いると、何れの成膜温度
の場合でも成膜後の表面抵抗に大きな変化がなく、しか
も硬度が高められたカーボン薄膜が得られた。
According to Table 4, when a mixed gas of argon gas (gas flow rate of 4.5 ccm) and nitrogen gas (gas flow rate of 0.5 ccm) is used as the sputtering gas, the film formation after film formation is not affected at any film formation temperature. A carbon thin film was obtained in which the surface resistance did not change significantly and the hardness was increased.

【0051】〔実施例5〕上記の実施例4と同様にスパ
ッタリングガスとしてアルゴンガス(ガス流量4.5cc
m)と窒素ガス(ガス流量0.5ccm)の混合ガスを用い
て、基板温度を600℃の一定にし、入射電力に対する
反射電力の割合を0%,10%として成膜実験を行っ
た。これ以外のスパッタリング条件は実施例1,2と同
一にした。
[Embodiment 5] As in Embodiment 4 above, argon gas (gas flow rate: 4.5 cc) was used as a sputtering gas.
Using a mixed gas of m) and nitrogen gas (gas flow rate 0.5 ccm), the substrate temperature was kept constant at 600 ° C., and the film formation experiment was conducted with the ratio of reflected power to incident power being 0% and 10%. The other sputtering conditions were the same as in Examples 1 and 2.

【0052】表5は入射電力を100W,200W,4
00W,600Wとし、上記スパッタリング条件で成膜
後の表面抵抗(Ω・cm)とカーボン薄膜硬度を測定した
結果を示す。このカーボン薄膜硬度は、成膜温度400
℃,入射電力200Wでスパッタリングガスとしてアル
ゴンガス100%(ガス流量5ccm)を用いた場合を基
準として相対硬度で示している。
Table 5 shows incident power of 100 W, 200 W, 4
The results of measuring the surface resistance (Ω · cm) and the hardness of the carbon thin film after the film formation under the above sputtering conditions are shown as 00 W and 600 W. The hardness of the carbon thin film is 400 at the film forming temperature.
The relative hardness is shown with reference to the case where argon gas 100% (gas flow rate 5 ccm) is used as a sputtering gas at a temperature of 200 ° C. and an incident power of 200 W.

【0053】[0053]

【表5】 [Table 5]

【0054】表5によればスパッタリングガスとしてア
ルゴンガス(ガス流量4.5ccm)と窒素ガス(ガス流量
0.5ccm)との混合ガスを用いると、何れの成膜温度
の場合でも成膜後の表面抵抗に大きな変化がなく、しか
も硬度が高められたカーボン薄膜が得られた。又、入射
電力に対する反射電力の割合を10%にすることによっ
てカーボン薄膜硬度がより一層高められ、機械的強度が
増大するという結果が得られた。
According to Table 5, when a mixed gas of argon gas (gas flow rate: 4.5 ccm) and nitrogen gas (gas flow rate: 0.5 ccm) is used as the sputtering gas, the film formation rate after film formation is high at any film formation temperature. A carbon thin film was obtained in which the surface resistance did not change significantly and the hardness was increased. Further, by setting the ratio of the reflected power to the incident power to 10%, the carbon thin film hardness was further enhanced and the mechanical strength was increased.

【0055】[0055]

【発明の効果】以上詳細に説明したように、本発明にか
かる亜鉛−臭素電池用電極とその製造方法によれば、金
属基板の表面にカーボンを薄膜状にコーティングしたこ
とによって金属自体が亜鉛−臭素電池用の電解液にさら
されないため、亜鉛−臭素水溶液中に長時間浸漬しても
グラッシーカーボンの形状に何ら変化がなく、且つ表面
抵抗に変化が生じないので、成膜されたカーボンの耐臭
素性を有効に利用した電極を得ることができる。又、従
来の微小な空孔が存在している電極材料に比して、長期
使用中でも正極及び負極電解液の浸入に起因する膨潤現
象が生じる惧れがなく、それに伴う電極自体の変形とか
割れ等が発生する原因を取り除くことができて、電力用
電池としての寿命を延ばす効果がある。
As described in detail above, according to the zinc-bromine battery electrode and the method for producing the same according to the present invention, the surface of the metal substrate is coated with carbon in a thin film so that the metal itself is zinc- Since it is not exposed to the electrolyte for bromine batteries, it does not change the shape of glassy carbon even if it is immersed in an aqueous zinc-bromine solution for a long time, and the surface resistance does not change. It is possible to obtain an electrode that effectively utilizes bromination. In addition, compared with the conventional electrode material with minute pores, there is no fear that the swelling phenomenon will occur due to the infiltration of the positive and negative electrode electrolytes even during long-term use, and the electrode itself will be deformed or cracked accordingly. It is possible to eliminate the cause of the occurrence of such problems, and it is effective in extending the life of the power battery.

