JPH08226064A - Tubular formed article and its production - Google Patents

Tubular formed article and its production

Info

Publication number
JPH08226064A
JPH08226064A JP7303561A JP30356195A JPH08226064A JP H08226064 A JPH08226064 A JP H08226064A JP 7303561 A JP7303561 A JP 7303561A JP 30356195 A JP30356195 A JP 30356195A JP H08226064 A JPH08226064 A JP H08226064A
Authority
JP
Japan
Prior art keywords
melting point
molded body
fiber
web
resin component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7303561A
Other languages
Japanese (ja)
Inventor
Yasuki Terakawa
泰樹 寺川
Satoshi Ogata
智 緒方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP7303561A priority Critical patent/JPH08226064A/en
Publication of JPH08226064A publication Critical patent/JPH08226064A/en
Pending legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Artificial Filaments (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE: To obtain a tubular formed article having excellent filtration performance, pressure resistance and water-permeability and suitable as a filter or a draining material by winding a spun-bonded web composed of a multi-component conjugate filament around a core while heating the web above the heat-welding temperature of the web. CONSTITUTION: A conjugate spun-bonded web composed of two components having a fineness of 0.2-300d/f or 17-70,000d/f and the maximum/minimum fineness ratio of >=1.5 is produced by the conjugate spinning of 10-90wt.% of a low-melting resin component selected from polyethylene, a crystalline copolymer of α-olefins such as propylene and butene-1 and a low-melting polyester and 90-10wt.% of a high-melting resin component (the melting point difference between the low-melting resin and the high-melting resin is >=10 deg.C) such as polypropylene or polyethylene terephthalate in such a manner as to form at least a part of the fiber surface with the low-melting resin component and taking-up the spun fiber through an air sucker at a take-up speed of 500-20,000m/min under quenching at a rate of 0.1-5m/sec. The web or the web and other fibers such as polyamide are laminated or mixed in layers and the formed web is wound around a core under heating at or above the welding temperature of the low-melting component to obtain the objective tubular formed article.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】 本発明は筒状成形体及びそ
の製造方法に関する。更に詳しくは複合スパンボンド法
で長繊維を紡糸し、該繊維を熱融着し筒状に成形した、
フイルタ−やドレ−ン材等に適した成形体及びその製造
方法に関する。
TECHNICAL FIELD The present invention relates to a tubular molded body and a method for manufacturing the same. More specifically, long fibers are spun by the composite spunbond method, and the fibers are heat-sealed to form a tubular shape.
The present invention relates to a molded body suitable for a filter, a drain material, etc., and a method for manufacturing the molded body.

【0002】[0002]

【従来の技術】熱融着性繊維を用いた筒状成形体は、濾
過性能や硬度、軽量性に優れる等の特徴があり、カ−ト
リツジフイルタ−やドレ−ン材等として使用されてい
る。従来このタイプの筒状成形体として、並列型熱融着
性複合繊維ステ−プルをカ−ド法でウェブとし、該ウェ
ブを加熱しながら中芯に巻取る事により得られた物(特
公昭56−43139号公報)や、熱融着性多分割型複
合繊維ステ−プルを不織布とした後、該不織布を多孔性
中芯に卷いた物(特開平4−108506号、特開平6
−091105号公報)等が知られている。
2. Description of the Related Art Cylindrical moldings using heat-fusible fibers have characteristics such as excellent filtering performance, hardness and light weight, and are used as cartridge filters and drain materials. . Conventionally, as a tubular molded body of this type, a product obtained by forming a parallel type heat-fusible composite fiber staple into a web by a card method and winding the web around a core while heating the web (Japanese Patent Publication No. No. 56-43139) or a heat-fusible multi-division composite fiber staple, which is formed into a non-woven fabric, and the non-woven fabric is wound on a porous core (JP-A-4-108506, JP-A-6-108506).
No. 091105) is known.

【0003】しかし前記特公昭56−43139号特許
に開示された筒状成型体は製造工程が非常に複雑であ
る。即ち、一旦複合紡糸された繊維を延伸、クリンパ−
による捲縮付与、繊維の乾燥、カツタ−による切断等を
経、短繊維状のいわゆるステ−プルとした後、このステ
−プルをカ−ド工程等を経、ウェブを加熱しながら筒状
に巻回することにより製造するので、生産性が極めて低
い。しかもこのような複合繊維は、紡糸時にカ−ド通過
性やステ−プルの開繊性を良くする為の油剤が付着され
ているのが普通である。従ってこの筒状成形体をフイル
タ−等として使用した場合、濾過時に油剤が泡立つた
り、濾液中に油剤が混ざる等の問題があり、食品、飲料
水、薬品等の分野には使用が制限されていた。又この筒
状成形体はステ−プルを使用しているので筒状成形体の
繊維層内部や表面が毛羽立ちしやすい。この毛羽は、濾
過時の粒子を捕捉しやすいという効果があるが、反面、
一度使用した後いわゆる逆洗浄等で再使用する場合、捕
捉された粒子が除去されにくく、再使用できないという
課題がある。又、太繊度繊維を使用した場合、カ−ド時
に複合繊維が層間剥離し、フイブリル状の繊維が発生し
やすい。カ−ド時、該フィブリル状の繊維が切断し、粉
状物が出来、ウェブにこの粉状物が混入したり、環境を
阻害する。又この粉状物はカ−ド機や加熱機、成形機等
種々な部署に堆積し、塊状或は、フロツク状に固まり、
ウェブに落下混在しやすい。しがってこのようなステ−
プルを用いた物は、濾過精度がバラツく現象、即ち濾過
精度安定性が悪いという課題がある。
However, the manufacturing process of the cylindrical molded body disclosed in the above Japanese Patent Publication No. 56-43139 is very complicated. That is, the fiber once composite-spun is drawn and crimpered.
After crimping by the above, drying of the fiber, cutting with a cutter, etc., to form a short fiber so-called staple, this staple is subjected to a carding process, etc., and formed into a tubular shape while heating the web. Since it is manufactured by winding, the productivity is extremely low. Moreover, such a composite fiber is usually attached with an oil agent for improving the card passage property and the staple opening property during spinning. Therefore, when this tubular molded product is used as a filter or the like, there is a problem that the oil agent foams at the time of filtration, or the oil agent is mixed in the filtrate, and its use is limited in the fields of food, drinking water, chemicals, etc. It was Further, since this tubular molded body uses staples, the inside and the surface of the fiber layer of the tubular molded body are easily fluffed. This fluff has the effect of easily trapping particles during filtration, but on the other hand,
When used once and then reused by so-called back washing or the like, there is a problem that the captured particles are difficult to remove and cannot be reused. Further, when the fibers having a large fineness are used, the composite fibers are easily delaminated during carding, and fibril-like fibers are easily generated. At the time of carding, the fibril-like fibers are cut to form a powdery substance, which is mixed with the web and the environment is disturbed. Also, this powdery substance is deposited in various units such as a card machine, a heating machine, and a molding machine, and solidifies into a lump or a block,
Easy to fall and mix on the web. Therefore, such a station
The object using pull has a problem that the filtration accuracy varies, that is, the stability of the filtration accuracy is poor.

【0004】又前記分割型複合繊維ステ−プルを使用し
た筒状成形体は、特殊な構造の紡糸口金を必要とし、し
かも分割するためのニ−ドルパンチやウオ−タ−ニ−ド
ル加工等の余分な工程が必要である。従って生産性が極
めて低く且つ高価である。又ステ−プルを使用するの
で、前記同様、油剤や毛羽等による課題がある。この分
割型複合繊維は、ニ−ドルパンチやウオ−タ−ニ−ド
ル、カ−ド等の衝撃等で3分割或はそれ以上の多分割に
分割し易く設計されているので、分割後の単糸繊度が約
1d/f以下の細繊度の物を使用しても、カ−ド時に複
合繊維の一部が分割し、フイブリル状の物が発生しやす
い。このフイブリル状の単繊維が絡みついた塊状の繊維
や剥離した繊維の粉状物が出来易い。又未分割である太
繊度繊維が多量に混在する事になる。又分割するための
ニ−ドルパンチや、ウオ−タ−ニ−ドル等による針孔等
が出来る。従って分割後の単繊維が細繊度糸であつても
前記濾過精度や濾過精度安定性等が劣るという課題があ
る。
Further, the tubular molded body using the splittable composite fiber staple requires a spinneret having a special structure, and further has a needle punch or water-needle process for splitting. Extra steps are required. Therefore, productivity is extremely low and expensive. Further, since staples are used, there is a problem due to an oil agent, fluff, etc., as described above. Since this splittable conjugate fiber is designed to be easily split into three or more splits by the impact of a needle punch, a water needle, a card, etc. Even if a fine fiber having a fineness of about 1 d / f or less is used, a part of the composite fiber is divided at the time of carding, and a fibril-like substance is likely to be generated. It is easy to form a lump-shaped fiber in which the fibril-like single fibers are entangled with each other or a powdered substance of the separated fiber. Further, a large amount of undivided fibers having a large fineness are mixed. Further, a needle punch for dividing and a needle hole by a water needle can be formed. Therefore, there is a problem that the filtration accuracy, the stability of the filtration accuracy, and the like are inferior even if the single fiber after division is a fine fiber.

【0005】特開平2−14582号公報には鞘成分が
ポリプロピレンで芯成分がポリエチレンテレフタレ−ト
である鞘芯型複合スパンボンド法熱接着性不織布が、特
開平5−263353号公報には鞘成分が高密度ポリエ
チレンで芯成分がエチレン・プロピレンランダムコポリ
マ−である鞘芯型複合スパンボンド法不織布が開示され
ている。又特開平2−182963号公報には熱収縮性
の異なるポリマ−を並列型、偏心鞘芯型等で複合スパン
ボンド法で紡糸し、ウェブを超音波ボンデイングし、潜
在捲縮及び熱収縮性のある不織布が開示されている。前
記融点の異なる2成分からなる複合スパンボンド法不織
布は、生産性が高い、不織布強力が高い等の利点があ
る。従って使い捨ておむつの表面材や、各種包装材料等
の用途に適しているとしている。しかし前記出願特許に
は筒状成形体に応用する事については何等示唆されてい
ない。
Japanese Patent Laid-Open No. 2-14582 discloses a sheath-core type composite spunbond heat-bonding nonwoven fabric in which the sheath component is polypropylene and the core component is polyethylene terephthalate, and in Japanese Patent Laid-Open Publication No. 5-263353. A sheath-core type composite spunbonded non-woven fabric having a high density polyethylene as a component and an ethylene / propylene random copolymer as a core component is disclosed. Further, in JP-A-2-182963, polymers having different heat shrinkability are spun by a composite spunbond method with a parallel type, an eccentric sheath core type, etc., and the web is ultrasonically bonded to obtain latent crimp and heat shrinkability. Certain non-woven fabrics are disclosed. The composite spunbonded nonwoven fabric composed of two components having different melting points has advantages such as high productivity and high nonwoven fabric strength. Therefore, it is said that it is suitable for use as a surface material for disposable diapers and various packaging materials. However, there is no suggestion of application to a tubular molded body in the above-mentioned patent application.

【0006】[0006]

【発明が解決しようとする課題】本発明の目的は、前記
課題を解決した、生産性が良く、且つ土中水の排水性、
濾過精度、濾過精度安定性、濾過ライフ、耐圧性、等の
濾過性能や、泡立ち等のない筒状成形体、及びその製法
を提供することにある。更にはフイルタ−として使用
後、ケ−キの洗浄がしやすい、場合によつては再使用可
能な筒状成形体を提供する事にある。
The object of the present invention is to solve the above-mentioned problems, to improve productivity and drainage of underground water.
It is intended to provide a tubular molded body having no filtration performance such as filtration accuracy, filtration accuracy stability, filtration life, pressure resistance, and the like, and a manufacturing method thereof. Another object is to provide a tubular molded body which can be easily washed after being used as a filter and, in some cases, can be reused.

