JPH08226302A - Fixing mechanism for impeller of centrifugal compressor or centrifugal turbine - Google Patents

Fixing mechanism for impeller of centrifugal compressor or centrifugal turbine

Info

Publication number
JPH08226302A
JPH08226302A JP32710395A JP32710395A JPH08226302A JP H08226302 A JPH08226302 A JP H08226302A JP 32710395 A JP32710395 A JP 32710395A JP 32710395 A JP32710395 A JP 32710395A JP H08226302 A JPH08226302 A JP H08226302A
Authority
JP
Japan
Prior art keywords
impeller
shaft
annular
peripheral surface
centrifugal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32710395A
Other languages
Japanese (ja)
Other versions
JP2907086B2 (en
Inventor
Akemi Hijikata
明躬 土方
Yoshiyuki Tanou
良行 田能
Yasuyuki Hamazaki
晏行 浜崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7327103A priority Critical patent/JP2907086B2/en
Publication of JPH08226302A publication Critical patent/JPH08226302A/en
Application granted granted Critical
Publication of JP2907086B2 publication Critical patent/JP2907086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE: To provide a structure preventing the drift between the centers of an impeller and a shaft and capable of suppressing the shaft vibration small during rotation. CONSTITUTION: A circular coupling section 14 is provided on the axial contact face between an impeller 1 and a shaft 2, and the circular coupling section 14 is constituted of a circular projection 8 (or a circular groove 9) provided on the impeller 1 side coaxially with the shaft 2 and the circular groove section 9 (or the circular projection 8) provided on the shaft 2 side to be coupled with the circular projection 8 (or the circular groove section 9). The outer periphery of the circular projection 8 (or the inner periphery of the circular groove section 9) of the impeller 1 is positioned in the radial direction by the outer periphery of the circular groove section 9 (or the inner periphery of the circular projection 8) of the shaft 2 during rotation. A gap is provided between a through shaft and the through shaft hole of the impeller 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、遠心形圧縮機ま
たは遠心形タービンのインペラの固定機構に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fixing mechanism for an impeller of a centrifugal compressor or a centrifugal turbine.

【0002】[0002]

【従来の技術】遠心形圧縮機或は遠心形タービンのイン
ペラは、風の流れが入口から出口に向って直角に曲げら
れるので、流れをスムーズにする必要から、通常軸を支
持する軸受の外側にオーバハングして取付けられる構造
が採用される。この代表的な構造が例えば文献石川島播
磨技報、昭和61年7月発行、第26巻第4号P265
「高効率ボールベアリングターボチャージャの開発」F
ig.2に示されている。これは、内燃機関の排ガスエ
ネルギーを回収して圧縮空気を供給するターボチャージ
ャの一例であり、タービンと圧縮機の各インペラが2個
の軸受で支持された軸の外側に配置され、インペラ中心
部を貫通する軸の端部でボルト締めでインペラが軸方向
に固定される構造である。
2. Description of the Related Art An impeller of a centrifugal compressor or a centrifugal turbine is usually installed outside a bearing that supports a shaft because the flow of wind is bent at a right angle from an inlet to an outlet so that the flow must be smooth. The structure that can be mounted by overhanging is adopted. This typical structure is, for example, the document Ishikawajima Harima Technical Report, published in July 1986, Vol. 26, No. 4, P265.
"Development of high efficiency ball bearing turbocharger" F
ig. 2 is shown. This is an example of a turbocharger that recovers exhaust gas energy of an internal combustion engine and supplies compressed air. Each impeller of a turbine and a compressor is arranged outside a shaft supported by two bearings, and a central portion of the impeller is arranged. It is a structure in which the impeller is fixed in the axial direction by bolting at the end of the shaft that passes through.

【0003】その固定機構の詳細を図5によって示す。
図5において、1は圧縮機またはタービンのインペラ、
2は駆動源あるいは負荷とつながる軸、3は軸2を支持
する軸受でボールベアリング、油潤滑スリーブベアリン
グなどが適用される。4はインペラ1の中心に設けられ
た貫通軸孔を貫通する貫通軸で軸2と一体か或は機械的
につながっている。5は貫通軸4の端部に加工されたネ
ジ、6はネジ5に組み込まれたナットであり、これらは
インペラ1を軸2に締付け固定する目的で配置される。
7はインペラ1がナット6により締付けられたとき、軸
2とインペラ1が軸方向で接触する接触面である。
Details of the fixing mechanism are shown in FIG.
In FIG. 5, reference numeral 1 denotes a compressor or turbine impeller,
Reference numeral 2 is a shaft connected to a drive source or a load, 3 is a bearing for supporting the shaft 2, and a ball bearing, an oil lubrication sleeve bearing or the like is applied. Reference numeral 4 is a through shaft that penetrates a through shaft hole provided at the center of the impeller 1 and is integrally or mechanically connected to the shaft 2. Reference numeral 5 denotes a screw formed on the end of the through shaft 4, and 6 denotes a nut incorporated in the screw 5, which are arranged for the purpose of fastening and fixing the impeller 1 to the shaft 2.
Reference numeral 7 is a contact surface where the shaft 2 and the impeller 1 come into axial contact with each other when the impeller 1 is tightened by the nut 6.