【0056】本発明の電極製造方法を採用したことによ
り、高周波電力が負荷インピーダンスからずれたことに
よる反射電力の存在に伴い、スパッタリングによって基
板上に成膜されたカーボン膜が柱状構造にならないの
で、得られたカーボン膜が緻密化されて強度的にも改善
された製造条件が確立される。
By adopting the electrode manufacturing method of the present invention, the carbon film formed on the substrate by sputtering does not have a columnar structure due to the presence of reflected power due to the deviation of the high frequency power from the load impedance. The obtained carbon film is densified, and the manufacturing conditions in which the strength is also improved are established.

【0057】特に従来の活性炭クロスにカーボンプラス
チック電極を張り合わせた材料に比較して本発明にかか
る電極は電気抵抗が小さく、電流密度が増大して電池性
能が向上する上、機械的強度の向上に伴ってその分だけ
電極の肉厚を薄くするとともに電極面積の拡大を可能と
し、電池自体の小型化と高効率化をはかることができ
る。
In particular, the electrode according to the present invention has a lower electric resistance than the conventional material in which a carbon plastic electrode is bonded to an activated carbon cloth, the current density is increased to improve the battery performance, and the mechanical strength is improved. Accordingly, the thickness of the electrode can be reduced correspondingly, and the electrode area can be increased, so that the battery itself can be downsized and the efficiency can be improved.

【0058】更に不活性ガス(スパッタリングガス)と
してアルゴンガスと窒素ガスの混合ガスを用いたことに
よって成膜後の表面抵抗がほとんど増加せず、しかも硬
度が大きいカーボン薄膜が得られる。
Furthermore, by using a mixed gas of argon gas and nitrogen gas as an inert gas (sputtering gas), a carbon thin film having a high hardness and a surface resistance after film formation hardly increased can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明にかかる亜鉛−臭素電池用電極の製造方
法を示す概要図。
FIG. 1 is a schematic diagram showing a method for producing an electrode for a zinc-bromine battery according to the present invention.

【図2】亜鉛−臭素電池本体の構成を示す分解斜視図。FIG. 2 is an exploded perspective view showing the configuration of a zinc-bromine battery body.

【図3】亜鉛−臭素電池の動作原理を示す概要図。FIG. 3 is a schematic diagram showing the operating principle of a zinc-bromine battery.

【符号の説明】[Explanation of symbols]

1…中間電極 1b…枠体 2…セパレータ板 2b…枠体 3…セパレータ 8…締付端板 9…積層端板 10…正極マニホールド 11…負極マニホールド 12…チャンネル 13…マイクロチャンネル 14…正極側貯蔵槽 15…正極電解液 17…負極側貯蔵槽 18…負極電解液 19…正極側ポンプ 21…負極側ポンプ 31…真空容器 32…基板ホルダ 33…基板 34…真空ポンプ 35…高周波電源 36…グラファイト電極 DESCRIPTION OF SYMBOLS 1 ... Intermediate electrode 1b ... Frame body 2 ... Separator plate 2b ... Frame body 3 ... Separator 8 ... Clamping end plate 9 ... Laminated end plate 10 ... Positive electrode manifold 11 ... Negative electrode manifold 12 ... Channel 13 ... Micro channel 14 ... Positive side storage Tank 15 ... Positive electrode electrolytic solution 17 ... Negative electrode side storage tank 18 ... Negative electrode electrolytic solution 19 ... Positive electrode side pump 21 ... Negative electrode side pump 31 ... Vacuum container 32 ... Substrate holder 33 ... Substrate 34 ... Vacuum pump 35 ... High frequency power supply 36 ... Graphite electrode