【0007】[0007]

【課題を解決するための手段】本発明は下記(1)〜
(20)より構成される。 (1)融点差が10℃以上ある低融点樹脂成分と高融点
樹脂成分との少なくとも2種の成分からなる多成分複合
スパンボンド長繊維により卷回され、かつ該低融点樹脂
成分で熱融着された筒状成形体。 (2)多成分複合スパンボンド長繊維が10〜90重量
%の低融点樹脂成分及び90〜10重量%の高融点樹脂
成分からなり、該低融点樹脂成分が繊維の表面の少なく
とも一部を形成していることを特徴とする(1)項に記
載の筒状成形体。 (3)繊度の最大と最小との比が1.5以上である多成
分複合スパンボンド長繊維を用いて、それを筒状成形体
の厚み方向に沿って配列した請求項1若しくは2に記載
の筒状成形体。 (4)濾過精度分散指数が0.7以下である(1)〜
(3)項の何れかに記載の筒状成形体。 (5)他の繊維が複合スパンボンド長繊維と積層又は混
合されている(1)〜(3)項の何れかに記載の筒状成
形体。 (6)多成分複合スパンボンド長繊維が繊度0.2〜7
0,000d/fである(1)〜(3)項の何れかに記
載の筒状成形体。 (7)低融点樹脂成分がポリエチレン、プロピレンと他
のαーオレフインとの結晶性共重合体若しくは低融点ポ
リエステルの何れかから選ばれた樹脂であり、高融点樹
脂成分がポリプロピレンである(1)〜(3)項の何れ
かに記載の筒状成形体。 (8)低融点樹脂がポリエチレン、プロピレンと他のα
ーオレフインとの結晶性共重合体、低融点ポリエステル
の何れかから選ばれた樹脂であり、高融点樹脂成分がポ
リエチレンテレフタレ−トである(1)〜(3)項の何
れかに記載の筒状成形体。 (9)筒状成形体の表面又は内部の何れかが凹凸状に型
付された(1)〜(3)項の何れかに記載の筒状成形
体。 (10)多成分複合スパンボンド法で、融点差が10℃
以上ある低融点樹脂成分と高融点樹脂成分との少なくと
も2種の成分からなる複合長繊維を紡糸しウエブとし、
該ウエブを低融点樹脂の融着温度以上に加熱しながら中
芯に巻回し、該複合長繊維を熱融着することによる、筒
状成形体の製造方法。 (11)多成分複合スパンボンド長繊維が10〜90重
量%の低融点樹脂成分及び90〜10重量%の高融点樹
脂成分からなり、該低融点樹脂成分が繊維の表面の少な
くとも一部を形成していることを特徴とする(10)項
に記載の筒状成形体の製造方法。 (12)複合繊維の押出量又は紡糸時の引取り速度の何
れかを変えて紡糸し、複合長繊維の同一繊維の繊度の最
大と最小との比が1.5以上であるウエブを製造し、該
ウエブを融着温度以上に加熱しながら中芯に巻回し、該
長繊維の低融点樹脂を熱融着することによる、筒状成形
体の厚み方向に沿って繊度が1.5倍以上変化している
長繊維を配列することを特徴とする(10)若しくは
(11)項に記載の筒状成形体の製造方法。 (13)紡糸後の複合繊維を0.1〜5m/秒の風速で
クエンチしながらエアサツカ−形牽引装置に導入し高速
気流で500〜20,000m/分の速度で紡糸し、長
繊維の繊度を0.2〜100d/fとする(10)〜
(12)項の何れかに記載の筒状成形体の製造方法。 (14)紡糸時の自重で又は引取ロ−ルで紡糸し、且つ
紡糸時に複合繊維をクエンチなし又はクエンチしながら
紡糸し、長繊維の繊度を30〜70,000d/fとす
る(10)〜(12)項の何れかに記載の製造方法。 (15)紡糸から筒状成形体の製造に至るまでの間で、
1.2〜9倍延伸する(10)〜(12)項の何れかに
記載の筒状成形体の製造方法。 (16)低融点樹脂成分がポリエチレン、プロピレンと
他のαーオレフインとの結晶性共重合体、低融点ポリエ
ステルの何れかから選ばれた樹脂であり、高融点樹脂成
分がポリプロピレン若しくはポリエチレンテレフタレー
トである(10)〜(12)項の何れかに記載の筒状成
形体の製造方法。 (17)紡糸から筒状成形体の製造に至るまでの間で、
他の繊維を複合スパンボンド長繊維ウエブと層状に積層
するか又は複合スパンボンド長繊維ウエブと混合するこ
とによる、(10)〜(12)項の何れかに記載の筒状
成形体の製造方法。 (18)筒状成形体を成型時、型付ロ−ルを該ウエブ又
は筒状成形体に接触させ、該成形体の表面又は内部を凹
凸状にする、(10)〜(12)項の何れかに記載の筒
状成形体の製造方法。 (19)(1)〜(3)項の何れかに記載の筒状成形体
を用いたフィルター。 (20)(1)〜(3)項の何れかに記載の筒状成形体
を用いたドレーン材。
The present invention provides the following (1) to
(20). (1) Wrapped by a multi-component composite spunbond continuous fiber composed of at least two components of a low melting point resin component and a high melting point resin component having a melting point difference of 10 ° C. or more, and heat fusion bonding with the low melting point resin component Tubular molded product. (2) The multi-component composite spunbond continuous fiber comprises 10 to 90% by weight of a low melting point resin component and 90 to 10% by weight of a high melting point resin component, and the low melting point resin component forms at least a part of the surface of the fiber. The cylindrical molded body according to item (1), characterized in that (3) The multi-component composite spunbond filament having a fineness ratio of maximum to minimum of 1.5 or more is used and arranged along the thickness direction of the tubular molded body. Cylindrical molded body. (4) The filtration accuracy dispersion index is 0.7 or less (1) to
The cylindrical molded body according to any one of (3). (5) The tubular molded article according to any one of (1) to (3), in which other fibers are laminated or mixed with the composite spunbond continuous fibers. (6) The fineness of the multi-component composite spunbond filament is 0.2 to 7
The cylindrical molded body according to any one of the items (1) to (3), which has a durometer of 10,000 d / f. (7) The low melting point resin component is a resin selected from polyethylene, a crystalline copolymer of propylene and another α-olefin, or a low melting point polyester, and the high melting point resin component is polypropylene (1) to The cylindrical molded body according to any one of (3). (8) Low melting point resin is polyethylene, propylene and other α
-Cylinder according to any one of items (1) to (3), which is a resin selected from a crystalline copolymer with olefin and a low melting point polyester, and the high melting point resin component is polyethylene terephthalate. Shaped body. (9) The cylindrical molded body according to any one of the items (1) to (3), wherein either the surface or the inside of the cylindrical molded body is molded in an uneven shape. (10) Multi-component composite spun bond method with melting point difference of 10 ° C.
A composite continuous fiber composed of at least two kinds of components having a low melting point resin component and a high melting point resin component is spun into a web,
A method for producing a tubular molded body, which comprises winding the web around a core while heating the web to a fusion temperature of a low-melting resin or higher and heat-sealing the composite long fibers. (11) The multi-component composite spunbond continuous fiber comprises 10 to 90% by weight of a low melting point resin component and 90 to 10% by weight of a high melting point resin component, and the low melting point resin component forms at least a part of the surface of the fiber. The method for producing a tubular molded body according to item (10), characterized in that (12) A web in which the ratio of the maximum and the minimum of the fineness of the same fibers of the composite long fibers is 1.5 or more is produced by spinning while changing either the extrusion amount of the composite fibers or the take-up speed during spinning. , The web is wound around a core while being heated to a fusion temperature or higher, and the low melting point resin of the long fibers is heat-fused to obtain a fineness of 1.5 times or more along the thickness direction of the tubular molded body. The method for producing a tubular molded body according to item (10) or (11), characterized in that changing long fibers are arranged. (13) The composite fiber after spinning is introduced into an air sucker-type traction device while being quenched at a wind speed of 0.1 to 5 m / sec, and spun at a speed of 500 to 20,000 m / min in a high-speed air flow to obtain the fineness of long fibers. Is set to 0.2 to 100 d / f (10) to
(12) A method for producing a tubular molded body according to any one of items. (14) Spinning is performed by its own weight at the time of spinning or by a take-up roll, and the composite fiber is spun without quenching or while quenching during spinning, and the fineness of the long fiber is 30 to 70,000 d / f (10) to The manufacturing method according to any one of (12). (15) From the spinning to the production of the tubular molded body,
The method for producing a tubular molded body according to any one of (10) to (12), which comprises stretching 1.2 to 9 times. (16) The low melting point resin component is a resin selected from polyethylene, a crystalline copolymer of propylene and other α-olefin, and a low melting point polyester, and the high melting point resin component is polypropylene or polyethylene terephthalate ( The method for producing a tubular molded body according to any one of items 10) to 12). (17) From the spinning to the production of the tubular molded body,
The method for producing a tubular molded article according to any one of items (10) to (12), which comprises laminating other fibers in a layered manner with a composite spunbond long-fiber web or mixing with the composite spunbond long-fiber web. . (18) When a tubular molded body is molded, a roll with a mold is brought into contact with the web or the tubular molded body to make the surface or the inside of the molded body uneven, (10) to (12). The method for producing a tubular molded body according to any one of claims. (19) A filter using the tubular molded body according to any one of (1) to (3). (20) A drain material using the tubular molded body according to any one of (1) to (3).

【0008】本発明の筒状成形体に使用するウェブは、
多成分複合スパンボンド法長繊維ウェブである。該長繊
維は、融点に10℃以上差がある少なくとも2種の樹脂
成分が複合スパンボンド法で複合紡糸された繊維であ
る。融点差が10℃未満の場合、後記加熱処理での温度
調節が難しく、ウェブの熱融着が不足し硬度の高い成形
体が得られなかつたり、逆に繊維が溶融しすぎ膜状化し
たり、ウエブや不織布の異常収縮によりしわが発生した
りして、濾過性能や濾材の均一性のよい筒状成形体が得
られない。樹脂成分は実用上2〜4種程度の樹脂を使用
することができ、それらの最高融点と最低融点の差が1
0℃以上であればよい。しかし、大抵の用途では2種で
十分である。該複合長繊維は低融点樹脂成分が繊維表面
の一部を形成していればよい。又該複合繊維は、鞘芯
型、偏心鞘芯型、並列型、海島型等の繊維が使用でき
る。
The web used in the tubular molded body of the present invention is
A multi-component composite spunbond continuous fiber web. The long fibers are fibers in which at least two kinds of resin components having melting points of 10 ° C. or more are composite-spun by a composite spunbond method. When the difference in melting point is less than 10 ° C., it is difficult to control the temperature in the heat treatment described later, heat fusion of the web is insufficient, and a molded article having high hardness cannot be obtained. A wrinkle is generated due to abnormal shrinkage of the web or the nonwoven fabric, so that a tubular molded body having good filtering performance and uniform filtering material cannot be obtained. Practically, about 2 to 4 kinds of resins can be used as the resin component, and the difference between the highest melting point and the lowest melting point is 1
It may be 0 ° C or higher. However, for most applications two are sufficient. The low melting point resin component may form a part of the fiber surface of the composite long fiber. As the composite fiber, a sheath-core type, an eccentric sheath-core type, a parallel type, a sea-island type fiber or the like can be used.