【0004】次にこの様なインペラ固定機構の機能につ
いて説明する。遠心形圧縮機又は遠心形タービンは、軸
2に発生する伝達トルクをインペラ1に、或はインペラ
1に発生するトルクを軸2に伝えなければならないが、
これには軸2とインペラ1が回転方向に相対ずれを生じ
ない様、両者を機械的にしっかりと固定する必要があ
る。また組立・分解の都合から、インペラ1は軸2から
取外しできる構造でなければならない。このため、図5
に示す構造のものにおいては、インペラ1を貫通軸4に
対し挿入・引抜きできるようにインペラ1の貫通軸孔の
内径と貫通軸4の外径が仕上げられ、組立てるときはイ
ンペラ1を貫通軸4に挿入したあと、貫通軸4の端部の
ネジ5のナット6をかけ、このナット6を締付けること
によりインペラ1を軸2に固定する。このとき、ナット
6の締付力により、軸2とインペラ1の接触面7に面圧
が発生するが、この面圧に伴う摩擦力により、インペラ
1、軸2の間で相互にトルク伝達が可能になる。なお、
インペラ1と貫通軸4との間にキーを介在させてトルク
伝達を行わせる方法もあるが、ターボチャージャなど高
速で回転する機械に対しては、回転体バランスの問題或
はインペラ1の強度上の問題から、キー方式は採用せ
ず、図5に示す構造を採用するのが一般的である。
Next, the function of such an impeller fixing mechanism will be described. The centrifugal compressor or the centrifugal turbine must transmit the transmission torque generated in the shaft 2 to the impeller 1 or the torque generated in the impeller 1 to the shaft 2.
This requires that the shaft 2 and the impeller 1 be mechanically and firmly fixed so that the shaft 2 and the impeller 1 do not shift relative to each other in the rotational direction. Further, the impeller 1 must have a structure that can be detached from the shaft 2 for the convenience of assembly and disassembly. For this reason, FIG.
In the structure shown in (1), the inner diameter of the through shaft hole of the impeller 1 and the outer diameter of the through shaft 4 are finished so that the impeller 1 can be inserted into and withdrawn from the through shaft 4, and the impeller 1 is inserted into the through shaft 4 when assembling. , The nut 6 of the screw 5 at the end of the through shaft 4 is applied, and the nut 6 is tightened to fix the impeller 1 to the shaft 2. At this time, a surface pressure is generated on the contact surface 7 between the shaft 2 and the impeller 1 due to the tightening force of the nut 6, but the frictional force associated with this surface pressure causes mutual torque transmission between the impeller 1 and the shaft 2. It will be possible. In addition,
There is also a method of transmitting a torque by interposing a key between the impeller 1 and the penetrating shaft 4, but for a machine that rotates at high speed such as a turbocharger, there is a problem of balance of the rotating body or the strength of the impeller 1. Therefore, it is general to adopt the structure shown in FIG. 5 instead of the key system.

【0005】[0005]