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 平板状の中間電極にセパレータ板を重ね
て単セルを形成し、この単セルを複数個積層して電池本
体を構成するとともに、該電池本体の両端部に、集電メ
ッシュを有する集電電極と一対の締付端板とを配置し、
両締付端板間をボルト締めすることによって各積層部材
間を液密下にシールするようにした亜鉛−臭素電池にお
いて、 前記中間電極の母材基板として金属を採用し、この金属
基板の表面上に、高周波電源を用いたグラファイトのス
パッタリング手段によって耐臭素性を付与するためのカ
ーボン薄膜を付着した材料を用いたことを特徴とする亜
鉛−臭素電池用電極。
1. A single cell is formed by stacking a separator plate on a flat plate-shaped intermediate electrode, and a plurality of the single cells are laminated to form a battery main body, and a current collecting mesh is provided at both ends of the battery main body. Arranging a current collecting electrode and a pair of tightening end plates,
In a zinc-bromine battery, in which each laminated member is sealed liquid-tightly by bolting between both clamped end plates, a metal is adopted as the base material substrate of the intermediate electrode, and the surface of this metal substrate An electrode for a zinc-bromine battery, comprising a material on which a carbon thin film for imparting bromine resistance is attached by a graphite sputtering means using a high frequency power source.
【請求項2】 真空容器内に基板ホルダを配備するとと
もに、該基板ホルダと対向する位置にグラファイト電極
を配置し、基板ホルダ上に母材としての金属基板を並置
して不活性ガスの存在下で高周波電源から負荷インピー
ダンスのずれに基づく反射電力を有する入射電力を上記
グラファイト電極に印加することにより、該グラファイ
ト電極からスパッタリング手段により金属基板上に炭素
粒子を薄膜状にコーティングすることを特徴とする亜鉛
−臭素電池用電極の製造方法。
2. A substrate holder is provided in a vacuum container, a graphite electrode is arranged at a position facing the substrate holder, and a metal substrate as a base material is juxtaposed on the substrate holder in the presence of an inert gas. By applying an incident power having a reflected power based on the shift of the load impedance from the high frequency power source to the graphite electrode, carbon particles are coated in a thin film form on the metal substrate by the sputtering means from the graphite electrode. A method for manufacturing an electrode for a zinc-bromine battery.
【請求項3】 上記スパッタリング時における高周波電
源からの入射電力を200〜600Wとし、入射電力に
対する反射電力の割合を0〜15%、成膜時の基板温度
を500℃〜650℃とした請求項2記載の亜鉛−臭素
電池用電極の製造方法。
3. The incident power from the high frequency power source during the sputtering is 200 to 600 W, the ratio of the reflected power to the incident power is 0 to 15%, and the substrate temperature during film formation is 500 to 650 ° C. 2. The method for producing an electrode for a zinc-bromine battery according to 2.
【請求項4】 上記不活性ガスとして、アルゴンガスと
窒素ガスの混合ガスを用いた請求項2又は3記載の亜鉛
−臭素電池用電極の製造方法。
4. The method for producing an electrode for a zinc-bromine battery according to claim 2, wherein a mixed gas of argon gas and nitrogen gas is used as the inert gas.
【請求項5】 上記高周波電源からの入射電力に対する
反射電力の割合を0〜10%とした請求項2,3又は4
記載の亜鉛−臭素電池用電極の製造方法。
5. The ratio of the reflected power to the incident power from the high frequency power source is set to 0 to 10%.
A method for producing the described zinc-bromine battery electrode.
JP7033432A 1995-02-22 1995-02-22 Electrode for zinc-bromine battery and its manufacture Pending JPH08227719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7033432A JPH08227719A (en) 1995-02-22 1995-02-22 Electrode for zinc-bromine battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7033432A JPH08227719A (en) 1995-02-22 1995-02-22 Electrode for zinc-bromine battery and its manufacture

Publications (1)

Publication Number Publication Date
JPH08227719A true JPH08227719A (en) 1996-09-03

Family

ID=12386390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7033432A Pending JPH08227719A (en) 1995-02-22 1995-02-22 Electrode for zinc-bromine battery and its manufacture

Country Status (1)

Country Link
JP (1) JPH08227719A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1028477A2 (en) * 1999-02-08 2000-08-16 Wilson Greatbatch Ltd. Physical vapor deposited electrode component and method of manufacture
CN103137941A (en) * 2011-12-05 2013-06-05 中国科学院大连化学物理研究所 Electrode for zinc bromine storage battery and zinc bromine storage battery assembled by the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1028477A2 (en) * 1999-02-08 2000-08-16 Wilson Greatbatch Ltd. Physical vapor deposited electrode component and method of manufacture
CN103137941A (en) * 2011-12-05 2013-06-05 中国科学院大连化学物理研究所 Electrode for zinc bromine storage battery and zinc bromine storage battery assembled by the same

Similar Documents

Publication Publication Date Title
KR101918008B1 (en) Copper-clad steel foil, anode collector, method for producing same, and battery
US6866958B2 (en) Ultra-low loadings of Au for stainless steel bipolar plates
US6805999B2 (en) Buried anode lithium thin film battery and process for forming the same
KR101210190B1 (en) Battery and method of manufacturing the same
US10381667B2 (en) High performance redox flow battery stack
US7682742B2 (en) Battery
US20100266898A1 (en) Electrode for electrochemical device
CN112750982A (en) Laminated lithium metal battery negative electrode material, preparation method thereof and lithium metal secondary battery
EP0397523A2 (en) Solid state electrochemical cell and current collector therefor
US20030054256A1 (en) Totally solid type polymer lithium ion secondary battery and manufacturing method of the same
WO1999056332A1 (en) Lithium secondary cell
WO2015023848A1 (en) Li/metal battery with composite solid electrolyte
US20200161663A1 (en) Honeycomb Electrode Secondary Battery
JP4144335B2 (en) Negative electrode and secondary battery using the same
JP5726217B2 (en) Copper-coated steel foil, negative electrode and battery
JPH08227719A (en) Electrode for zinc-bromine battery and its manufacture
CN115939406A (en) Non-negative secondary lithium battery and negative current collector
TWI231061B (en) Method of manufacturing metal air cell system
CN210657123U (en) Four-cavity deposition system for metal carbide coating of fuel cell pole plate
CN108110213A (en) A kind of lithium ion cell positive structure and lithium ion battery
JP2022059550A (en) Fuel cell
CN111106397B (en) Zinc-nickel accumulator
JP4240312B2 (en) battery
US20220376225A1 (en) Bonding Of Current Collector To Lithium Anode Of Solid-State Battery Using Metal Alloying
JPH08162174A (en) Electrode for zinc-bromine battery and its manufacture