【0009】複合長繊維において、低融点樹脂成分と高
融点樹脂成分の複合比は、低融点樹脂成分が10〜90
重量%、高融点樹脂成分が90〜10重量%である。低
融点樹脂成分が10%未満の場合、筒状に成形する時の
加熱処理で、熱融着が不足し筒状成形体の硬度が不足
し、耐圧強度が劣る物となる。又毛羽立つたりする。従
って該成形体をフイルタ−として用いた場合、濾過時の
圧力や振動等により濾層の目開きが起きやすく、濾過精
度も劣る。又ドレ−ン材として用いた場合、変形しやす
い。複合長繊維の低融点樹脂成分が90重量%を超える
と、筒状に成形する時の加熱処理で低融点樹脂成分が溶
融し、ウエブが膜状化し筒状成形体の細孔を閉塞した
り、加熱溶融時の収縮等により、成形体にしわが発生し
たり、変形したりする。更に、上述した欠点を安定して
避けるためには低融点樹脂/高融点樹脂の重量比が30
/70から70/30の範囲がより好ましい。又長繊維
の繊度は、筒状成形体の対象とする用途によつて異なる
が、フイルタ−の場合、約0.2〜約10,000d/
f、ドレ−ン材の場合、約3〜約70,000d/fで
ある。又ウェブや不織布の目付けは特に限定されない
が、筒状成形体加熱時の熱融着のしやすさ等の見地から
約4〜2,000g/m2 である。
In the composite long fiber, the composite ratio of the low melting point resin component and the high melting point resin component is 10 to 90 for the low melting point resin component.
%, And the high melting point resin component is 90 to 10% by weight. When the low-melting point resin component is less than 10%, the heat treatment during molding into a tubular shape causes insufficient heat fusion, resulting in insufficient hardness of the tubular molded body, resulting in poor pressure resistance. It also becomes fluffy. Therefore, when the molded product is used as a filter, the filter layer is likely to open due to pressure and vibration during filtration and the filtration accuracy is poor. When used as a drain material, it is easily deformed. When the low melting point resin component of the composite long fiber exceeds 90% by weight, the low melting point resin component is melted by the heat treatment for forming into a tubular shape, and the web becomes a film to block the pores of the tubular shaped body. In addition, wrinkles are generated or deformed in the molded body due to shrinkage during heating and melting. Further, in order to stably avoid the above-mentioned drawbacks, the weight ratio of low melting point resin / high melting point resin is 30.
The range of / 70 to 70/30 is more preferable. The fineness of the long fibers varies depending on the intended use of the tubular molded body, but in the case of a filter, it is about 0.2 to about 10,000 d /
f, in the case of a drain material, it is about 3 to about 70,000 d / f. The basis weight of the web or the non-woven fabric is not particularly limited, but it is about 4 to 2,000 g / m @ 2 from the viewpoint of ease of heat fusion when heating the tubular molded body.

【0010】本発明で使用する樹脂成分は、ポリアミド
類、ポリエチレンテレフタレ−ト、ポリブチレンテレフ
タレ−ト、ジオ−ルとテレフタル酸/イソフタル酸等を
共重合した低融点ポリエステル、ポリエステルエラスト
マ−等のポリエステル類、ポリプロピレン、高密度ポリ
エチレン、中密度ポリエチレン、低密度ポリエチレン、
線状低密度ポリエチレン、プロピレンと他のαーオレフ
インとの結晶性2又は3元共重合体等のポリオレフィン
類、弗素樹脂、上記樹脂の混合物等、その他の溶融紡糸
可能な樹脂等が使用できる。
The resin component used in the present invention includes polyamides, polyethylene terephthalate, polybutylene terephthalate, low melting point polyesters obtained by copolymerizing diol with terephthalic acid / isophthalic acid, polyester elastomers, etc. Polyester, polypropylene, high density polyethylene, medium density polyethylene, low density polyethylene,
Linear low density polyethylene, polyolefins such as crystalline 2 or 3 terpolymers of propylene and other α-olefin, fluororesins, mixtures of the above resins, and other melt-spinnable resins can be used.

【0011】複合紡糸の組合せとして融点差が10℃以
上あるような組合せとする。例えば、高密度ポリエチレ
ン/ポリプロピレン、低密度ポリエチレン/プロピレン
・エチレン・ブテン−1結晶性共重合体、高密度ポリエ
チレン/ポリエチレンテレフタレ−ト、ナイロン−6/
ナイロン66、低融点ポリエステル/ポリエチレンテレ
フタレ−ト、ポリプロピレン/ポリエチレンテレフタレ
−ト、ポリ弗化ビニリデ/ポリエチレンテレフタレ−ト
等が例示できる。又線状低密度ポリエチレンと高密度ポ
リエチレンの混合物/ポリプロピレン等、混合系の物も
使用出来る。更に、高密度ポリエチレン/ポリプロピレ
ン、低密度ポリエチレン/プロピレン・エチレン・ブテ
ン−1結晶性共重合体、高密度ポリエチレン/ポリエチ
レンテレフタレ−ト、低融点ポリエステル/ポリエチレ
ンテレフタレ−ト、ポリプロピレン/ポリエチレンテレ
フタレ−トなどのポリオレフィン/ポリオレフィン、ポ
リオレフィン/ポリエステル、ポリエステル/ポリエス
テルの組み合わせが好ましく、耐薬品性を考慮するとポ
リオレフィン/ポリオレフィンの組み合わせが特に好ま
しい。
The combination of the composite spinning is such that the melting point difference is 10 ° C. or more. For example, high density polyethylene / polypropylene, low density polyethylene / propylene / ethylene / butene-1 crystalline copolymer, high density polyethylene / polyethylene terephthalate, nylon-6 /
Examples thereof include nylon 66, low melting point polyester / polyethylene terephthalate, polypropylene / polyethylene terephthalate, and polyvinylidene fluoride / polyethylene terephthalate. A mixture of linear low density polyethylene and high density polyethylene / polypropylene, etc. can also be used. Furthermore, high density polyethylene / polypropylene, low density polyethylene / propylene / ethylene / butene-1 crystalline copolymer, high density polyethylene / polyethylene terephthalate, low melting point polyester / polyethylene terephthalate, polypropylene / polyethylene terephthalate A combination of polyolefin / polyolefin, polyolefin / polyester, polyester / polyester such as -G, etc. is preferable, and a combination of polyolefin / polyolefin is particularly preferable in view of chemical resistance.

【0012】複合スパンボンド法とは、複数の押出機か
ら複数の樹脂成分を溶融押出し、複合紡糸用口金から多
成分が複合された繊維を紡糸し、紡糸された繊維をエア
サツカ−等の気流牽引型の装置等で引き取り、気流と共
に繊維をネツトコンベア−等のウェブ捕集装置で捕集
し、その後必要に応じウェブを融着等の処理をすること
による未熱融着ウェブ又は熱融着不織布等の製法であ
る。本発明では、細繊度糸を対象とする場合、高圧気流
を導入して紡糸するが、大繊度糸を対象とする場合、気
流を停止して紡糸してもよい。即ち実質的に紡糸時に自
重で紡糸してもよい。又引取ロ−ルやピンチロ−ルで引
取つてもよい。又気流牽引型の装置は引取ロ−ル等の前
後に2組以上備えられていてもよい。本発明において使
用される多成分複合スパンボンド長繊維の繊度の好まし
い範囲は0.2〜70,000d/fである。この様な
繊維を製造するための紡糸速度は要求される繊度に適合
する速度であればよい。繊度が約0.2〜300d/
f、好ましくは0.5〜100d/fの場合、紡糸速度
は約500〜20000m/分である。又繊度が約17
〜70000d/f、好ましくは30〜60000d/
fの場合、エアサツカ−の吸引をほとんど停止して自重
で紡糸するか、又は引取ロ−ルで引取つて紡糸してもよ
い。又高速気流牽引装置は引取ロ−ルの後に位置してい
てもよく、又は低速紡糸の場合実質的になくてもよい。
紡糸口金は、鞘芯型、並列型、海島型、偏芯鞘芯型等の
口金が使用できる。この口金やエアサツカ−等は複数個
備えられていてもよい。
The composite spunbond method is a method in which a plurality of resin components are melt-extruded from a plurality of extruders, a multicomponent fiber is spun from a spinneret for composite spinning, and the spun fiber is pulled by an air stream such as an air sucker. A non-heat-bonded web or a heat-bonded non-woven fabric by collecting the fibers with a web collecting device such as a net conveyer together with the air flow, and then subjecting the web to a bonding process if necessary. It is a manufacturing method such as. In the present invention, when a fine fiber is targeted, a high-pressure air stream is introduced for spinning, but when a fine fiber is targeted, the air flow may be stopped to perform spinning. That is, it may be spun by its own weight substantially during spinning. Alternatively, it may be taken up by a take-up roll or a pinch roll. Further, two or more sets of the air flow towing type device may be provided before and after the take-up roll or the like. The preferred range of fineness of the multi-component composite spunbond continuous fibers used in the present invention is 0.2 to 70,000 d / f. The spinning speed for producing such fibers may be any speed that meets the required fineness. Fineness is about 0.2-300d /
For f, preferably 0.5-100 d / f, the spinning speed is about 500-20000 m / min. The fineness is about 17
~ 70,000 d / f, preferably 30 to 60,000 d / f
In the case of f, the suction of the air sucker may be almost stopped and the spinning may be carried out by its own weight, or the spinning may be carried out by a take-up roll. Also, the high speed airflow traction device may be located after the take-up roll, or may be substantially absent for low speed spinning.
As the spinneret, a spinneret type, a parallel type, a sea-island type, an eccentric sheath-core type spinneret can be used. A plurality of the caps and the air cleaner may be provided.

【0013】又紡糸後の繊維を延伸ロ−ルや、ピンチロ
−ル、或は気流型延伸装置の延伸装置を備えた装置等も
使用出来る。この延伸装置は紡糸口金からエアサツカ−
の間の位置に、又はエアサツカ−からネツトコンベア−
の間の位置に、又はネツトコンベア−から成形機の間の
位置等に備えていればよい。もちろん複数の場所に備え
られていてもよい。延伸装置を使用した場合、繊維や不
織布の強度が向上し、得られた筒状成形体の耐圧性や圧
縮度等が向上する。又延伸により、立体捲縮が発生し、
筒状成形体のミクロポ−ラス性がよくなる。又口金から
各種装置に至るいずれかの部位に加熱装置を組み込まれ
た装置を使用してもよい。加熱装置が組み込まれた装置
は、加熱条件を適宜設定することにより熱融着不織布と
したり、捲縮発現等をする事が出来る。又本発明では、
紡糸口金と成型装置との間の位置に他の捕集補助装置を
組込んだような装置を使用しても良い。該補助装置とし
て、糸クエンチ装置やニ−ドルパンチング装置、水流絡
合装置、等の装置等が例示できる。クエンチング装置の
場合、気体、水等が使用できる。ニ−ドルパンチング装
置や水流絡合装置等は紡糸と別の系列にあつてもよい。
It is also possible to use an apparatus equipped with a drawing roll, a pinch roll, or an air flow type drawing apparatus for drawing the fiber after spinning. This drawing device is used to spin air from the spinneret.
Between the air cleaner and the net conveyor.
It may be provided at a position between the molding machines and a position between the net conveyor and the molding machine. Of course, it may be provided in a plurality of places. When a stretching device is used, the strength of the fibers and the non-woven fabric is improved, and the pressure resistance and compression degree of the obtained tubular molded product are improved. Also, stretching causes three-dimensional crimping,
The microporous property of the tubular molded body is improved. Further, a device in which a heating device is incorporated in any part from the base to various devices may be used. A device incorporating a heating device can be used as a heat-bonded non-woven fabric or can develop crimps by appropriately setting heating conditions. In the present invention,
It is also possible to use a device in which another collection assisting device is incorporated at a position between the spinneret and the molding device. Examples of the auxiliary device include devices such as a yarn quench device, a needle punching device, and a water entanglement device. In the case of a quenching device, gas, water, etc. can be used. The needle punching device, the hydroentangling device, and the like may be in a different system from the spinning.