【発明が解決しようとする課題】ところで、図5に示す
従来構造においては、回転中に遠心力または熱伸びの影
響でインペラ1の貫通軸孔の内面と貫通軸4の外径との
間のすき間が大きくなって、軸2の中心とインペラ1の
中心にずれを生じ、その結果バランスがくずれ、軸2の
振動が過大になる可能性がある。このため、組立て時の
インペラ1−貫通軸4間のすき間は、できるだけ小さく
設定するか、或はインペラ1を貫通軸4に対し焼バメ固
定する方法が採用されている。しかしながら、インペラ
1と貫通軸4が類似材質の場合正確には、両者の材料の
熱膨張係数が類似の場合焼バメ構造にすると、分解が困
難になること、また仮に焼バメ構造を採用できたとして
も、回転時の遠心力及び熱によるインペラ1の内径の拡
がり代が貫通軸4の外径の拡大代よりもはるかに大きい
ため、回転中にどうしても軸2とインペラ1の両者間の
すき間ができてインペラ1の位置が狂い、これが原因で
往々にして軸振動が増大することがあった。なお、イン
ペラ1の遠心力・熱による拡がりの力は、接触面7にお
ける面圧による摩擦力に比しはるかに大きいので、回転
中に生ずる上記すき間の範囲内でインペラ1の中心は、
軸2の中心に対し容易に相対ずれを起こす。
By the way, in the conventional structure shown in FIG. 5, between the inner surface of the through shaft hole of the impeller 1 and the outer diameter of the through shaft 4 due to the influence of centrifugal force or thermal expansion during rotation. There is a possibility that the gap becomes large and the center of the shaft 2 and the center of the impeller 1 are deviated, resulting in a loss of balance and excessive vibration of the shaft 2. Therefore, at the time of assembly, the gap between the impeller 1 and the through shaft 4 is set as small as possible, or the impeller 1 is fixed to the through shaft 4 by shrinkage fitting. However, when the impeller 1 and the penetrating shaft 4 are made of similar materials, precisely, when both materials have similar thermal expansion coefficients, it becomes difficult to disassemble if a shrink fitting structure is used, and if a shrink fitting structure could be adopted. Also, since the expansion margin of the inner diameter of the impeller 1 due to the centrifugal force and heat during rotation is much larger than the expansion margin of the outer diameter of the penetrating shaft 4, the gap between the shaft 2 and the impeller 1 is inevitable during rotation. As a result, the position of the impeller 1 was misaligned, which often increased the shaft vibration. The centrifugal force and the spreading force of the impeller 1 due to heat are much larger than the frictional force of the contact surface 7 due to the surface pressure. Therefore, the center of the impeller 1 is within the above-mentioned gap generated during rotation.
Relative displacement easily occurs with respect to the center of the shaft 2.

【0006】この様に、従来の構造では、回転中の軸振
動を抑えるため、インペラ内径を焼バメにするのが望ま
しいが、焼バメ構造にすると、分解が困難になること、
或は焼バメ構造にしても回転中のすき間発生、軸振動増
大は避けられないなど、基本的に軸振動を抑えることが
できないという問題点があった。この発明は上記のよう
な問題点を解消する目的でなされたもので、回転中にお
いてもインペラと軸の各々の中心のずれをなくし、軸振
動を小さく抑えることのできる構造を提供することを目
的とする。
As described above, in the conventional structure, in order to suppress the shaft vibration during rotation, it is desirable to make the inner diameter of the impeller a shrink fit, but the shrink fit structure makes it difficult to disassemble.
Alternatively, even with a shrinkage fitting structure, there is a problem that it is basically impossible to suppress the shaft vibration, such as generation of a gap during rotation and inevitable increase of shaft vibration. The present invention has been made for the purpose of solving the above problems, and an object of the present invention is to provide a structure capable of suppressing the shaft vibrations by eliminating the displacement of the centers of the impeller and the shaft even during rotation. And

【0007】[0007]

【課題を解決するための手段】この発明に係る圧縮機、
タービンのインペラの固定構造は、インペラと軸との軸
方向接触面に環状係合部を設け、この環状係合部を、軸
と同心でインペラ側に設けた環状突起部または環状溝部
と、この環状突起部または環状溝部と互いに体合するよ
うに軸側に設けた環状溝部または環状突起部とで構成
し、回転中にインペラの環状突起部の外周面が軸の環状
溝部の外周面により、あるいはまた、インペラの環状溝
部の内周面が軸の環状突起部の内周面により、半径方向
に位置決めされることを特徴とする。また、貫通軸とイ
ンペラの貫通軸孔との間に隙間を設けたものである。
A compressor according to the present invention,
The turbine impeller fixing structure is provided with an annular engaging portion on an axial contact surface between the impeller and the shaft, and the annular engaging portion is provided with an annular protrusion or an annular groove portion concentric with the shaft on the impeller side. An annular groove portion or an annular protrusion portion provided on the shaft side so as to be combined with the annular protrusion portion or the annular groove portion, and the outer peripheral surface of the annular protrusion portion of the impeller during rotation is the outer peripheral surface of the annular groove portion of the shaft. Alternatively, the inner peripheral surface of the annular groove portion of the impeller is positioned in the radial direction by the inner peripheral surface of the annular protrusion portion of the shaft. Further, a gap is provided between the through shaft and the through shaft hole of the impeller.

【0008】[作用]この発明における圧縮機・タービ
ンのインペラの固定構造は、回転中に軸側の環状溝部の
外周面または環状突起部の内周面がインペラ側の環状突
起部または環状溝部に対して半径方向の位置ぎめとな
り、回転中においてもインペラと軸の同心が確保され、
ひいては回転中の軸振動を小さく抑える効果が生みださ
れるものである。また、貫通軸とインペラの貫通軸孔と
の間の隙間はインペラの軸への組み付け及び分解を容易
にする。
[Operation] In the compressor / turbine impeller fixing structure according to the present invention, the outer peripheral surface of the annular groove portion on the shaft side or the inner peripheral surface of the annular protrusion portion on the annular protrusion portion or annular groove portion on the impeller side during rotation. On the other hand, it is positioned in the radial direction, and the concentricity of the impeller and the shaft is secured even during rotation,
As a result, the effect of suppressing the shaft vibration during rotation to be small is produced. Further, the gap between the through shaft and the through shaft hole of the impeller facilitates the assembly and disassembly of the impeller on the shaft.

【0009】[0009]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

実施形態1.以下、この発明の第1の実施形態を図1、
図2について説明する。図1は静止時の状態を示す図、
図2は回転中の状態を示す図であり、図において1〜7
は図5に示すものと同一である。まず静止時の図1につ
いて説明する。図において、8はインペラ1の軸2に対
する面に設けられた環状突起部、また9は軸2のインペ
ラ1に対する面に設けられた環状溝部で、この環状突起
部8と環状溝部9の組合せで環状係合部14を構成す
る。そしてこの環状係合部14の外側の軸端面にトルク
伝達のための接触面7が構成される。環状係合部14は
組立時、即ち静止時はインペラ1の環状突起部8の内周
面10と軸2の環状溝部9の内周面12が、両者の半径
方向位置ぎめの基準面となるように、即ち組立時静止時
に環状突起部8の内周面10と環状溝部9の内周面12
は、互いのすき間が殆ど0、例えばミクロンオーダ以下
か或は若干の締まりとなるように構成される。また、軸
2の環状溝部9の外周面13は、回転中にインペラ1の
環状突起部8の外周面11がフィットするように、即ち
回転時は、環状溝部9の外周面13と環状突起部8の外
周面11が、インペラ1と軸2の半径方向位置ぎめの基
準面となるよう構成される。このため、静止時における
環状溝部9の外周面13と環状突起部8の外周面11の
間のすき間は、回転中の遠心力或は熱伸びによるインペ
ラ1の環状突起部8の軸2に対する相対拡がり量以下と
なるよう設定される。
Embodiment 1. Hereinafter, a first embodiment of the present invention will be described with reference to FIG.
2 will be described. Figure 1 is a diagram showing the state at rest,
FIG. 2 is a diagram showing a state during rotation, and in the diagram, 1 to 7
Is the same as that shown in FIG. First, FIG. 1 when stationary will be described. In the figure, 8 is an annular projection provided on the surface of the impeller 1 facing the shaft 2, and 9 is an annular groove provided on the surface of the shaft 2 facing the impeller 1, which is a combination of the annular projection 8 and the annular groove 9. The annular engaging portion 14 is configured. A contact surface 7 for transmitting torque is formed on the outer shaft end surface of the annular engaging portion 14. When the annular engaging portion 14 is assembled, that is, at rest, the inner peripheral surface 10 of the annular protruding portion 8 of the impeller 1 and the inner peripheral surface 12 of the annular groove portion 9 of the shaft 2 serve as reference surfaces for positioning the two in the radial direction. Thus, that is, the inner peripheral surface 10 of the annular protruding portion 8 and the inner peripheral surface 12 of the annular groove portion 9 at rest during assembly.
Are configured so that the clearance between them is almost zero, for example, on the order of microns or less, or slightly tight. Further, the outer peripheral surface 13 of the annular groove portion 9 of the shaft 2 is such that the outer peripheral surface 11 of the annular protruding portion 8 of the impeller 1 fits during rotation, that is, the outer peripheral surface 13 of the annular groove portion 9 and the annular protruding portion during rotation. An outer peripheral surface 11 of 8 serves as a reference surface for radial positioning of the impeller 1 and the shaft 2. Therefore, the gap between the outer peripheral surface 13 of the annular groove portion 9 and the outer peripheral surface 11 of the annular protrusion portion 8 when stationary is relatively large with respect to the shaft 2 of the annular protrusion portion 8 of the impeller 1 due to centrifugal force or thermal expansion during rotation. It is set to be less than the spread amount.