【0014】延伸装置を組込んだ例として、各種の装置
が例示できる。たとえば、紡糸口金と気流型牽引装置の
間の位置に、複数の延伸ロ−ルが組み込まれた装置や、
紡糸された繊維を、一対の回転する一時捕集機能を備え
たピンチロ−ル間に捕集し、その下部に設けた一対のピ
ンチロ−ル間でウェブを挟みこみながら延伸をし、その
下部に設けたネツトコンベア−上にウエブを捕集するよ
うな装置が例示できる。前記一時捕集機能を備えたピン
チロ−ル等は、吹き付けられた気体を排出するための孔
が多数ある金属ロ−ルや、一対のネツト状の回転体に挟
み込んで捕集する機能を有する物、複数の延伸ロ−ルを
備えた物、等を例示できる。この一時捕集機能を備えた
ロ−ル等は上下に各一対ずつあり、且つ延伸機能と共に
加熱等の他の機能を備えた装置等であつてもよい。又、
一旦ネツトコンベア−等の捕集装置に捕集されたウェブ
を、ロ−ルやネツトコンベア−等を組合せた延伸装置等
にかけることもできる。又紡糸後、ウェブと共に吹き付
けられた気流は、吸引除去装置で除去するのが普通であ
る。勿論気流を使用せず自重で又は低速で紡糸した場
合、その必要がない。
As an example of incorporating a stretching device, various devices can be exemplified. For example, a device in which a plurality of drawing rolls are installed at a position between the spinneret and the air flow type traction device,
The spun fiber is collected between a pair of rotating pinch rolls having a temporary collecting function, and stretched while sandwiching the web between the pair of pinch rolls provided at the bottom of the spun fiber. An example is a device that collects the web on a provided net conveyor. The pinch roll or the like having the temporary collecting function is a metal roll having a large number of holes for discharging the blown gas, or an object having a function of being caught by a pair of net-shaped rotating bodies. , A plurality of stretching rolls, and the like. The roll or the like having the temporary collecting function may be an apparatus having a pair of upper and lower sides and having a stretching function and other functions such as heating. or,
The web once collected by a collecting device such as a net conveyor may be applied to a stretching device or the like in which a roll, a net conveyor and the like are combined. Further, after spinning, the air flow blown together with the web is usually removed by a suction removing device. Needless to say, when spinning is carried out by its own weight or at a low speed without using an air flow, this is not necessary.

【0015】本発明の筒状成形体は、前記紡糸法で捕集
されたウェブ及び又は熱融着不織布等を筒状に成形する
事により得られる。このような装置として、加熱機及び
筒状成形機等を主構成部材として備えた筒状成形体製造
装置等を使用して製造することが出来る。例えば特公昭
56−43139号公報に記載されたような、赤外線加
熱機と金属製中芯を備えた巻回型成形装置や製法が使用
出来る。加熱機は、エアスル−加熱機、赤外線加熱機、
加熱ロ−ル、加熱エンボスロ−ル等何れも使用できる。
又筒状成形機は成形後金属製中芯を抜き取るタイプの
物、多孔製中芯に巻回し中芯がある状態の物等、何れも
使用できる。本発明の筒状成形体は、上記スパンボンド
法紡糸と筒状成形とを、連続法で行つてもよく、スパン
ボンド法紡糸と筒状成形とを各別に行つてもよい。連続
法の場合、前記ネツトコンベア等のウェブ捕集装置の下
流側に、加熱機や、中芯巻回形の成形機等を備えた装置
を使用すればよい。又非連続法の場合、一旦紡糸した、
未熱融着ウェブや熱融着不織布等を加熱装置や中芯巻回
型成形機等を備えた装置を使用し、紡糸と切り放して、
成形すればよい。又、巻回直後、或は巻回時に表面に凹
凸が彫刻された金属ロ−ル等を接触回転させる事等の方
法により、筒状成型体の表面や内部に凹凸状を付与して
もよい。この場合成型体の表面積が大になるか、成型体
の内部にバイパス経路が出来るので濾過ライフがよくな
る。
The tubular molded article of the present invention can be obtained by molding the web and / or the heat-bonded non-woven fabric collected by the spinning method into a tubular shape. As such an apparatus, it is possible to manufacture using a tubular molded body manufacturing apparatus or the like that includes a heater, a cylindrical molding machine, and the like as main constituent members. For example, a winding type molding apparatus or a manufacturing method provided with an infrared heater and a metal core as described in JP-B-56-43139 can be used. The heating device is an air-heater, an infrared heating device,
Either a heating roll or a heating embossing roll can be used.
Further, as the tubular molding machine, any of a type in which a metal core is extracted after molding and a state in which a metal core is wound around a porous core and a core is present can be used. In the tubular molded product of the present invention, the spunbond spinning and the tubular molding may be performed by a continuous method, or the spunbond spinning and the tubular molding may be separately performed. In the case of the continuous method, a device equipped with a heating machine, a core winding type molding machine or the like may be used on the downstream side of the web collecting device such as the net conveyor. In the case of the discontinuous method, once spun,
Using an apparatus equipped with a non-heat-bonded web, a heat-bonded non-woven fabric, etc., such as a heating device and a core winding type molding machine, the spinning and cutting are separated,
It may be molded. Immediately after the winding or during winding, a concavo-convex shape may be imparted to the surface or the inside of the tubular molded body by a method of contact-rotating a metal roll or the like having irregularities engraved on the surface. . In this case, the surface area of the molded body becomes large, or a bypass path is formed inside the molded body to improve the filtration life.

【0016】前記筒状成形装置を使用し、複合繊維の低
融点樹脂成分の融点以上、高融点樹脂成分の融点以下の
温度で加熱しながら、中芯に巻回しその低融点樹脂成分
の融着により、繊維の交点を熱融着し筒状に成形する。
その後冷却し中芯の抜取り、必要に応じ端面を熱融着法
や、ホツトメルト法、バインダ−法、上記の方法でフイ
ルムや金属板との接着等により端面シ−ル処理をするこ
とも出来る。
Using the above-mentioned tubular molding device, while heating at a temperature above the melting point of the low-melting point resin component of the composite fiber and below the melting point of the high-melting point resin component, it is wound around the core and the low melting point resin component is fused. Thus, the intersections of the fibers are heat-sealed to form a tubular shape.
After cooling, the core may be removed, and if necessary, the end face may be subjected to an end face seal treatment by a heat fusion method, a hot melt method, a binder method, or adhesion to a film or a metal plate by the above method.

【0017】又本発明の筒状成形体は、その厚み方向に
繊度が同一であつてもよく、異なつていてもよい。繊度
が異なる場合、例えば濾過すべき流体の流れ方向に沿っ
て繊度が大から小になつている物や、繊度が大、小、大
等になつている物等は、濾過精度、濾過ライフ、耐圧性
等のいずれか又は全てがよい。濾過性能を更に向上させ
るには繊度を、最大繊度/最小繊度の比が1.5以上、
好ましくは1.8以上である物がよい。繊度が変化した
物は、紡糸時に筒状成形体一本当りに相当する紡糸時間
のうち、引き取り速度を一定とし、紡糸口金からの押出
量を紡糸時間の経過と共に、大中小の順に、大小大等の
順に変化させたり、或は、押出量を一定とし、引き取り
速度を前記のように変化させること等の方法により製造
できる。
The tubular molded article of the present invention may have the same or different fineness in the thickness direction. When the fineness is different, for example, the fineness becomes large to small along the flow direction of the fluid to be filtered, or the fineness becomes large, small, large, etc., the filtering accuracy, the filtering life, Any or all of pressure resistance and the like are good. In order to further improve the filtration performance, the fineness is set to a ratio of maximum fineness / minimum fineness of 1.5 or more,
It is preferably 1.8 or more. In the case where the fineness is changed, the take-up speed is constant during the spinning time corresponding to one tubular molded body during spinning, and the extrusion amount from the spinneret is changed from large to small in order of large, medium and small as the spinning time elapses. It can be produced by a method such as changing the order of the above, or by making the extrusion rate constant and changing the take-up speed as described above.

【0018】本願発明では筒状成形体に複合スパンボン
ド長繊維ウエブと共に、他の繊維を積層するか、混合し
てもよい。他の繊維として、該複合長繊維と、繊度や樹
脂等が異なるような繊維が使用できる。例えば、ポリア
ミド繊維、活性炭繊維、ポリエステル繊維、レ−ヨン等
のレギュラ−繊維や、繊度が大きいモノフイラメント等
が例示できる。他の繊維を積層等をする事により、ガス
吸着性、濾過精度、成型体の硬度等が改良できる。他の
繊維はウエブ、モノフイラメント、織編物、不織布、ネ
ツト、単繊維状にバラバラになつた物等が例示できる。
例えば、繊維径0.1〜8ミクロンのメンブレンフイル
タ−用シ−ト等を積層した場合、濾過精度がよくなる。
又カ−ボン繊維を含有する不織布や織布等を積層した物
はガス吸着性がある。他の繊維は複合スパンボンド長繊
維紡糸時、又は紡糸後に、該複合紡糸装置とは別の装置
から供給すればよい。例えば紡糸時に、該長繊維の紡糸
方向と斜め方向からエア−と共に他の繊維を供給する方
法、紡糸後、ネツトコンベア−に捕集された長繊維ウエ
ブの上に他の繊維を積層する方法等で可能である。又本
願では他の繊維の混合量は特に限定しないが、筒状成型
体の硬度や濾過精度等の見地から約1〜50重量%であ
ればよい。
In the present invention, other fibers may be laminated or mixed together with the composite spunbond long-fiber web on the tubular molded body. As the other fiber, a fiber having a fineness, a resin or the like different from that of the composite long fiber can be used. For example, polyamide fibers, activated carbon fibers, polyester fibers, regular fibers such as rayon, and monofilaments having a large fineness can be exemplified. By laminating other fibers, it is possible to improve gas adsorbability, filtration accuracy, hardness of the molded body, and the like. Examples of the other fiber include a web, a monofilament, a woven / knitted fabric, a non-woven fabric, a net, and monofilament-like pieces that have been separated.
For example, when a sheet for a membrane filter having a fiber diameter of 0.1 to 8 μm is laminated, the filtration accuracy is improved.
Further, a laminate of a non-woven fabric or a woven fabric containing carbon fiber has a gas adsorbing property. Other fibers may be supplied from a device different from the composite spinning device during or after spinning the composite spunbond continuous fiber. For example, at the time of spinning, a method of supplying other fibers together with air from the spinning direction and the oblique direction of the long fibers, a method of laminating other fibers on the long fiber web collected on a net conveyor after spinning, etc. It is possible with. Further, in the present application, the mixing amount of other fibers is not particularly limited, but it may be about 1 to 50% by weight from the viewpoint of hardness of the tubular molded body, filtration accuracy and the like.

【0019】本願発明の筒状成形体を使用した本発明の
フィルター及びドレーン材は良好な実用特性を示した
が、詳しくは実施例により示した。
The filter and drain material of the present invention using the tubular molded product of the present invention showed good practical characteristics, which are shown in detail in the examples.

【0020】[0020]

【実施例】以下実施例、比較例により、本発明を更に詳
細に説明する。なお各例において、筒状成形体の物性
や、濾過性能等の評価は以下に記載する方法による。 (濾過精度) 30リツトルの水を入れた水槽、ポン
プ、及びハウジングを備えた濾過機からなる循環式濾過
試験機を用いた。該濾過機のハウジングに濾材1本を取
付、水を毎分30リツトルの流量で循環させながら、水
槽に所定のケ−キを5g添加する。ケ−キ添加より1分
後に採取した濾過水100ccをメンブレンフイルタ−
で濾過する。メンブレンフイルタ−上に捕捉された粒子
のサイズを粒度分布測定機で測定し、最も大きな粒子の
サイズを測定する(μm)。濾材5本について同様に測
定し、それぞれの最大値の平均値を濾過精度とした(μ
m)。
The present invention will be described in more detail with reference to Examples and Comparative Examples. In each example, the physical properties of the tubular molded body, the filtration performance, and the like are evaluated by the methods described below. (Filtration Accuracy) A circulating filtration tester including a water tank containing 30 liters of water, a pump, and a filter provided with a housing was used. One filter medium is attached to the housing of the filter, and 5 g of a predetermined cake is added to the water tank while circulating water at a flow rate of 30 liters per minute. 100 cc of filtered water collected 1 minute after the cake was added to the membrane filter.
Filter through. The size of the particles captured on the membrane filter is measured by a particle size distribution analyzer, and the size of the largest particle is measured (μm). The same measurement was performed on five filter media, and the average of the maximum values was used as the filtration accuracy (μ
m).