【0010】即ちこの様な設定により、回転時にインペ
ラ1の環状突起部8の外周面11が、軸2の環状溝部9
の外周面13に対して、静止時の設定すき間値以上に拡
がるので、回転時にこの部分のすき間が詰まり、それに
よってインペラ1と軸2の位置ぎめがなされる。ここ
で、インペラ1の環状突起部8の内周面10と外周面1
1、或は軸2の環状溝部9の内周面12と外周面13
は、それぞれ同心性を保って面の仕上げがなされること
が必要で、これにより、回転時にインペラ1と軸2の同
心性が、静止時と同等に確保される。
That is, by such a setting, the outer peripheral surface 11 of the annular projection 8 of the impeller 1 is rotated by the annular groove 9 of the shaft 2 during rotation.
With respect to the outer peripheral surface 13 of the above, since it spreads more than the set clearance value at rest, the clearance of this portion is clogged at the time of rotation, thereby positioning the impeller 1 and the shaft 2. Here, the inner peripheral surface 10 and the outer peripheral surface 1 of the annular protrusion 8 of the impeller 1
1, or the inner peripheral surface 12 and the outer peripheral surface 13 of the annular groove portion 9 of the shaft 2.
Need to be finished concentrically, so that the concentricity of the impeller 1 and the shaft 2 at the time of rotation can be secured at the same level as at rest.

【0011】図2は、以上のような意図のもとに構成さ
れた環状係合部14の回転時の位置関係を概念的に示す
ものである。この様なインペラ固定構造の機能、作用に
ついてもう少し詳しく記述する。図1において、組立時
に、まずインペラ1を貫通軸4に通す。この発明では、
インペラ1の貫通軸孔の内径と貫通軸4外径は何ら位置
ぎめの役目を担わないので、焼バメ挿入する必要はな
く、両者間にすき間があって良い。このことは、従来構
成に比し、インペラ1の分解・組立がきわめて容易にな
るという利点を生み出す。インペラ1を貫通軸4に通し
たあと、ネジ部5にナット6をかけ、インペラ1を軸方
向に締め付ける。この締付力により、インペラ1と軸2
の軸方向接触面7に面圧が発生し、それに伴う摩擦力に
よって、インペラ1、軸2の間で相互にトルク伝達が行
われるようになる。
FIG. 2 conceptually shows the positional relationship at the time of rotation of the annular engaging portion 14 constructed with the above intention. The function and function of such an impeller fixing structure will be described in more detail. In FIG. 1, at the time of assembly, the impeller 1 is first passed through the through shaft 4. In this invention,
Since the inner diameter of the through shaft hole of the impeller 1 and the outer diameter of the through shaft 4 do not play any role of positioning, it is not necessary to insert a shrink fit and there may be a gap therebetween. This produces an advantage that the impeller 1 can be easily disassembled and assembled as compared with the conventional configuration. After passing the impeller 1 through the penetrating shaft 4, the nut 6 is put on the threaded portion 5 to tighten the impeller 1 in the axial direction. Due to this tightening force, the impeller 1 and the shaft 2
A surface pressure is generated on the axial contact surface 7 and the resulting frictional force causes mutual torque transmission between the impeller 1 and the shaft 2.

【0012】図1はこうしてインペラ1を締め付けたと
きの状態を示し、このとき、インペラ1の環状突起部8
の内周面10と軸2の環状溝部9の内周面12がフィッ
トしており、この状態で回転体のバランス静つり合い及
び動つり合いの調整が行われる。次に回転がスタートす
れば、インペラ1が遠心力・熱の影響による半径方向伸
びが、軸2の同伸びに比し大きいため、環状突起部8の
外周面11と環状溝部9の外周面13のすき間が縮ま
り、やがて回転上昇の途中ですき間0となり、この面で
フィットするようになる。このときの状態を示すのが図
2である。環状突起部8の内周面10と外周面11、ま
た環状溝部9の内周面12と外周面13はそれぞれ同心
性が確保されているので、回転時においてもインペラ1
と軸2の同心性は失なわれることがなく、したがって、
回転時のバランスが確保され軸振動を小さく抑えること
ができる。
FIG. 1 shows the state in which the impeller 1 is tightened in this way, and at this time, the annular projection 8 of the impeller 1 is shown.
The inner peripheral surface 10 and the inner peripheral surface 12 of the annular groove portion 9 of the shaft 2 are fitted, and in this state, the balance static balance and the dynamic balance of the rotating body are adjusted. When the rotation starts next, the radial expansion of the impeller 1 due to the influence of centrifugal force and heat is larger than that of the shaft 2, so that the outer peripheral surface 11 of the annular projection 8 and the outer peripheral surface 13 of the annular groove 9 are expanded. The gap between the two shrinks, and eventually the gap becomes 0 during the rise of rotation, and a fit is achieved on this side. FIG. 2 shows the state at this time. Since the inner peripheral surface 10 and the outer peripheral surface 11 of the annular protruding portion 8 and the inner peripheral surface 12 and the outer peripheral surface 13 of the annular groove portion 9 are concentric with each other, the impeller 1 is rotated even during rotation.
And the concentricity of axis 2 is not lost, so
The balance at the time of rotation is secured and the shaft vibration can be suppressed to be small.

【0013】このようにして、インペラ1と軸2の軸方
向接触面に環状係合部14を設けることにより、組立・
分解が容易で且つ回転中の軸振動を小さく抑え得る構造
を実現することができる。なお、静止時の環状係合部1
4における外周側のすき間は0でも良いが、その場合回
転時の環状係合部14まわりの応力が高くなるので、そ
うならない程度にすき間を設定するのが望ましい。ま
た、上記の実施形態では、環状突起部8をインペラ1側
に、また環状溝部9を軸2側に配置した例を示したが、
逆に環状突起部8を軸2側に、環状溝部9をインペラ1
側に配置しても良く、上記実施例と同様の効果を奏す
る。この場合、静止時は環状突起部8、環状溝部9の外
周面側でフィットを与え、回転時には環状突起部8、環
状溝部9の内周面側でフィットするように構成する必要
があり、このときの、静止時、回転時の環状係合部14
の位置関係を図3、図4に示す。この場合の考え方作用
は図1、図2の例と同じである。
In this way, by providing the annular engaging portion 14 on the axial contact surface between the impeller 1 and the shaft 2, the assembly and
It is possible to realize a structure that can be easily disassembled and that suppresses shaft vibration during rotation. In addition, the annular engaging portion 1 at rest
The clearance on the outer peripheral side in 4 may be 0, but in that case the stress around the annular engaging portion 14 during rotation becomes high, so it is desirable to set the clearance to such an extent that it does not occur. In the above embodiment, the example in which the annular protrusion 8 is arranged on the impeller 1 side and the annular groove 9 is arranged on the shaft 2 side has been shown.
On the contrary, the annular projection 8 is on the shaft 2 side and the annular groove 9 is on the impeller 1 side.
You may arrange | position on the side, and the same effect as the said Example is produced. In this case, it is necessary to provide a fit on the outer peripheral surface side of the annular projection portion 8 and the annular groove portion 9 when stationary, and a fit on the inner peripheral surface side of the annular projection portion 8 and the annular groove portion 9 when rotating. At the time of stationary, at the time of rotation, the annular engaging portion 14
The positional relationship of is shown in FIG. 3 and FIG. The thinking action in this case is the same as that of the example of FIGS.

【0014】また、図1〜図4の実施形態は、いずれも
環状係合部14の外周側において、インペラ1と軸2の
軸方向接触面7を構成する例を示したが、必ずしもその
位置で接触面を構成する必要はなく、環状係合部14内
において、或は環状係合部14の内周側で軸方向接触面
を構成しても良い。ただし、大きいトルク伝達力を得る
上からは、上記実施形態のように環状係合部14の外周
側で軸方向接触面を構成した方が良い。
In each of the embodiments shown in FIGS. 1 to 4, the axial contact surface 7 between the impeller 1 and the shaft 2 is formed on the outer peripheral side of the annular engaging portion 14, but the position is not always required. It is not necessary to form the contact surface with, and the axial contact surface may be formed within the annular engaging portion 14 or on the inner peripheral side of the annular engaging portion 14. However, in order to obtain a large torque transmission force, it is better to form the axial contact surface on the outer peripheral side of the annular engaging portion 14 as in the above embodiment.

【0015】[0015]