【0021】(濾過精度分散指数) 前記濾過精度試験
で測定した5本の最大粒子径のデ−タより、下記の式で
算出した。なお濾過精度分散指数が0.7以下の場合、
濾過精度のバラツキが少いと判定した。 濾過精度分散指数=(A−B)/X X:濾材5本それぞれの最大粒子径の平均値(μm)。 A:濾材5本のうち最大粒子径が最も大であつた粒子の
粒径(μm)。 B:濾材5本のうち最大粒子径が最も小であつた粒子の
粒径(μm)。
(Filtration Accuracy Dispersion Index) From the data of the maximum particle diameters of five particles measured in the filtration accuracy test, it was calculated by the following formula. When the filtration accuracy dispersion index is 0.7 or less,
It was judged that there was little variation in filtration accuracy. Filtration accuracy dispersion index = (A−B) / XX: average value (μm) of the maximum particle diameter of each of the five filter media. A: The particle size (μm) of the particles having the largest maximum particle size among the five filter media. B: The particle size (μm) of the particles having the smallest maximum particle size among the five filter media.

【0022】(濾過ライフ及び耐圧強度) 前記循環式
濾過精度試験において、ケ−キとして火山灰土壌(平均
粒径12.9ミクロン、粒径1.0〜30ミクロンの範
囲内のものが99重量%以上)を20g添加して、循環
濾過を続け、水槽内の水が透明になった時点で濾過前後
の差圧を測定する。この粉末の添加と差圧の測定をフイ
ルタ−が変形するか又はフイルタ−の入口圧と出口圧の
差が10kg/cm2になるまで繰り返す。1回目の粉
末添加からフイルタ−が変形するまでの時間を濾過ライ
フ(分)とし、その時の差圧を耐圧強度(kg/cm2
)とする。
(Filtration Life and Compressive Strength) In the circulation type filtration accuracy test, as a cake, volcanic ash soil (mean particle size: 12.9 microns, particle size: 1.0 to 30 microns: 99% by weight) 20 g of the above) is added, circulation filtration is continued, and when the water in the water tank becomes transparent, the differential pressure before and after filtration is measured. The addition of the powder and the measurement of the differential pressure are repeated until the filter is deformed or the difference between the inlet pressure and the outlet pressure of the filter becomes 10 kg / cm @ 2. The time from the first addition of powder to the deformation of the filter is defined as the filtration life (min), and the pressure difference at that time is the pressure resistance (kg / cm2).
).

【0023】(泡立ち) 前記濾過精度試験において、
ケ−キ添加前、水のみ1分間循環させた後、水槽の泡立
ちを観察した。泡立ちが水槽一面にある場合、泡立ち有
りとし、ほとんど無い場合、泡立ちなしと判定した。
(Bubbling) In the filtration accuracy test,
Before adding the cake, only water was circulated for 1 minute, and then the foaming in the water tank was observed. When the bubbling was over the entire surface of the water tank, it was determined that there was bubbling, and when there was almost no bubbling, it was determined that there was no bubbling.

【0024】(実施例1)複合紡糸機、エアサツカ−、
ネツトコンベア−等を備えた複合スパンボンド紡糸装
置、及びネツトコンベア−、遠赤外線加熱機、金属製中
芯巻回型成形機等を備えた筒状成形機を使用し、筒状成
形体を製造した。使用した口金は孔径0.4mmの鞘芯
型複合紡糸口金であつた。第1成分として融点133
℃、MFR22(190℃,g/10分)の高密度ポリ
エチレンを鞘側に使用し、第2成分として融点164
℃、MFR60(230℃,g/10分)のポリプロピ
レンを芯側に使用し、複合比50/50(重量%)、紡
糸温度を、第1成分、290℃、第2成分310℃の条
件で紡糸し、エアサツカ−で繊維を3,000m/分の
速度で吸引し、繊維をエア−と共にネツトコンベア−に
吹き付けた。吹き付けられたエア−はネツトコンベア−
下部に備えられた吸引装置で吸引除去した。得られた繊
維は、繊度1.5d/fの鞘芯型長繊維であつた。又目
付けは20g/m2 であつた。該ウェブをネツトコンベ
ア−で筒状成形機に移送しながら温度145℃で加熱
し、外径30mmの金属製中芯に加熱しながら巻回し、
所定の外径とした後、25℃に冷却した後中芯を抜き取
り、切断し、内径30mm、外径60mm、長さ250
mmの筒状フイルタ−を得た。このフイルタ−は繊維が
融着し、硬い物であつた。筒状フイルタ−の濾過性能等
の試験結果を表1に示した。
(Example 1) Composite spinning machine, air sucker,
Manufacture a tubular molded body using a composite spunbond spinning device equipped with a net conveyor, etc., and a tubular molding machine equipped with a net conveyor, a far infrared heating machine, a metal core winding type molding machine, etc. did. The spinneret used was a sheath-core type composite spinning spinneret having a hole diameter of 0.4 mm. Melting point 133 as the first component
℃, MFR22 (190 ℃, g / 10 minutes) high density polyethylene is used on the sheath side, the second component is a melting point 164
C., polypropylene of MFR60 (230.degree. C., g / 10 minutes) is used on the core side, and the compounding ratio is 50/50 (wt%), the spinning temperature is the first component, 290.degree. C., the second component is 310.degree. The fibers were spun, the fibers were sucked with an air sucker at a speed of 3,000 m / min, and the fibers were blown together with the air onto a net conveyor. The blown air is a net conveyor.
It was removed by suction with a suction device provided at the bottom. The obtained fiber was a sheath-core type continuous fiber having a fineness of 1.5 d / f. The basis weight was 20 g / m 2. The web is heated at a temperature of 145 ° C. while being transferred to a tubular molding machine with a net conveyer, and wound around a metal core having an outer diameter of 30 mm while being heated,
After having a predetermined outer diameter, it is cooled to 25 ° C., and then the core is extracted and cut to have an inner diameter of 30 mm, an outer diameter of 60 mm, and a length of 250.
A cylindrical filter of mm was obtained. This filter was a hard product with fibers fused together. Table 1 shows the test results of the filtration performance of the tubular filter.

【0025】[0025]

【表1】 このフイルタ−は、濾過精度や濾過精度分散指数、濾過
ライフ等の性能が良い物であつた。又濾過時の泡立ちが
ない物であつた。又後記比較例1,2で示したステ−プ
ルを使用する方法に較べクリンパ−やカツタ−等の設備
が不要であり、しかも紡糸と成型を連続法で行うので生
産性よく製造できた。
[Table 1] This filter had good performance such as filtration accuracy, filtration accuracy dispersion index, and filtration life. The product was free from foaming during filtration. Further, compared with the method using staples shown in Comparative Examples 1 and 2 below, equipment such as a crimper and a cutter are not required, and since spinning and molding are performed by a continuous method, the product can be manufactured with high productivity.

【0026】(実施例2)エアサツカ−による紡糸速度
を1,500m/分とし、他の紡糸条件や、成形条件等
を実施例1に同じ条件とし、内径30mm、外径60m
m、長さ250mmの筒状フイルタ−を得た。得られた
ウェブの繊度は3d/fであつた。このフイルタ−は繊
維が融着し、硬い物であつた。筒状フイルタ−の濾過性
能等の試験結果を表1に示した。このフイルタ−は、濾
過精度や濾過精度分散指数、濾過ライフ等の性能が良
く、濾過時の泡立ちがない物であつた。又、ステ−プル
を使用する方法に較べクリンパ−やカツタ−等の設備が
不要でしかも紡糸と成型を連続法で行うので生産性よか
った。
Example 2 A spinning speed of 1,500 m / min was set with an air sucker, other spinning conditions and molding conditions were the same as in Example 1, and the inner diameter was 30 mm and the outer diameter was 60 m.
A cylindrical filter having a length of m and a length of 250 mm was obtained. The fineness of the obtained web was 3 d / f. This filter was a hard product with fibers fused together. Table 1 shows the test results of the filtration performance of the tubular filter. This filter had good properties such as filtration accuracy, filtration accuracy dispersion index, and filtration life, and did not cause foaming during filtration. Further, compared with the method using staples, equipment such as a crimper and a cutter is unnecessary, and since spinning and molding are performed by a continuous method, the productivity is good.

【0027】(比較例1)及び(比較例2) 鞘成分が高密度ポリエチレンで、芯成分がポリプロピレ
ンからなり、複合比が50/50(重量%)、繊度1.
4d/f、繊維長51mm、捲縮数12山/25mmの
ステ−プル(比較例1)、及び繊度3.0d/f、繊維
長51mm、捲縮数12山/25mm(比較例2)のス
テ−プルを各々使用し、目付け20g/m2 のカ−ド法
ウェブを作製した。このウェブを前記実施例1記載の筒
状成形機に移送し、温度145℃で加熱し金属製中芯に
巻回、冷却、切断等をし、実施例1に同じサイズの筒状
フイルタ−2種を得た。筒状フイルタ−の濾過性能等の
試験結果を表1に示した。このフイルタ−は、比較例
1、比較例2が共に、濾過精度や濾過精度分散指数、濾
過ライフ等の性能が良い物であつた。しかし何れも濾過
時の泡立ちがあり、食品分野の液体濾過には使用不可能
と判断された。
(Comparative Example 1) and (Comparative Example 2) The sheath component is high-density polyethylene, the core component is polypropylene, the composite ratio is 50/50 (wt%), and the fineness is 1.
4 d / f, fiber length 51 mm, crimp number 12 threads / 25 mm staple (Comparative Example 1), and fineness 3.0 d / f, fiber length 51 mm, crimp number 12 threads / 25 mm (Comparative Example 2) Each staple was used to make a carded web having a basis weight of 20 g / m @ 2. This web was transferred to the tubular molding machine described in Example 1, heated at a temperature of 145 ° C., wound around a metal core, cooled, cut, and the like, and a tubular filter-2 of the same size as Example 1 was used. Got seeds. Table 1 shows the test results of the filtration performance of the tubular filter. In this filter, Comparative Example 1 and Comparative Example 2 were both excellent in performance such as filtration accuracy, filtration accuracy dispersion index, and filtration life. However, all of them had foaming during filtration and were judged to be unusable for liquid filtration in the food field.

【0028】(比較例3)及び(比較例4) 前記比較例1及び2で使用した2種類のHDPE/PP
複合繊維を、温度60℃の温水で1時間洗浄し、その後
水洗し付着油剤を洗い落とした。遠心脱水後105℃で
乾燥後、前記比較例1及び2と同様の方法で目付け20
g/m2 のカ−ド法ウェブを作製した。カ−ド時ウエブ
の均一性がきわめて不良であり、繊維の開繊性が不良
で、直径約3〜8cmの塊状になつたウエブが多数混合
していた。又カ−ド時静電気の発生が激しく時々カ−ド
を停止しながら筒状成型体を成型した。このウェブを前
記実施例1記載の筒状成形機に移送し、温度145℃で
加熱し金属製中芯に巻回、冷却、切断等をし、実施例1
と同じサイズの筒状フイルタ−2種を得た。筒状フイル
タ−の濾過性能等の試験結果を表1に示した。このフイ
ルタ−は、比較例3(繊度1.4d/f)、比較例4
(繊度3.0d/f)の何れも、泡立ちは改善された
が、濾過精度や濾過ライフ等の性能が前記実施例1及び
2に較べ悪い物であつた。しかも濾過分散指数が大であ
り、均一性の劣るフイルタ−であつた。フイルタ−の性
能等を表1に示した。
Comparative Example 3 and Comparative Example 4 Two types of HDPE / PP used in Comparative Examples 1 and 2 above.
The composite fiber was washed with warm water at a temperature of 60 ° C. for 1 hour, and then washed with water to wash off the attached oil agent. After centrifugal dehydration and drying at 105 ° C., a basis weight of 20 was obtained in the same manner as in Comparative Examples 1 and 2.
A carded web of g / m @ 2 was prepared. The uniformity of the web during carding was extremely poor, the openability of the fibers was poor, and a large number of lumpy webs having a diameter of about 3 to 8 cm were mixed. In addition, static electricity was generated strongly during carding, and a cylindrical molded body was molded while the card was occasionally stopped. This web was transferred to the tubular molding machine described in Example 1 above, heated at a temperature of 145 ° C., wound around a metal core, cooled, cut, and the like.
A cylindrical filter-2 type having the same size as the above was obtained. Table 1 shows the test results of the filtration performance of the tubular filter. This filter is used in Comparative Example 3 (fineness 1.4 d / f), Comparative Example 4
Foaming was improved in all of the cases (fineness 3.0 d / f), but the performances such as filtration accuracy and filtration life were worse than those of Examples 1 and 2. Moreover, the filter had a large filtration dispersion index and was inferior in uniformity. The performance of the filter is shown in Table 1.

【0029】(実施例3)実施例1の複合スパンボンド
法紡糸装置、及び筒状成形体製造装置を使用し、フイル
タ−の厚み方向に繊度の異なるフイルタ−を成形した。
但し、実施例1の口金に変えて、孔径0.4mmの並列
型複合紡糸口金を使用した。第1成分としてMFR65
(g/10分、230℃)、融点138℃のプロピレン
・エチレン・ブテン−1ランダムコポリマ−(エチレン
4.0重量%、ブテンー1 4.5重量%)を、第2
成分としてMFR75(230℃,g/10分)、融点
163℃のポリプロピレンを使用し、紡糸温度を各29
0℃とし、複合比50/50(重量%)の条件で紡糸し
た。エアサツカ−の吸引速度をフイルタ−の巻初め11
25m/分、中頃2667m/分、終わり750m/分
に変化させ、繊度が各々、4d/f、1.7d/f、6
d/f、に変化した密度勾配型の筒状フイルタ−を得
た。なお、ウエブの目付は20g/m2、加熱温度は1
48℃であった。 このフイルタ−は繊維が熱融着し、
硬い物であつた。また、筒状フィルターは内径30m
m、外径60mm、長さ250mmであった。筒状フイ
ルタ−の濾過性能等の試験結果を表1に示した。このフ
イルタ−は、濾過精度や濾過精度分散指数がよい物であ
つた。又濾過時の泡立ちがない物であつた。又比較例1
及び2に較べクリンパ−やカツタ−等の設備が不要でし
かも紡糸と成型を連続法で行うので生産性よく製造でき
た。
(Example 3) Using the composite spunbond spinning apparatus of Example 1 and the apparatus for producing a tubular molded body, filters having different fineness in the thickness direction of the filter were molded.
However, instead of the spinneret of Example 1, a parallel type composite spinneret having a hole diameter of 0.4 mm was used. MFR65 as the first component
(G / 10 min, 230 ° C.), melting point 138 ° C. propylene / ethylene / butene-1 random copolymer (ethylene 4.0% by weight, butene 1 4.5% by weight)
MFR75 (230 ° C, g / 10min) and polypropylene with a melting point of 163 ° C are used as components, and the spinning temperature is 29 for each.
Spinning was carried out under the conditions of 0 ° C. and a composite ratio of 50/50 (% by weight). The suction speed of the air sucker is set to the beginning of the filter winding 11
25m / min, middle 2667m / min, end 750m / min, and fineness of 4d / f, 1.7d / f, 6 respectively.
A density gradient type tubular filter having a d / f ratio was obtained. The weight of the web is 20 g / m2 and the heating temperature is 1
It was 48 ° C. This filter has fibers fused by heat,
It was hard. Also, the cylindrical filter has an inner diameter of 30 m.
m, outer diameter 60 mm, and length 250 mm. Table 1 shows the test results of the filtration performance of the tubular filter. This filter had good filtration accuracy and filtration accuracy dispersion index. The product was free from foaming during filtration. Comparative Example 1
Compared with No. 2 and No. 2, equipment such as a crimper and a cutter were not necessary, and since spinning and molding were performed by a continuous method, the product could be manufactured with high productivity.

【0030】(実施例4)前記実施例1の複合スパンボ
ンド法紡糸装置、及び筒状成形体製造装置を使用し、フ
イルタ−を成形した。但し紡糸口金とエアサツカ−の間
の位置に、延伸ロ−ルを備えた装置を使用した。又該装
置は口金と延伸ロ−ルの間の位置に冷風送風型のクエン
チ装置が備えられていた。又紡糸口金は前記実施例3に
同じ孔径0.4mmの並列型紡糸口金を使用した。前記
実施例3と同じ2種の樹脂を使用し、複合比や紡糸温度
等を前記実施例3に同じ条件で紡糸した。エアサツカ−
で吸引する前の繊維を延伸ロ−ルで温度80℃で2倍に
延伸し、延伸後の糸をエアサツカ−で1500m/分の
速度で吸引しネツトコンベア−上に吹き付けた。又紡糸
時、口金から延伸ロ−ルの間で繊維の側方から温度24
℃の空気で0.3m/秒の風速でクエンチした。該繊維
の繊度は、延伸によるスリツプがあるせいか理論値よ
り、やや大で、3.2d/fであつた。又ウェブの目付
けは21g/m2であつた。捕集されたウェブを温度1
50℃で加熱し、内径30mm、外径60mm、長さ2
50mmの筒状フイルタ−を得た。このフイルタ−は繊
維が熱融着し、硬い物であつた。筒状フイルタ−の濾過
性能等の試験結果を表1に示した。このフイルタ−は、
繊度が本例の物と略同じ比較例2のステ−プルを用いた
物に較べて濾過ライフや耐圧性等がよい物であつた。又
濾過時の泡立ちがない物であつた。又比較例1及び2に
較べクリンパ−やカツタ−等の設備が不要でしかも紡糸
と成型を連続法で行うので生産性よく製造できた。
Example 4 A filter was molded using the composite spunbond spinning apparatus of Example 1 and the apparatus for producing a tubular molded body. However, an apparatus equipped with a drawing roll was used at a position between the spinneret and the air sucker. The apparatus was equipped with a cool air blowing type quench device at a position between the die and the drawing roll. As the spinneret, the parallel spinneret with the same hole diameter of 0.4 mm as in Example 3 was used. The same two kinds of resins as in Example 3 were used, and spinning was performed under the same conditions as in Example 3 with respect to the composite ratio, spinning temperature and the like. Air heater
The fiber before being sucked at was drawn twice by a drawing roll at a temperature of 80 ° C., and the drawn yarn was sucked by an air sucker at a speed of 1500 m / min and sprayed onto a net conveyor. During spinning, the temperature between the spinneret and the drawing roll is 24
Quench with air at 0 ° C. with a wind speed of 0.3 m / sec. The fineness of the fiber was 3.2 d / f, which was slightly larger than the theoretical value because of the slip due to stretching. The basis weight of the web was 21 g / m 2. Temperature of collected web 1
Heated at 50 ℃, inner diameter 30mm, outer diameter 60mm, length 2
A 50 mm tubular filter was obtained. This filter was hard because the fibers were heat-sealed. Table 1 shows the test results of the filtration performance of the tubular filter. This filter
Compared to the product using the staple of Comparative Example 2 having the same fineness as that of the product of this example, the product had better filtration life and pressure resistance. The product was free from foaming during filtration. Further, compared to Comparative Examples 1 and 2, equipment such as a crimper and a cutter are not required, and since spinning and molding are performed by a continuous method, the product can be manufactured with high productivity.

【0031】(実施例5)前記実施例1の複合スパンボ
ンド法紡糸装置、及び筒状成形体製造装置を使用し、フ
イルタ−を成形した。但し紡糸口金とエアサツカ−の間
の位置に、延伸ロ−ルを備えた装置を使用した。又該装
置は口金と延伸ロ−ルの間の位置に冷風送風型のクエン
チ装置が備えられていた。固有粘度が0.56で融点が
190℃のポリ(エチレンテレフタレ−トーco−エチ
レンイソフタレ−ト)と、固有粘度が0.65で融点が
254℃のポリエチレンテレフタレ−トとを使用した。
前記低融点樹脂を鞘側に、高融点樹脂を芯側に使用し、
複合比50/50(重量%)、紡糸温度を低融点樹脂が
280℃、高融点樹脂が290℃で複合紡糸した。紡糸
時に前記延伸ロ−ルで温度90℃で2倍に延伸し、エア
サツカ−で750m/分の速度でネツトコンベア−上に
吹き付けた。又紡糸時、口金から延伸ロ−ルの間で繊維
の側方から温度26℃の空気で0.4m/秒の風速でク
エンチした。得られた長繊維は、延伸によるスリツプが
あるせいか理論値よりやや大で、繊度6.2d/fであ
つた。又ウェブの目付けは21g/m2であつた。その
後該ウェブを前記実施例1同様、温度195℃で加熱筒
状に成型し、内径30mm、外径60mm、長さ250
mmの筒状フイルタ−を得た。このフイルタ−は繊維が
熱融着し、硬い物であつた。筒状フイルタ−の濾過性能
等の試験結果を表1に示した。このフイルタ−は、濾過
精度分散指数や耐圧性等がよい物であつた。又濾過時の
泡立ちがない物であつた。
(Example 5) A filter was formed by using the spinning apparatus for composite spunbonding method of Example 1 and the apparatus for producing a tubular molded body. However, an apparatus equipped with a drawing roll was used at a position between the spinneret and the air sucker. The apparatus was equipped with a cool air blowing type quench device at a position between the die and the drawing roll. Poly (ethylene terephthalate co-ethylene isophthalate) having an intrinsic viscosity of 0.56 and a melting point of 190 ° C. and polyethylene terephthalate having an intrinsic viscosity of 0.65 and a melting point of 254 ° C. were used. .
Using the low melting point resin on the sheath side and the high melting point resin on the core side,
Composite spinning was carried out at a composite ratio of 50/50 (wt%) and a spinning temperature of 280 ° C. for the low melting point resin and 290 ° C. for the high melting point resin. At the time of spinning, the film was drawn twice at a temperature of 90 ° C. by the above-mentioned drawing roll and sprayed on a net conveyer at a speed of 750 m / min with an air sucker. During spinning, the fiber was quenched from the side of the fiber between the spinneret and the drawing roll with air at a temperature of 26 ° C. at a wind speed of 0.4 m / sec. The obtained long fibers were slightly larger than the theoretical value because of the slip due to stretching, and the fineness was 6.2 d / f. The basis weight of the web was 21 g / m 2. Then, the web was molded into a heating cylinder at a temperature of 195 ° C. as in Example 1, and the inner diameter was 30 mm, the outer diameter was 60 mm, and the length was 250.
A cylindrical filter of mm was obtained. This filter was hard because the fibers were heat-sealed. Table 1 shows the test results of the filtration performance of the tubular filter. This filter had good filtration accuracy dispersion index and pressure resistance. The product was free from foaming during filtration.