【発明の効果】以上のように、この発明によればインペ
ラ側に設けた環状突起部または環状溝部と、軸側に設け
た環状溝部または環状突起部とからなる環状係合部を配
置し、軸側の環状溝部の外周面または環状突起部の内周
面がインペラ側の環状突起部または環状溝部に対して、
半径方向の位置決めとなるようにしたことにより相互の
同心性を得る構造としたので、貫通軸と貫通軸孔の間に
は隙間を設けることができ、組立・分解が容易で且つ回
転中の軸振動を小さく抑え得るとともに、インペラの軸
方向嵌めあい位置を正確に決定できるインペラの固定機
構を実現することができる。
As described above, according to the present invention, the annular engaging portion including the annular protrusion or the annular groove provided on the impeller side and the annular groove or the annular protrusion provided on the shaft side is arranged, The outer peripheral surface of the annular groove portion on the shaft side or the inner peripheral surface of the annular protrusion portion is relative to the annular protrusion portion or the annular groove portion on the impeller side,
Since the structure is designed to be concentric with each other due to the positioning in the radial direction, a gap can be provided between the penetrating shaft and the penetrating shaft hole, making it easy to assemble / disassemble and to rotate the shaft. It is possible to realize a fixing mechanism of the impeller, which can suppress the vibration to be small and can accurately determine the axial fitting position of the impeller.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の第1の実施形態によるインペラの
固定機構の静止時の状態を示す断面図である。
FIG. 1 is a sectional view showing a stationary state of a fixing mechanism for an impeller according to a first embodiment of the present invention.

【図2】 この発明の第1の実施形態によるインペラの
固定機構の回転時の状態を示す断面図である。
FIG. 2 is a cross-sectional view showing a state during rotation of the impeller fixing mechanism according to the first embodiment of the present invention.

【図3】 この発明の他の実施形態を示すインペラの固
定機構の静止時の状態を示す断面図である。
FIG. 3 is a sectional view showing a stationary state of a fixing mechanism of an impeller showing another embodiment of the present invention.

【図4】 この発明の他の実施形態を示すインペラの固
定機構の回転時の状態を示す断面図である。
FIG. 4 is a cross-sectional view showing a state during rotation of a fixing mechanism of an impeller showing another embodiment of the present invention.

【図5】 従来のインペラの固定機構を示す断面図であ
る。
FIG. 5 is a sectional view showing a conventional fixing mechanism of an impeller.

【符号の説明】[Explanation of symbols]

1 インペラ 2 軸 4 貫通軸 7
接触面 8 環状突起部 9 環状溝部 14 環状係合部
1 Impeller 2 Shaft 4 Through shaft 7
Contact surface 8 Annular protrusion 9 Annular groove 14 Annular engagement

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 貫通軸孔を有するインペラと、このイン
ペラと接する端面を有する軸と、前記軸と一体か或いは
機械的につながって前記インペラの貫通軸孔を貫通しそ
の端部に前記インペラの締付機構を有する貫通軸とで構
成される遠心形圧縮機または遠心形タービンのインペラ
の固定機構であって、前記インペラと前記軸端面とが接
する部分に環状係合部を設けたものであり、この環状係
合部は前記軸の端面にこの軸と同心に設けた環状突起部
と、この軸端面に接する前記インペラの接触面に設けら
れて前記環状突起部に係合する環状溝部から構成され、
静止中は前記軸端面の環状突起部の外周面と前記インペ
ラの環状溝部の外周面との間に隙間が形成され、回転中
は前記インペラの環状溝部の外周面が前記軸端面の環状
突起部の外周面によって半径方向の位置決めがなされる
ようにしたことを特徴とする遠心形圧縮機または遠心形
タービンのインペラの固定機構。
1. An impeller having a through shaft hole, a shaft having an end surface in contact with the impeller, and a shaft integrally or mechanically connected to the shaft and penetrating through the through shaft hole of the impeller, and at the end portion of the impeller. A fixing mechanism for an impeller of a centrifugal compressor or a centrifugal turbine configured with a through shaft having a tightening mechanism, wherein an annular engaging portion is provided at a portion where the impeller and the shaft end surface are in contact with each other. The annular engaging portion is composed of an annular projection portion provided on the end surface of the shaft concentrically with the shaft, and an annular groove portion provided on a contact surface of the impeller in contact with the shaft end surface and engaging with the annular projection portion. Is
While stationary, a gap is formed between the outer peripheral surface of the annular projection of the shaft end surface and the outer peripheral surface of the annular groove of the impeller, and during rotation, the outer peripheral surface of the annular groove of the impeller is the annular projection of the shaft end surface. An impeller fixing mechanism for a centrifugal compressor or a centrifugal turbine, characterized in that radial positioning is performed by the outer peripheral surface of the.
【請求項2】 静止中は前記インペラの環状溝部の内周
面が前記軸端面の環状突起部の内周面によって半径方向
の位置決めがなされるようにしたことを特徴とする請求
項1記載の遠心形圧縮機または遠心形タービンのインペ
ラの固定機構。
2. The inner peripheral surface of the annular groove portion of the impeller is positioned in the radial direction by the inner peripheral surface of the annular projection portion of the shaft end surface while stationary. Fixing mechanism for impeller of centrifugal compressor or centrifugal turbine.
【請求項3】 前記インペラと前記軸端面との接触は、
前記環状突起部または前記環状溝部の外側の前記軸端面
で行われるように構成されたことを特徴とする特許請求
の範囲第1項または第2項記載の遠心形圧縮機または遠
心形タービンのインペラの固定機構。
3. The contact between the impeller and the shaft end surface is
The centrifugal compressor or the centrifugal turbine impeller according to claim 1 or 2, wherein the shaft end surface is formed outside the annular protrusion or the annular groove. Fixing mechanism.
【請求項4】 前記貫通軸の外周面と前記インペラの貫
通軸孔の内周面との間に隙間を設けたことを特徴とする
特許請求の範囲第1項または第2項記載の遠心形圧縮機
または遠心形タービンのインペラの固定機構。
4. The centrifugal type according to claim 1 or 2, wherein a gap is provided between an outer peripheral surface of the through shaft and an inner peripheral surface of a through shaft hole of the impeller. Fixing mechanism for compressor or centrifugal turbine impeller.
JP7327103A 1995-12-15 1995-12-15 Centrifugal compressor or centrifugal turbine impeller fixing mechanism Expired - Fee Related JP2907086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7327103A JP2907086B2 (en) 1995-12-15 1995-12-15 Centrifugal compressor or centrifugal turbine impeller fixing mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7327103A JP2907086B2 (en) 1995-12-15 1995-12-15 Centrifugal compressor or centrifugal turbine impeller fixing mechanism