【0032】(実施例6)実施例1の複合スパンボンド
法紡糸装置、及び筒状成形体製造装置を使用し、筒状ド
レ−ン材を成形した。但し口金は孔径0.6mmの鞘芯
型紡糸口金を使用し、筒状成形機の中芯は外径100m
mの金属中芯を使用した。MFR22(190℃,g/
10分)、融点132℃の高密度ポリエチレンを鞘側
に、MFR18(230℃,g/10分)、融点164
℃のポリプロピレンを芯側に使用し、複合比40/60
(重量%)、紡糸温度が鞘側285℃、芯側300℃、
で一対のピンチロ−ルで繊維を挟み込むように300m
/分で紡糸し、該ピンチロ−ルの下部に備えられたエア
サツカ−で吸引し速度338m/分の条件でネツトコン
ベア−の上に吹き付けた。該繊維は繊度が32d/fで
あつた。その後、該長繊維ウェブを、実施例1同様、温
度147℃で加熱し、外径100mmの金属製中芯に所
定の外径になるまで巻回した。その後28℃に冷却し、
中芯を抜き取り、カツタ−で切断し内径100mm,外
径150mm,長さ1000mmのドレ−ン材を得た。
このドレ−ン材を5本、長さ12cmの塩化ビニル製パ
イプで連結し、長さ5mのドレ−ン材とした。その後片
方の端のみ厚み1.2mmのポリプロピレン樹脂板で融
着しシ−ルした。この連結されたドレ−ン材30組を使
用し、端面シ−ル側を上流側とし、否シ−ル側をコンク
リ−ト製排水溝に開口し、2m間隔でゴルフ場の傾斜地
に埋設し排水材として使用した。このドレン材を使用し
た場所は、ドレ−ン材を使用していない他の場所に較
べ、排水性がよい事を確認した。
(Example 6) Using the composite spunbond spinning apparatus of Example 1 and the apparatus for producing a tubular molded body, a tubular drain material was molded. However, a spinneret type spinneret with a hole diameter of 0.6 mm is used as the spinneret, and the outer diameter of the core of the tubular molding machine is 100 m.
m metal core was used. MFR22 (190 ℃, g /
10 minutes), high-density polyethylene having a melting point of 132 ° C on the sheath side, MFR18 (230 ° C, g / 10 minutes), melting point 164
℃ polypropylene is used on the core side and the composite ratio is 40/60
(Wt%), spinning temperature is 285 ° C. on sheath side, 300 ° C. on core side,
300m so that the fiber is sandwiched between a pair of pinch rolls.
The fiber was spun at a speed of 1 / min, sucked with an air sucker provided under the pinch roll, and sprayed onto a net conveyor at a speed of 338 m / min. The fiber had a fineness of 32 d / f. Then, the long fiber web was heated at a temperature of 147 ° C. as in Example 1, and was wound around a metal core having an outer diameter of 100 mm until a predetermined outer diameter was obtained. Then cool to 28 ° C,
The core was taken out and cut with a cutter to obtain a drain material having an inner diameter of 100 mm, an outer diameter of 150 mm and a length of 1000 mm.
Five drain materials were connected by a vinyl chloride pipe having a length of 12 cm to form a drain material having a length of 5 m. Thereafter, only one end was fused and sealed with a polypropylene resin plate having a thickness of 1.2 mm. Using 30 sets of these connected drain materials, the end face seal side is the upstream side, the no seal side is opened to the concrete drain groove, and it is buried in the sloping ground of the golf course at intervals of 2 m. Used as drainage material. It was confirmed that the place where the drain material was used had better drainage than the other place where the drain material was not used.

【0033】(実施例7)実施例1の複合スパンボンド
法紡糸装置、及び筒状成形体製造装置を使用し、筒状ド
レ−ン材を成形した。但し口金は孔径1.0mmの鞘芯
型複合紡糸口金を使用した。実施例3と同じ、プロピレ
ン・エチレン・ブテン−1ランダムコポリマ−及びポリ
プロピレンを使用し、前記ランダムコポリマ−を鞘側
に、ポリプロピレンを芯側に用い、紡糸温度を各々28
0℃で紡糸した。紡糸はエアサツカ−の吸引を停止し紡
糸の自重で紡糸しウエブをネツトコンベア−上に捕集し
た。得られた繊維は、480d/f、であつた。その後
実施例1と同様の方法でこの長繊維ウエブを、温度15
0℃で加熱しながら、外径80mmの金属製中芯に所定
の外径になるまで巻回した。その後28℃に冷却し、中
芯を抜き取り、カツタ−で切断し内径80mm、外径1
80mm、長さ1000mmのドレ−ン材を得た。この
ドレ−ン材は繊維が熱融着し、硬い物であつた。このド
レ−ン材を2本、その連結部を幅150mmで透水性の
ある不織布を卷きつけ針金で締結し、長さ2mのドレ−
ン材とした。その後、片方の端のみ厚み1.2mmのポ
リプロピレン樹脂板を融着しシ−ルした。この連結され
たドレ−ン材40組を使用し、端面シ−ル側を上流側と
し、否シ−ル側をコンクリ−ト製排水溝に開口し、1.
5m間隔で軟弱地盤造成地の法面に埋設し排水材として
使用した。このドレン材を使用した場所は、排水性がよ
い事を確認した。
Example 7 Using the composite spunbond spinning apparatus of Example 1 and the apparatus for producing a tubular molded body, a tubular drain material was molded. However, as the spinneret, a sheath-core type composite spinneret having a hole diameter of 1.0 mm was used. The same propylene / ethylene / butene-1 random copolymer and polypropylene as in Example 3 were used, the random copolymer was used on the sheath side and polypropylene on the core side, and the spinning temperature was 28 each.
It was spun at 0 ° C. For the spinning, the suction of the air sucker was stopped, the spinning was performed by the weight of the spinning, and the web was collected on the net conveyor. The fibers obtained were 480 d / f. Thereafter, the continuous fiber web was treated at a temperature of 15 with the same method as in Example 1.
While heating at 0 ° C., the metal core having an outer diameter of 80 mm was wound to a predetermined outer diameter. After that, it was cooled to 28 ° C, the core was taken out, and it was cut with a cutter to give an inside diameter of 80 mm and an outside diameter of
A drain material having a length of 80 mm and a length of 1000 mm was obtained. This drain material was a hard material in which the fibers were heat-sealed. This drain material is two pieces, and the connecting portion is wound with a water-permeable non-woven fabric having a width of 150 mm and fastened with a wire to make a drain with a length of 2 m.
Made into wood. Then, a polypropylene resin plate having a thickness of 1.2 mm was fused and sealed on only one end. Using 40 sets of the drain materials connected to each other, the end face seal side is set to the upstream side, and the non-sealing side is opened to the concrete drainage groove.
It was buried as a drainage material at intervals of 5 m on the slope of soft ground land. It was confirmed that the place where this drain material was used had good drainage.

【0034】(実施例8)濾過ライフ試験後のフイルタ
−を逆洗浄法で水洗し、再濾過テストを行った。試験装
置は前記濾過精度試験装置を使用した。筒状フイルタ−
は、実施例1及び比較例1の筒状フイルタ−を使用し
た。該筒状フイルタ−を、前記濾過ライフテストに同じ
条件で濾過ライフテストをし、差圧が3kg/cm2 に
なつた時点で濾過ライフテストを一旦中止した。その
後、水のみフイルタ−の内側から外側に6リツトル/
分、20分間送り、捕捉されたケ−キの逆洗浄をした。
その後、前記濾過ライフ試験と同じ条件で水槽にケ−キ
を再添加し濾過ライフ試験を行った。実施例1のフイル
タ−は逆洗浄前の濾過時間と逆洗浄後の濾過ライフとを
併せて合計62分であつた(差圧が3kg/cmになる
までに34分、逆洗浄後の濾過ライフが28分)。又逆
洗浄後の耐圧性は6.7kg/cm2 であつた。比較例
1のフイルタ−は、逆洗浄前の濾過時間と逆洗浄後の濾
過ライフとを併せて合計46分であつた(差圧が3kg
/cmになるまでに25分、逆洗浄後の濾過ライフが2
1分)。又逆洗浄後の耐圧性は5.9kg/cm2 であ
つた。本発明のフイルタ−は、逆洗浄により濾過ライフ
の延長が可能であり、再使用が可能であつた。しかし比
較例1の物は逆洗浄による濾過ライフの延長時間は僅か
であつた。
Example 8 The filter after the filtration life test was washed with water by a back washing method and a re-filtration test was conducted. The test apparatus used was the filtration accuracy test apparatus. Cylindrical filter
Used the tubular filters of Example 1 and Comparative Example 1. The tubular filter was subjected to a filtration life test under the same conditions as the filtration life test, and when the pressure difference reached 3 kg / cm @ 2, the filtration life test was once stopped. After that, 6 liters of water only from the inside to the outside of the filter /
For 20 minutes, the cake was backwashed.
After that, the cake was added again to the water tank under the same conditions as in the filtration life test, and the filtration life test was conducted. The filter of Example 1 had a total of 62 minutes, including the filtration time before backwashing and the filtration life after backwashing (34 minutes until the differential pressure reached 3 kg / cm, the filtration life after backwashing). 28 minutes). The pressure resistance after backwashing was 6.7 kg / cm @ 2. The filter of Comparative Example 1 had a total filtration time of 46 minutes before the backwashing and a filtration life after the backwashing (the differential pressure was 3 kg.
It takes 25 minutes to reach 1 / cm, and the filtration life after backwashing is 2
1 minute). The pressure resistance after backwashing was 5.9 kg / cm @ 2. The filter of the present invention could be extended in filtration life by backwashing and could be reused. However, in the product of Comparative Example 1, the extension time of the filtration life due to the back washing was short.

【0035】[0035]

【発明の効果】本発明の筒状成形体は、濾過性能に優
れ、耐圧性が大、通水時の泡立ちがない、硬度が大、透
水性に優れる、逆洗が可能である等の特性があるためフ
ィルターとして、あるいはドレーン材として好適に使用
される。又本発明の筒状成型体の製法は、簡単な設備で
細繊度から太繊度の筒状成型体を効率よく容易に製造す
ることができる。得られた繊維も紡糸油剤を使用しない
ので油剤の付着がない。
EFFECTS OF THE INVENTION The cylindrical molded article of the present invention has characteristics such as excellent filtration performance, high pressure resistance, no foaming during water passage, high hardness, excellent water permeability, and backwash capability. Therefore, it is preferably used as a filter or a drain material. Further, the method for producing a tubular molded body of the present invention can efficiently and easily produce a tubular molded body having a fineness to a large fineness with simple equipment. Since the obtained fiber does not use a spinning oil agent, the oil agent does not adhere to it.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 D04H 3/14 D04H 3/14 A Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI Technical display location D04H 3/14 D04H 3/14 A

Claims (20)

【特許請求の範囲】[Claims] 【請求項1】 融点差が10℃以上ある低融点樹脂成分
と高融点樹脂成分との少なくとも2種の成分からなる多
成分複合スパンボンド長繊維により卷回され、かつ該低
融点樹脂成分で熱融着された筒状成形体。
1. A multi-component composite spunbond filament consisting of at least two components, a low-melting point resin component and a high-melting point resin component having a melting point difference of 10 ° C. or more, is wound and heated by the low-melting point resin component. A fused cylindrical molded body.
【請求項2】 多成分複合スパンボンド長繊維が10〜
90重量%の低融点樹脂成分及び90〜10重量%の高
融点樹脂成分からなり、該低融点樹脂成分が繊維の表面
の少なくとも一部を形成していることを特徴とする請求
項1に記載の筒状成形体。
2. A multicomponent composite spunbond filament is 10 to 10.
The low melting point resin component of 90% by weight and the high melting point resin component of 90 to 10% by weight, the low melting point resin component forming at least a part of the surface of the fiber. Cylindrical molded body.
【請求項3】 繊度の最大と最小との比が1.5以上で
ある多成分複合スパンボンド長繊維を用いて、それを筒
状成形体の厚み方向に沿って配列した請求項1若しくは
2に記載の筒状成形体。
3. A multi-component composite spunbond filament having a ratio of maximum to minimum of fineness of 1.5 or more, which is arranged along the thickness direction of the tubular molded body. The cylindrical molded body according to item 1.
【請求項4】 濾過精度分散指数が0.7以下である請
求項1〜3の何れかに記載の筒状成形体。
4. The tubular molded article according to claim 1, which has a filtration accuracy dispersion index of 0.7 or less.
【請求項5】 他の繊維が複合スパンボンド長繊維と積
層又は混合されている請求項1〜3の何れかに記載の筒
状成形体。
5. The tubular molded body according to claim 1, wherein other fibers are laminated or mixed with the composite spunbond continuous fibers.
【請求項6】 多成分複合スパンボンド長繊維が繊度
0.2〜70,000d/fである請求項1〜3の何れ
かに記載の筒状成形体。
6. The tubular molded product according to claim 1, wherein the multicomponent composite spunbond continuous fibers have a fineness of 0.2 to 70,000 d / f.
【請求項7】 低融点樹脂成分がポリエチレン、プロピ
レンと他のαーオレフインとの結晶性共重合体若しくは
低融点ポリエステルの何れかから選ばれた樹脂であり、
高融点樹脂成分がポリプロピレンである請求項1〜3の
何れかに記載の筒状成形体。
7. The resin having a low melting point is a resin selected from polyethylene, a crystalline copolymer of propylene and other α-olefin, and a low melting point polyester,
The tubular molded body according to any one of claims 1 to 3, wherein the high melting point resin component is polypropylene.
【請求項8】 低融点樹脂がポリエチレン、プロピレン
と他のαーオレフインとの結晶性共重合体、低融点ポリ
エステルの何れかから選ばれた樹脂であり、高融点樹脂
成分がポリエチレンテレフタレ−トである請求項1〜3
の何れかに記載の筒状成形体。
8. The low melting point resin is a resin selected from polyethylene, a crystalline copolymer of propylene and other α-olefin, and a low melting point polyester, and the high melting point resin component is polyethylene terephthalate. Claims 1-3
The cylindrical molded body according to any one of 1.
【請求項9】 筒状成形体の表面又は内部の何れかが凹
凸状に型付された請求項1〜3の何れかに記載の筒状成
形体。
9. The cylindrical molded body according to claim 1, wherein either the surface or the inside of the cylindrical molded body is shaped in an uneven shape.
【請求項10】 多成分複合スパンボンド法で、融点差
が10℃以上ある低融点樹脂成分と高融点樹脂成分との
少なくとも2種の成分からなる複合長繊維を紡糸しウエ
ブとし、該ウエブを低融点樹脂の融着温度以上に加熱し
ながら中芯に巻回し、該複合長繊維を熱融着することに
よる、筒状成形体の製造方法。
10. A multi-component composite spunbond method is used to spin a composite long fiber composed of at least two components, a low melting point resin component and a high melting point resin component having a melting point difference of 10 ° C. or more, into a web. A method for producing a tubular molded body, which comprises winding a composite core fiber around a core while heating at a fusion temperature of the low melting point resin or above and heat-sealing the composite long fiber.
【請求項11】 多成分複合スパンボンド長繊維が10
〜90重量%の低融点樹脂成分及び90〜10重量%の
高融点樹脂成分からなり、該低融点樹脂成分が繊維の表
面の少なくとも一部を形成していることを特徴とする請
求項10に記載の筒状成形体の製造方法。
11. A multicomponent spunbond filament is 10 fibers.
11. A low melting point resin component of 90% by weight and a high melting point resin component of 90% by weight, the low melting point resin component forming at least a part of the surface of the fiber. A method for producing the cylindrical molded body described.
【請求項12】 複合繊維の押出量又は紡糸時の引取り
速度の何れかを変えて紡糸し、複合長繊維の同一繊維の
繊度の最大と最小との比が1.5以上であるウエブを製
造し、該ウエブを融着温度以上に加熱しながら中芯に巻
回し、該長繊維の低融点樹脂を熱融着することによる、
筒状成形体の厚み方向に沿って繊度が1.5倍以上変化
している長繊維を配列することを特徴とする請求項10
若しくは11に記載の筒状成形体の製造方法。
12. A web which is spun by changing either the extrusion amount of the composite fiber or the take-up speed during spinning, and the ratio of the maximum and the minimum of the fineness of the same fiber of the composite filament is 1.5 or more. Manufactured, wound around the core while heating the web above the fusion temperature, by heat-sealing the low melting point resin of the long fibers,
11. Long fibers whose fineness is changed by 1.5 times or more are arranged along the thickness direction of the tubular molded body.
Alternatively, the method for producing a tubular molded body according to item 11.
【請求項13】 紡糸後の複合繊維を0.1〜5m/秒
の風速でクエンチしながらエアサツカ−形牽引装置に導
入し高速気流で500〜20,000m/分の速度で紡
糸し、長繊維の繊度を0.2〜300d/fとする請求
項10〜12の何れかに記載の筒状成形体の製造方法。
13. The spun composite fiber is introduced into an air sucker type traction device while being quenched at a wind speed of 0.1 to 5 m / sec and spun in a high speed air stream at a speed of 500 to 20,000 m / min to obtain a long fiber. The method for producing a tubular molded body according to any one of claims 10 to 12, wherein the fineness is 0.2 to 300 d / f.
【請求項14】 紡糸時の自重で又は引取ロ−ルで紡糸
し、且つ紡糸時に複合繊維をクエンチなし又はクエンチ
しながら紡糸し、長繊維の繊度を17〜70,000d
/fとする請求項10〜12の何れかに記載の製造方
法。
14. Spinning with the dead weight at the time of spinning or with a take-up roll, and spinning with or without quenching the conjugate fiber at the time of spinning, and the fineness of the long fiber is from 17 to 70,000 d.
/ F, The manufacturing method in any one of Claims 10-12.
【請求項15】 紡糸から筒状成形体の製造に至るまで
の間で、1.2〜9倍延伸する請求項10〜12の何れ
かに記載の筒状成形体の製造方法。
15. The method for producing a tubular molded article according to claim 10, wherein the stretching is performed 1.2 to 9 times during the period from spinning to production of the tubular molded article.
【請求項16】 低融点樹脂成分がポリエチレン、プロ
ピレンと他のαーオレフインとの結晶性共重合体、低融
点ポリエステルの何れかから選ばれた樹脂であり、高融
点樹脂成分がポリプロピレン若しくはポリエチレンテレ
フタレートである請求項10〜12の何れかに記載の筒
状成形体の製造方法。
16. The low melting point resin component is a resin selected from polyethylene, a crystalline copolymer of propylene and other α-olefin, and a low melting point polyester, and the high melting point resin component is polypropylene or polyethylene terephthalate. The method for producing a tubular molded body according to any one of claims 10 to 12.
【請求項17】 紡糸から筒状成形体の製造に至るまで
の間で、他の繊維を複合スパンボンド長繊維ウエブと層
状に積層するか又は複合スパンボンド長繊維ウエブと混
合することによる、請求項10〜12の何れかに記載の
筒状成形体の製造方法。
17. A method comprising laminating other fibers with a composite spunbond long-fiber web or mixing them with the composite spunbond long-fiber web between the spinning and the production of the tubular molded body. Item 13. A method for producing a tubular molded body according to any one of Items 10 to 12.
【請求項18】 筒状成形体を成型時、型付ロ−ルを該
ウエブ又は筒状成形体に接触させ、該成形体の表面又は
内部を凹凸状にする、請求項10〜12の何れかに記載
の筒状成形体の製造方法。
18. The method according to claim 10, wherein a roll with a mold is brought into contact with the web or the cylindrical molded body when the cylindrical molded body is molded to make the surface or the inside of the molded body uneven. A method for producing a tubular molded body according to claim 1.
【請求項19】 請求項1〜3項の何れかに記載の筒状
成形体を用いたフィルター。
19. A filter using the tubular molded body according to claim 1.
【請求項20】 請求項1〜3項の何れかに記載の筒状
成形体を用いたドレーン材。
20. A drain material using the tubular molded body according to any one of claims 1 to 3.
JP7303561A 1994-12-22 1995-10-27 Tubular formed article and its production Pending JPH08226064A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7303561A JPH08226064A (en) 1994-12-22 1995-10-27 Tubular formed article and its production

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6-336388 1994-12-22
JP33638894 1994-12-22
JP7303561A JPH08226064A (en) 1994-12-22 1995-10-27 Tubular formed article and its production

Publications (1)

Publication Number Publication Date
JPH08226064A true JPH08226064A (en) 1996-09-03

Family

ID=26563551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7303561A Pending JPH08226064A (en) 1994-12-22 1995-10-27 Tubular formed article and its production

Country Status (1)

Country Link
JP (1) JPH08226064A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088459A (en) * 1996-09-11 1998-04-07 Chisso Corp Nonwoven fabric of filament
JPH1088455A (en) * 1996-09-11 1998-04-07 Chisso Corp Nonwoven fabric of filament
JPH1119434A (en) * 1997-06-30 1999-01-26 Chisso Corp Nonwoven fabric and filter using the same
JP2006150222A (en) * 2004-11-29 2006-06-15 Daiwabo Co Ltd Cylindrical filter and its production method
JP2007083209A (en) * 2005-09-26 2007-04-05 Yamaha Motor Co Ltd Water purifying filter, and manufacturing method of self-supporting cylindrical hollow body for the water purifying filter
KR100875842B1 (en) * 1999-03-30 2008-12-24 칫소가부시키가이샤 Filter cartridge
CN105696200A (en) * 2016-03-03 2016-06-22 张家港高品诚医械科技有限公司 Batch-type non-woven fabric melt-blowing method and non-woven fabric
CN105734834A (en) * 2016-03-03 2016-07-06 张家港高品诚医械科技有限公司 Continuous non-woven fabric melt-blowing method and non-woven fabric

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1088459A (en) * 1996-09-11 1998-04-07 Chisso Corp Nonwoven fabric of filament
JPH1088455A (en) * 1996-09-11 1998-04-07 Chisso Corp Nonwoven fabric of filament
JPH1119434A (en) * 1997-06-30 1999-01-26 Chisso Corp Nonwoven fabric and filter using the same
KR100875842B1 (en) * 1999-03-30 2008-12-24 칫소가부시키가이샤 Filter cartridge
JP2006150222A (en) * 2004-11-29 2006-06-15 Daiwabo Co Ltd Cylindrical filter and its production method
JP2007083209A (en) * 2005-09-26 2007-04-05 Yamaha Motor Co Ltd Water purifying filter, and manufacturing method of self-supporting cylindrical hollow body for the water purifying filter
CN105696200A (en) * 2016-03-03 2016-06-22 张家港高品诚医械科技有限公司 Batch-type non-woven fabric melt-blowing method and non-woven fabric
CN105734834A (en) * 2016-03-03 2016-07-06 张家港高品诚医械科技有限公司 Continuous non-woven fabric melt-blowing method and non-woven fabric

Similar Documents

Publication Publication Date Title
US8410006B2 (en) Composite filter media with high surface area fibers
JP5819832B2 (en) Nozzles, apparatus, systems and methods for forming nanofibrous webs and articles made by this method
KR100323320B1 (en) Filter media and preparation method thereof
US6230901B1 (en) Microfine fiber product and process for producing the same
JPH04370260A (en) Nonwoven material consisting of two or more layers having filtering characteristic for a long period of time and method for its production
US20060089072A1 (en) Composite filtration media
AU1685097A (en) High efficiency breathing mask fabrics
JPH1190135A (en) Pleated filter
KR19990071608A (en) High precision filter
KR100367542B1 (en) Cylindrical molded article and its manufacturing method
CN1550603A (en) Method of forming high-loft spunbond non-woven webs and product formed thereby
JPH08226064A (en) Tubular formed article and its production
KR100273483B1 (en) Post-treatment of nonwoven webs
JP2001149720A (en) Filter
JP3326808B2 (en) filter
JPH0596110A (en) Cylindrical filter and its production
JP4751604B2 (en) Cylindrical filter and manufacturing method thereof
JPH08209519A (en) Cylindrical formed body and its production or the like
JP4139141B2 (en) Cylindrical filter and manufacturing method thereof
JP2000271417A (en) Filter medium sheet and pleat filter using the same
CA2827950A1 (en) Highly uniform spunbonded nonwoven fabrics
JP3421846B2 (en) Method for filtering suspension containing concrete or stone sludge
JPH1119435A (en) Cylindrical filter composed of extra fine conjugate fiber nonwoven fabric and its production
JP3713924B2 (en) Pleated filter
JP2001096110A (en) Cylindrical filter

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040127