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP62012763A Division JPH06100083B2 (en) 1987-01-22 1987-01-22 Fixing mechanism of impeller of centrifugal compressor or centrifugal turbine

Publications (2)

Publication Number Publication Date
JPH08226302A true JPH08226302A (en) 1996-09-03
JP2907086B2 JP2907086B2 (en) 1999-06-21

Family

ID=18195332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7327103A Expired - Fee Related JP2907086B2 (en) 1995-12-15 1995-12-15 Centrifugal compressor or centrifugal turbine impeller fixing mechanism

Country Status (1)

Country Link
JP (1) JP2907086B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203917A1 (en) * 2016-05-25 2017-11-30 株式会社Ihi Rotating body and supercharger
US11560900B2 (en) 2020-06-09 2023-01-24 Emerson Climate Technologies, Inc. Compressor driveshaft assembly and compressor including same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138801U (en) * 1985-02-19 1986-08-28

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138801U (en) * 1985-02-19 1986-08-28

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017203917A1 (en) * 2016-05-25 2017-11-30 株式会社Ihi Rotating body and supercharger
US11560900B2 (en) 2020-06-09 2023-01-24 Emerson Climate Technologies, Inc. Compressor driveshaft assembly and compressor including same

Also Published As

Publication number Publication date
JP2907086B2 (en) 1999-06-21

Similar Documents

Publication Publication Date Title
CA2354817C (en) Bearing/seal member/assembly and mounting
US6896479B2 (en) Turbocharger rotor
JP4089802B2 (en) Compressor impeller fixing device used for high-speed rotating turbomachine
JP4339782B2 (en) Fixing device for fixing the impeller to the shaft
KR960002024B1 (en) Impeller wheel lock in a drive assembly
US5964663A (en) Double diaphragm compound shaft
US20040131469A1 (en) Compressor wheel assembly
US4519747A (en) Method for assembling an impeller onto a turboshaft
JP4112468B2 (en) Axis of rotation
EP1676016B1 (en) Turbocharger with a thin-walled turbine housing having a floating flange attachment to the centre housing
JP2010265896A (en) Joint for rotary component
JP2003139156A (en) Rotor assembly and fastening mechanism thereof
US5257905A (en) Rotor coupling anti-windage apparatus
JPH08226302A (en) Fixing mechanism for impeller of centrifugal compressor or centrifugal turbine
JPH06100083B2 (en) Fixing mechanism of impeller of centrifugal compressor or centrifugal turbine
CN112240226B (en) Rotor assembly, aircraft engine and assembly method of rotor assembly
JPH0311129A (en) Gas turbine engine
CN114151203A (en) Sealing ring connecting structure
JPH0216079Y2 (en)
JP2586262Y2 (en) Gas turbine engine bearing structure
JPS6211314Y2 (en)
JP2002048135A (en) Bearing structure
JPS58217701A (en) Structure for fixing ceramic shaft of impeller
JPS59128902A (en) Turbocharger rotor
JP2000249156A (en) Fixing structure for rolling bearing

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees