JPH08225648A - Curable composition and production of thick-wall molding therefrom - Google Patents
Curable composition and production of thick-wall molding therefromInfo
- Publication number
- JPH08225648A JPH08225648A JP7335639A JP33563995A JPH08225648A JP H08225648 A JPH08225648 A JP H08225648A JP 7335639 A JP7335639 A JP 7335639A JP 33563995 A JP33563995 A JP 33563995A JP H08225648 A JPH08225648 A JP H08225648A
- Authority
- JP
- Japan
- Prior art keywords
- formula
- curable composition
- hydrocarbon group
- crosslinking agent
- titanium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Silicon Polymers (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、加熱により硬化できる
シルセスキオキサンラダーポリマーを主成分とする硬化
性組成物及びそれを用いる肉厚成形体の作製方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a curable composition containing a silsesquioxane ladder polymer as a main component, which can be cured by heating, and a method for producing a thick molded product using the curable composition.
【0002】[0002]
【従来技術】オルガノポリシルセスキオキサンは梯子状
の構造をもつラダー型ポリシロキサンであり、耐熱性や
硬度、耐摩耗性など優れた特性を示すため、コーティン
グ材料や、電気絶縁膜などに利用されている。しかしこ
のような特性をもつ反面、脆弱であるだけでなく、この
ようなラダー型ポリシロキサンの硬化は水やアルコール
などを副生する縮合反応によるものであるため、一定以
上の膜厚を形成することは非常に困難であり、もっぱら
薄膜やコーティング膜として用いられているにすぎな
い。2. Description of the Related Art Organopolysilsesquioxane is a ladder-type polysiloxane having a ladder-like structure. Since it exhibits excellent properties such as heat resistance, hardness, and wear resistance, it is used as a coating material and electrical insulation film. Has been done. However, in spite of having such characteristics, it is not only brittle, but since the curing of such ladder-type polysiloxane is due to a condensation reaction that produces water, alcohol, etc., it forms a film thickness above a certain level. It is extremely difficult to do so, and it is used only as a thin film or a coating film.
【0003】また、一般のポリシロキサンの縮合触媒と
して酸、アルカリ、アミンなど種々の化合物が知られて
おり、その中にチタネートがある。例えば、ポリシロキ
サンの硬化触媒としてチタンキレートを用いた技術(特
開平4−293962号公報)があるが、これは室温硬
化性と接着面からの界面剥離性への効果を狙ったもので
ある。しかし、硬化触媒の選択によりポリシロキサンの
力学的特性を飛躍的に向上させるという技術はこれまで
のところ見られない。Various compounds such as acids, alkalis and amines are known as condensation catalysts for general polysiloxanes, and titanate is one of them. For example, there is a technique using titanium chelate as a curing catalyst for polysiloxane (Japanese Patent Laid-Open No. 4-293962), which aims at an effect on room temperature curing property and interfacial peeling property from an adhesive surface. However, no technique has so far been found to dramatically improve the mechanical properties of polysiloxane by selecting a curing catalyst.
【0004】[0004]
【発明が解決しようとする課題】本発明の目的は、ラダ
ー型ポリシロキサンのもつ特性を活かしながら、肉厚の
成形体を作製できる硬化性組成物、及びこれを用いた耐
熱性、高弾性率の肉厚成形体の作製方法を提供すること
にある。DISCLOSURE OF THE INVENTION An object of the present invention is to provide a curable composition capable of producing a thick molded product while utilizing the characteristics of ladder-type polysiloxane, and heat resistance and high elastic modulus using the curable composition. Another object of the present invention is to provide a method for producing a thick molded article.
【0005】[0005]
【課題を解決するための手段】本発明の目的は、硬化触
媒の中でも特にチタン系の触媒を取り上げ、シルセスキ
オキサンラダーポリマーにこのチタン系触媒を組み合わ
せることを特徴とし、場合によっては多官能性架橋剤及
び水、あるいはシリカ系架橋剤を組み合わせた硬化性組
成物を構成することにより達成された。The object of the present invention is to take a titanium-based catalyst among curing catalysts and to combine this titanium-based catalyst with a silsesquioxane ladder polymer. It was achieved by constructing a curable composition in which a hydrophilic crosslinking agent and water or a silica-based crosslinking agent are combined.
【0006】即ち、本発明は、以下の構成である。 式(1)That is, the present invention has the following configuration. Formula (1)
【0007】[0007]
【化3】 Embedded image
【0008】(式中、R1 は1価の炭化水素基を表し、
互いに同一でも異なってもよい、R2は1価の芳香族炭
化水素基を表し、互いに同一でも異なってもよい、R3
は水素原子又は1価の炭化水素基を表し、l、m、nは
2≦l+m+nを満足する0又は正の整数を表す。)で
表される数平均分子量500以上のシルセスキオキサン
ラダーポリマーとチタン系触媒とを含む硬化性組成物。 式(1)で表されるシルセスキオキサンラダーポリ
マー、チタン系触媒、式(2)(In the formula, R 1 represents a monovalent hydrocarbon group,
R 2 may be the same as or different from each other, R 2 represents a monovalent aromatic hydrocarbon group, and may be the same or different from each other, R 3
Represents a hydrogen atom or a monovalent hydrocarbon group, and l, m and n represent 0 or a positive integer satisfying 2 ≦ l + m + n. ) A curable composition comprising a silsesquioxane ladder polymer having a number average molecular weight of 500 or more and a titanium catalyst. Silsesquioxane ladder polymer represented by formula (1), titanium-based catalyst, formula (2)
【0009】[0009]
【化4】 [Chemical 4]
【0010】(式中、R4 は1価の炭化水素基を表し、
kは1≦k≦7を満足する正の整数である。)で表され
る多官能性架橋剤、及び水を含む硬化性組成物。 式(1)で表されるシルセスキオキサンラダーポリ
マー、チタン系触媒、及びシリカ系架橋剤を含む硬化性
組成物。 前記記載の式(1)で表されるシルセスキオキサ
ンラダーポリマー、チタン系触媒、前記記載の式
(2)で表される多官能性架橋剤、及びシリカ系架橋剤
を含む硬化性組成物。 前記記載の式(1)で表されるシルセスキオキサ
ンラダーポリマー100重量部に対して、20〜200
体積部の有機溶媒に均一に溶解あるいは分散させた前記
〜のいずれか1項記載の硬化性組成物を、用いた有
機溶媒の沸点より低い温度で8時間以上保持し、その後
20〜400℃、好ましくは20〜250℃の範囲で段
階的あるいは連続的に昇温させることを特徴とする厚さ
0.5mm以上の肉厚成形体の作製方法。(In the formula, R 4 represents a monovalent hydrocarbon group,
k is a positive integer that satisfies 1 ≦ k ≦ 7. C.) A curable composition containing a polyfunctional crosslinking agent represented by the formula (4) and water. A curable composition comprising a silsesquioxane ladder polymer represented by the formula (1), a titanium-based catalyst, and a silica-based crosslinking agent. Curable composition containing the silsesquioxane ladder polymer represented by the above formula (1), a titanium-based catalyst, a polyfunctional crosslinking agent represented by the above formula (2), and a silica-based crosslinking agent . 20 to 200 relative to 100 parts by weight of the silsesquioxane ladder polymer represented by the above formula (1)
The curable composition according to any one of the above 1 to 3 which is uniformly dissolved or dispersed in a volume part of an organic solvent, is kept at a temperature lower than the boiling point of the organic solvent used for 8 hours or more, and then 20 to 400 ° C. Preferably, the method for producing a thick-walled molded product having a thickness of 0.5 mm or more is characterized in that the temperature is raised stepwise or continuously in the range of 20 to 250 ° C.
【0011】以下、本発明について詳しく説明する。シ
ルセスキオキサンラダーポリマーは式(1)で表される
構造を有し、その数平均分子量は500以上、好ましく
は500〜5000、更に好ましくは500〜1500
である。式中、R1 は1価の炭化水素基であり、互いに
同一でも異なってもよく、好ましくはメチル基である。
R2 は1価の芳香族炭化水素基であり、互いに同一でも
異なってもよく、好ましくはフェニル基である。R3 は
水素原子又は1価の炭化水素基であり、好ましくはメチ
ル基又はエチル基である。l、m、nは2≦l+m+
n、好ましくは2≦l+m+n≦12を満足する0又は
正の整数である。The present invention will be described in detail below. The silsesquioxane ladder polymer has a structure represented by the formula (1), and its number average molecular weight is 500 or more, preferably 500 to 5000, more preferably 500 to 1500.
Is. In the formula, R 1 is a monovalent hydrocarbon group, which may be the same or different from each other, and preferably a methyl group.
R 2 is a monovalent aromatic hydrocarbon group, which may be the same or different from each other, and is preferably a phenyl group. R 3 is a hydrogen atom or a monovalent hydrocarbon group, preferably a methyl group or an ethyl group. l, m and n are 2 ≦ l + m +
n, preferably 0 or a positive integer satisfying 2 ≦ l + m + n ≦ 12.
【0012】式(1)において、l個の繰り返し単位
(以下、この単位をl単位という)におけるR1 とR2
はn単位毎に同一でも異なっていてもよい。このことは
m個の繰り返し単位(以下、この単位をm単位という)
のR1 についても同様であり、n個の繰り返し単位(以
下、この単位をn単位という)のR2 についても同様で
ある。また、n単位、m単位およびl単位はブロックで
あってもこれらが混在したランダムであってもよい。In the formula (1), R 1 and R 2 in 1 repeating unit (hereinafter, this unit is referred to as 1 unit)
May be the same or different for every n units. This means m repeating units (hereinafter this unit is called m unit).
The same applies to R 1 of R, and the same applies to R 2 of n repeating units (hereinafter, this unit is referred to as n unit). Further, the n unit, the m unit, and the l unit may be blocks or may be a random mixture of these.
【0013】次に、本発明で使用するチタン系触媒は、
式(1)で表されるシルセスキオキサンラダーポリマー
の末端官能基SiOR3 の加水分解・縮合反応を促進さ
せるために必要である。また、式(2)で表される多官
能性架橋剤と水、あるいはシリカ系架橋剤を併用する場
合には、それらに含有されるアルコキシル基やシラノー
ル基もしくは加水分解によって生成するシラノール基間
での縮合反応、あるいは該官能基と式(1)で表される
シルセスキオキサンラダーポリマーの末端官能基SiO
R3 との縮合反応を促進させるために必要である。本発
明で使用できるチタン系触媒には、テトラアルキルオル
ソチタネートやチタンキレートなどがある。テトラアル
キルオルソチタネートは式:Ti(OR)4 で表され
る。式中、Rは1価の炭化水素基、好ましくは炭素数1
〜4の1価の炭化水素基である。このような1価の炭化
水素基としては、例えばメチル基、エチル基、n−プロ
ピル基、iso−プロピル基、n−ブチル基などが挙げ
られる。チタンキレートは式(3)Next, the titanium-based catalyst used in the present invention is
It is necessary to accelerate the hydrolysis / condensation reaction of the terminal functional group SiOR 3 of the silsesquioxane ladder polymer represented by the formula (1). When a polyfunctional crosslinking agent represented by the formula (2) and water or a silica-based crosslinking agent are used in combination, an alkoxyl group, a silanol group or a silanol group generated by hydrolysis contained in them is used. Condensation reaction, or the terminal functional group SiO of the silsesquioxane ladder polymer represented by the functional group and the formula (1)
It is necessary to accelerate the condensation reaction with R 3 . Titanium-based catalysts that can be used in the present invention include tetraalkyl orthotitanate and titanium chelate. The tetraalkyl ortho titanate is represented by the formula: Ti (OR) 4 . In the formula, R is a monovalent hydrocarbon group, preferably 1 carbon atom
To 4 monovalent hydrocarbon groups. Examples of such a monovalent hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, an iso-propyl group, and an n-butyl group. Titanium chelate has formula (3)
【0014】[0014]
【化5】 Embedded image
【0015】(式中、R5 、R7 、R8 は1価の炭化水
素基を表し、R6 は水素又は1価の炭化水素基を表
す。)で表される。このようなチタンキレートとして
は、例えばジイソプロポキシビス(アセト酢酸エチル)
チタン、ジイソプロポキシビス(アセト酢酸メチル)チ
タン、ジイソプロポキシビス(アセチルアセトン)チタ
ン、ジブトキシビス(アセト酢酸エチル)チタンなどが
挙げられるが、好ましくはジイソプロポキシビス(アセ
チルアセトン)チタンを用いる。チタン系触媒の使用量
はシルセスキオキサンラダーポリマー100重量部に対
して0.1〜20重量部であり、好ましくは0.3〜1
0重量部で、最も好ましくは0.5〜6重量部である。
これは、0.1重量部未満では硬化速度が遅く、20重
量部を超えると部分的にゲル化し、均一にならないだけ
でなく、硬化物に気泡が残ってしまうためである。(Wherein R 5 , R 7 and R 8 represent a monovalent hydrocarbon group, and R 6 represents hydrogen or a monovalent hydrocarbon group). Examples of such titanium chelates include diisopropoxybis (ethyl acetoacetate).
Examples thereof include titanium, diisopropoxybis (methylacetoacetate) titanium, diisopropoxybis (acetylacetone) titanium, and dibutoxybis (ethylacetoacetate) titanium, but diisopropoxybis (acetylacetone) titanium is preferably used. The amount of the titanium-based catalyst used is 0.1 to 20 parts by weight, preferably 0.3 to 1 part by weight, relative to 100 parts by weight of the silsesquioxane ladder polymer.
It is 0 part by weight, most preferably 0.5 to 6 parts by weight.
This is because if the amount is less than 0.1 parts by weight, the curing speed is slow, and if the amount exceeds 20 parts by weight, not only the gelation is not carried out uniformly but also the air bubbles remain in the cured product.
【0016】本発明で使用することができる多官能性架
橋剤は式(2)で表される。式中、R4 は1価の炭化水
素基、好ましくはメチル基であり、kは1≦k≦7を満
足する正の整数で、好ましくは平均4である。この多官
能性架橋剤の使用量はシルセスキオキサンラダーポリマ
ー100重量部に対して5〜50重量部であり、好まし
くは10〜50重量部である。これは、5重量部未満で
はほとんど効果がなく、50重量部を超えると硬化物が
脆弱になるためである。The polyfunctional crosslinking agent that can be used in the present invention is represented by the formula (2). In the formula, R 4 is a monovalent hydrocarbon group, preferably a methyl group, and k is a positive integer satisfying 1 ≦ k ≦ 7, preferably 4 on average. The amount of the polyfunctional crosslinking agent used is 5 to 50 parts by weight, preferably 10 to 50 parts by weight, based on 100 parts by weight of the silsesquioxane ladder polymer. This is because if it is less than 5 parts by weight, almost no effect is obtained, and if it exceeds 50 parts by weight, the cured product becomes brittle.
【0017】また本発明では、上記の多官能性架橋剤を
十分に働かせるために水を添加することができる。水の
添加量は多官能性架橋剤のすべてのアルコキシ基に対し
て10〜60mol%である。これは、60mol%を
超えると均一な硬化物が得られないためである。Further, in the present invention, water can be added in order to make the above-mentioned polyfunctional crosslinking agent work sufficiently. The amount of water added is 10 to 60 mol% based on all the alkoxy groups of the polyfunctional crosslinking agent. This is because if it exceeds 60 mol%, a uniform cured product cannot be obtained.
【0018】本発明で使用することができるシリカ系架
橋剤は、微粉末の含水シリカあるいは無水シリカであ
る。これらのシラノール基あるいは吸着した水が式
(1)で表されるシルセスキオキサンラダーポリマーの
末端官能基SiOR3 の縮合反応に関与し、得られる硬
化物の物性を改善することができる。シリカ系架橋剤の
使用量は、シルセスキオキサンラダーポリマー100重
量部に対して5〜30重量部が好ましい。これらのシリ
カ系架橋剤は上記の多官能性架橋剤と併用しても構わな
い。The silica-based cross-linking agent which can be used in the present invention is finely powdered hydrous silica or anhydrous silica. These silanol groups or adsorbed water participate in the condensation reaction of the terminal functional group SiOR 3 of the silsesquioxane ladder polymer represented by the formula (1), and the physical properties of the resulting cured product can be improved. The amount of the silica-based crosslinking agent used is preferably 5 to 30 parts by weight with respect to 100 parts by weight of the silsesquioxane ladder polymer. These silica-based cross-linking agents may be used in combination with the above polyfunctional cross-linking agents.
【0019】さらに本発明の硬化性組成物には、上記の
ような各成分を均一に混合するために有機溶媒を使用す
ることができる。この有機溶媒は、シルセスキオキサン
ラダーポリマーを十分に溶解し、かつ水をある程度溶解
できることが必要である。このような有機溶媒として、
テトラヒドロフラン、1,4−ジオキサン、トルエン、
クロロホルムなどが挙げられる。有機溶媒の使用量は、
シルセスキオキサンラダーポリマー100gに対して2
0〜200mlであり、好ましくは60〜120mlで
ある。これは、20ml未満ではシルセスキオキサンラ
ダーポリマーの溶解が困難であり、200mlを超える
と気泡やクラックのない硬化物を作製するのが困難とな
るためである。Furthermore, in the curable composition of the present invention, an organic solvent can be used in order to uniformly mix the above-mentioned respective components. This organic solvent needs to be able to sufficiently dissolve the silsesquioxane ladder polymer and to dissolve water to some extent. As such an organic solvent,
Tetrahydrofuran, 1,4-dioxane, toluene,
Examples include chloroform. The amount of organic solvent used is
2 per 100 g of silsesquioxane ladder polymer
It is 0 to 200 ml, preferably 60 to 120 ml. This is because it is difficult to dissolve the silsesquioxane ladder polymer when the amount is less than 20 ml, and it is difficult to produce a cured product having no bubbles or cracks when the amount exceeds 200 ml.
【0020】このように、本発明の硬化性組成物は、シ
ルセスキオキサンラダーポリマーとチタン系触媒、有機
溶媒、さらに必要に応じて多官能性架橋剤と水、及びシ
リカ系架橋剤を上記の割合で混合することにより得られ
る。As described above, the curable composition of the present invention comprises the silsesquioxane ladder polymer, the titanium-based catalyst, the organic solvent, and, if necessary, the polyfunctional crosslinking agent, water, and the silica-based crosslinking agent. It is obtained by mixing at a ratio of.
【0021】本発明の厚さ0.5mm以上の成形体の作
製方法は、上記の硬化性組成物を加熱硬化させる際に、
昇温速度をコントロールすることにより、縮合による硬
化速度、系からの揮発分の揮発速度、系中に残存する揮
発分の拡散速度などをうまくバランスでき、形成される
硬化物に著しいクラックを発生することなく、0.5m
m以上の厚みをもつ成形体が作製できることを見いだ
し、なされたものである。上記の硬化性組成物の昇温の
させ方は、まずはじめに、用いた有機溶媒の沸点より低
い20〜50℃程度の温度で8時間以上保持し、その後
20〜400℃の範囲で段階的あるいは連続的に昇温さ
せる。肉厚の成形体は、例えばこの硬化性組成物をポリ
イミドフィルムを両面テープで貼った型に流し込み、蓋
をして熱風乾燥機の中に水平に静置し、徐々に温度を上
げながら加熱硬化させることにより作製できる。ポリイ
ミドフィルムを貼るのは、硬化物の離型性がよく、硬化
途中で硬化物が収縮しても容易に型から外れ、クラック
が生じ難いためである。加熱硬化は20〜400℃の範
囲で段階的にあるいは連続的に昇温するのがよい。また
連続的に昇温する場合は、5℃/hr以下の速度で徐々
に昇温するのが好ましい。好ましい段階的昇温条件を例
示すれば、50℃で8〜24時間、80℃で8〜24時
間、100℃で8〜24時間、さらに150℃で12〜
70時間という順で加熱硬化させる条件が挙げられる。
このようにして、弾性率の高い肉厚の成形体を作製する
ことができる。The method for producing a molded product having a thickness of 0.5 mm or more according to the present invention is as follows:
By controlling the rate of temperature rise, the curing rate due to condensation, the volatilization rate of volatiles from the system, the diffusion rate of volatiles remaining in the system, etc. can be well balanced, and significant cracks are generated in the formed cured product. Without, 0.5m
It was made by discovering that a molded product having a thickness of m or more can be produced. The method for raising the temperature of the curable composition is as follows. First, the temperature is maintained at 20 to 50 ° C., which is lower than the boiling point of the organic solvent used, for 8 hours or more, and then gradually or in the range of 20 to 400 ° C. The temperature is raised continuously. A thick molded body is prepared, for example, by pouring the curable composition into a mold in which a polyimide film is attached with a double-sided tape, placing the lid and allowing it to stand horizontally in a hot-air dryer, and heat curing while gradually raising the temperature. It can be produced by The reason why the polyimide film is stuck is that the cured product has good mold releasability, and even if the cured product contracts during curing, it is easily released from the mold and cracks are less likely to occur. It is preferable that the temperature of the heat curing be raised stepwise or continuously in the range of 20 to 400 ° C. Further, when the temperature is continuously raised, it is preferable to gradually raise the temperature at a rate of 5 ° C./hr or less. Examples of preferable stepwise temperature rising conditions include 50 ° C. for 8 to 24 hours, 80 ° C. for 8 to 24 hours, 100 ° C. for 8 to 24 hours, and 150 ° C. for 12 to 12 hours.
The conditions for heat curing in the order of 70 hours can be mentioned.
In this way, a thick molded body having a high elastic modulus can be manufactured.
【0022】[0022]
【実施例】以下、実施例を挙げて本発明を具体的に説明
する。シルセスキオキサンラダーポリマーとしては、昭
和電工(株)のグラスレジン(商品名)で、ケイ素上の
置換基の比がMe/Ph=2/1のGR−100(GP
C測定によるポリスチレンスタンダード換算の重量平均
分子量(Mw)及び数平均分子量(Mn)はMw/Mn
=7210/1260(以下同様))、Me/Ph=1
/4のGR−908(Mw/Mn=1270/680)
を用いた。多官能性架橋剤としては、式(2)において
R4 =Me、k=4(平均)(Me;メチル基)である
コルコート(株)製のメチルシリケート−51を用い
た。シリカ系架橋剤としては、日本シリカ工業(株)製
の含水シリカNIPSIL−LPを用いた。得られた硬
化物の曲げ試験は、JIS K7203(小型試験片に
よる曲げ試験方法)記載の方法に準じて行った。測定条
件は、スパン:15mm、圧子:5R、支点:2R、テ
ストスピード:0.5mm/minである。EXAMPLES The present invention will be specifically described below with reference to examples. As the silsesquioxane ladder polymer, a glass resin (trade name) manufactured by Showa Denko KK and having a ratio of substituents on silicon of Me / Ph = 2/1 GR-100 (GP) is used.
The polystyrene standard conversion weight average molecular weight (Mw) and number average molecular weight (Mn) measured by C are Mw / Mn.
= 7210/1260 (same below), Me / Ph = 1
/ 4 GR-908 (Mw / Mn = 1270/680)
Was used. As the polyfunctional crosslinking agent, methyl silicate-51 manufactured by Colcoat Co., Ltd. in which R 4 = Me and k = 4 (average) (Me; methyl group) in the formula (2) was used. As the silica-based cross-linking agent, hydrous silica NIPSIL-LP manufactured by Nippon Silica Industry Co., Ltd. was used. The bending test of the obtained cured product was performed according to the method described in JIS K7203 (bending test method using small test pieces). The measurement conditions are: span: 15 mm, indenter: 5R, fulcrum: 2R, test speed: 0.5 mm / min.
【0023】(実施例1)グラスレジンGR−100と
GR−908を混合してケイ素上の置換基の比がMe/
Ph=1/1となるように調製した。このグラスレジン
の混合物5.0gにテトラヒドロフラン5mlを加え、
超音波洗浄器を用いて完全に溶解させた。ここに、Ti
(OBu)4 0.15gを加え均一に混合した。厚さ
25μmのポリイミドフィルムを両面テープで貼ったφ
6.7cmの軟膏缶に上記の手順で調製した溶液を静か
に注ぎ、蓋をして熱風乾燥器中に水平となるように静置
した。これを50℃/14時間、80℃/22時間、1
00℃/20時間、150℃/22時間の順に加熱して
硬化させた。加熱硬化後、軟膏缶の側面を金切りばさみ
で切り開き、淡黄色透明の硬化物(厚み0.5mm)を
得た。硬化物のゲル分率は97%であった。曲げ試験の
結果、曲げ弾性率は1.91GPaであった。(Example 1) Glass resin GR-100 and GR-908 were mixed and the ratio of the substituents on silicon was Me /.
It was prepared so that Ph = 1/1. To 5.0 g of this glass resin mixture was added 5 ml of tetrahydrofuran,
It was completely dissolved using an ultrasonic cleaner. Where Ti
0.15 g of (OBu) 4 was added and mixed uniformly. Φ 25 μm thick polyimide film attached with double-sided tape
The solution prepared by the above procedure was gently poured into a 6.7 cm ointment can, covered with the lid, and allowed to stand horizontally in a hot air dryer. This is 50 ℃ / 14 hours, 80 ℃ / 22 hours, 1
It was heated and cured in the order of 00 ° C./20 hours and 150 ° C./22 hours. After heat-curing, the side surface of the ointment can was cut open with gold scissors to obtain a light yellow transparent cured product (thickness 0.5 mm). The gel fraction of the cured product was 97%. As a result of the bending test, the bending elastic modulus was 1.91 GPa.
【0024】(実施例2)シルセスキオキサンラダーポ
リマーとしてGR−100を用い、実施例1と同じ手順
で淡黄色透明の硬化物(厚み0.5mm)を得た。硬化
物のゲル分率は97%で、曲げ弾性率は1.94GPa
であった。(Example 2) GR-100 was used as the silsesquioxane ladder polymer and a light yellow transparent cured product (thickness 0.5 mm) was obtained by the same procedure as in Example 1. The cured product has a gel fraction of 97% and a flexural modulus of 1.94 GPa.
Met.
【0025】(実施例3)実施例1で用いたグラスレジ
ン混合物5.0gにテトラヒドロフラン5mlを加えて
完全に溶解させ、さらに(iso−PrO)2 Ti(a
cac)2 (i−Pr;イソプロピル、acac;アセ
チルアセトナト)0.15gを加えて均一に混合した。
厚さ25μmのポリイミドフィルムを両面テープで貼っ
たφ6.7cmの軟膏缶に上記の手順で調製した溶液を
静かに注ぎ、蓋をして熱風乾燥器中に水平となるように
静置した。これを50℃/24時間、80℃/24時
間、100℃/24時間、150℃/69時間の順に加
熱して硬化させた。加熱硬化後、軟膏缶の側面を金切り
ばさみで切り開き、褐色透明の硬化物(厚み0.7m
m)を得た。硬化物のゲル分率は99%であった。曲げ
試験の結果、曲げ弾性率は2.11GPaであった。Example 3 To 5.0 g of the glass resin mixture used in Example 1, 5 ml of tetrahydrofuran was added and completely dissolved, and further (iso-PrO) 2 Ti (a) was added.
0.15 g of cac) 2 (i-Pr; isopropyl, acac; acetylacetonato) was added and mixed uniformly.
The solution prepared by the above procedure was gently poured into a φ6.7 cm ointment can in which a polyimide film having a thickness of 25 μm was adhered with a double-sided tape, and the lid was covered and left still in a hot air dryer so as to be horizontal. This was heated in the order of 50 ° C./24 hours, 80 ° C./24 hours, 100 ° C./24 hours, and 150 ° C./69 hours to be cured. After heat-curing, the side of the ointment can is cut open with gold scissors, and a brown transparent cured product (thickness 0.7 m
m) was obtained. The gel fraction of the cured product was 99%. As a result of the bending test, the bending elastic modulus was 2.11 GPa.
【0026】(実施例4)シルセスキオキサンラダーポ
リマーとしてGR−100を用い、実施例3と同様に、
50℃/16時間、80℃/10時間、100℃/13
時間、150℃/23時間の順に加熱して硬化させ、褐
色透明の硬化物(厚み1.2mm)を得た。硬化物のゲ
ル分率は98%で、曲げ弾性率は2.26GPaであっ
た。(Example 4) GR-100 was used as the silsesquioxane ladder polymer in the same manner as in Example 3,
50 ° C / 16 hours, 80 ° C / 10 hours, 100 ° C / 13
The coating was heated and cured in the order of 150 ° C./23 hours for 20 hours to obtain a brown transparent cured product (thickness 1.2 mm). The gel fraction of the cured product was 98%, and the flexural modulus was 2.26 GPa.
【0027】(実施例5)実施例1で用いたグラスレジ
ン混合物5.0gにテトラヒドロフラン5mlを加え、
超音波洗浄器を用いて完全に溶解させた。ここに、メチ
ルシリケート51を0.5gと(iso−PrO)2 T
i(acac)2 0.15gを加えて均一に混合し
た。実施例3と同じ手順で加熱硬化させ、褐色透明の硬
化物(厚み0.9mm)を得た。硬化物のゲル分率は9
9%であった。曲げ試験の結果、曲げ弾性率は1.94
GPaであった。Example 5 To 5.0 g of the glass resin mixture used in Example 1 was added 5 ml of tetrahydrofuran,
It was completely dissolved using an ultrasonic cleaner. 0.5 g of methyl silicate 51 and (iso-PrO) 2 T
0.15 g of i (acac) 2 was added and mixed uniformly. Heat curing was performed in the same procedure as in Example 3 to obtain a brown transparent cured product (thickness 0.9 mm). The gel fraction of the cured product is 9
It was 9%. As a result of a bending test, the bending elastic modulus is 1.94.
It was GPa.
【0028】(実施例6)グラスレジンGR−100
(5.0g)とメチルシリケート51(1.5g)、水
(0.10g)、(iso−PrO)2 Ti(aca
c)2 (0.15g)をテトラヒドロフラン(5ml)
に均一に溶解させ、実施例4と同じ手順で加熱硬化さ
せ、褐色透明の硬化物(厚み1.4mm)を得た。硬化
物のゲル分率は98%で、曲げ弾性率は2.19GPa
であった。Example 6 Glass Resin GR-100
(5.0 g) and methyl silicate 51 (1.5 g), water (0.10 g), (iso-PrO) 2 Ti (aca
c) 2 (0.15 g) in tetrahydrofuran (5 ml)
Was uniformly dissolved in the mixture and heat-cured in the same procedure as in Example 4 to obtain a brown transparent cured product (thickness: 1.4 mm). The gel fraction of the cured product is 98%, and the flexural modulus is 2.19 GPa.
Met.
【0029】(実施例7)実施例1で用いたグラスレジ
ン混合物5.0gにテトラヒドロフラン5mlを加え、
超音波洗浄器を用いて完全に溶解させた。ここに、NI
PSIL−LP0.5gと(iso−PrO)2 Ti
(acac)2 0.15gを加え均一に混合した。実
施例3と同じ手順で加熱硬化させ、褐色透明の硬化物
(厚み0.5mm)を得た。硬化物のゲル分率は99%
であった。曲げ試験の結果、曲げ弾性率は2.59GP
aであった。Example 7 To 5.0 g of the glass resin mixture used in Example 1 was added 5 ml of tetrahydrofuran,
It was completely dissolved using an ultrasonic cleaner. NI
0.5 g of PSIL-LP and (iso-PrO) 2 Ti
0.15 g of (acac) 2 was added and mixed uniformly. It was heat-cured by the same procedure as in Example 3 to obtain a brown transparent cured product (thickness 0.5 mm). The gel fraction of the cured product is 99%
Met. As a result of the bending test, the bending elastic modulus is 2.59 GP.
It was a.
【0030】(実施例8)グラスレジンGR−100
(5.0g)とNIPSIL−LP(1.0g)、Ti
(OBu)4 (Bu;ブチル基)(0.15g)をテト
ラヒドロフラン(5ml)に均一に溶解させた。これを
PIフィルムを貼った軟膏缶に注ぎ、蓋をして50℃/
14時間、80℃/22時間、100℃/20時間、1
50℃/22時間の順に加熱して硬化させ、褐色半透明
の硬化物(厚み0.5mm)を得た。硬化物のゲル分率
は97%で、曲げ弾性率は2.28GPaであった。Example 8 Glass Resin GR-100
(5.0 g) and NIPSIL-LP (1.0 g), Ti
(OBu) 4 (Bu; butyl group) (0.15 g) was uniformly dissolved in tetrahydrofuran (5 ml). Pour this into an ointment can with a PI film attached, cover with a lid, and leave at 50 ° C /
14 hours, 80 ° C / 22 hours, 100 ° C / 20 hours, 1
It was heated and cured in the order of 50 ° C./22 hours to obtain a brown translucent cured product (thickness 0.5 mm). The gel fraction of the cured product was 97% and the flexural modulus was 2.28 GPa.
【0031】(実施例9)グラスレジンGR−100
(5.0g)をテトラヒドロフラン(5ml)に均一に
溶解させ、さらにメチルシリケート51(1.5g)、
水(0.10g)、NIPSIL−LP(1.0g)、
Ti(OBu)4 (0.15g)を加え、均一に混合し
た。これをPIフィルムを貼った軟膏缶に注ぎ、蓋をし
て50℃/14時間、80℃/10時間、100℃/2
2時間、150℃/24時間の順に加熱して硬化させ、
褐色半透明の硬化物(厚み1.5mm)を得た。硬化物
のゲル分率は99%で、曲げ弾性率は2.08GPaで
あった。Example 9 Glass Resin GR-100
(5.0 g) was uniformly dissolved in tetrahydrofuran (5 ml), and methyl silicate 51 (1.5 g) was added.
Water (0.10 g), NIPSIL-LP (1.0 g),
Ti (OBu) 4 (0.15 g) was added and mixed uniformly. Pour this into an ointment can with a PI film attached, cover with a lid, 50 ° C / 14 hours, 80 ° C / 10 hours, 100 ° C / 2
2 hours, heating in order of 150 ℃ / 24 hours to cure,
A brown translucent cured product (thickness 1.5 mm) was obtained. The gel fraction of the cured product was 99%, and the flexural modulus was 2.08 GPa.
【0032】(比較例1)グラスレジンGR−100
(5.0g)をテトラヒドロフラン(5ml)に均一に
溶解させ、実施例1と同様の軟膏缶に注ぎ、蓋をして5
0℃/14時間、80℃/6時間、100℃/15時
間、150℃/12時間の順で加熱硬化させ、硬化物
(厚み0.9mm)を得た。曲げ弾性率は1.54GP
aであった。Comparative Example 1 Glass Resin GR-100
(5.0 g) was uniformly dissolved in tetrahydrofuran (5 ml), poured into an ointment can similar to that in Example 1, covered with a lid, and mixed with 5
Heat curing was performed in the order of 0 ° C./14 hours, 80 ° C./6 hours, 100 ° C./15 hours, and 150 ° C./12 hours to obtain a cured product (thickness 0.9 mm). Flexural modulus is 1.54 GP
It was a.
【0033】(比較例2)硬化触媒としてアンモニア水
0.05gを加え、比較例1と同様の手順で加熱硬化さ
せ、硬化物(厚み1.0mm)を得た。曲げ弾性率は
1.54GPaであった。(Comparative Example 2) 0.05 g of ammonia water was added as a curing catalyst, and the mixture was heated and cured in the same procedure as in Comparative Example 1 to obtain a cured product (thickness 1.0 mm). The flexural modulus was 1.54 GPa.
【0034】[0034]
【発明の効果】以上説明したように、本発明の硬化性組
成物はシルセスキオキサンラダーポリマーをチタン系の
硬化触媒で硬化させ、場合によっては多官能性架橋剤
や、シリカ系架橋剤を併用するものであり、またこの硬
化性組成物を用いて、加熱硬化時の温度と時間をコント
ロールしながら、シルセスキオキサンラダーポリマーを
主成分とする肉厚の成形体を作製するものであり、これ
により、これまでコーティング剤としてしか用いること
のできなかったシルセスキオキサンラダーポリマー硬化
物の耐熱性かつ高弾性率の肉厚形成体を得ることができ
る。As described above, the curable composition of the present invention cures the silsesquioxane ladder polymer with a titanium-based curing catalyst, and may contain a polyfunctional crosslinking agent or a silica-based crosslinking agent in some cases. The curable composition is used in combination, and while controlling the temperature and time during heat curing, a thick molded article containing a silsesquioxane ladder polymer as a main component is prepared. As a result, it is possible to obtain a heat-resistant and high-modulus wall-thickness product of a silsesquioxane ladder polymer cured product that can only be used as a coating agent.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 広瀬 俊文 兵庫県神戸市須磨区神の谷7−2−3 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshifumi Hirose 7-2-3 Kaminomiya, Suma-ku, Hyogo Prefecture
Claims (5)
も異なってもよい、R2は1価の芳香族炭化水素基を表
し、互いに同一でも異なってもよい、R3 は水素原子又
は1価の炭化水素基を表し、l、m、nは2≦l+m+
nを満足する0又は正の整数を表す。)で表される数平
均分子量500以上のシルセスキオキサンラダーポリマ
ーとチタン系触媒とを含む硬化性組成物。1. A formula (1): (In the formula, R 1 represents a monovalent hydrocarbon group, which may be the same or different from each other, R 2 represents a monovalent aromatic hydrocarbon group, which may be the same or different from each other, R 3 is hydrogen Represents an atom or a monovalent hydrocarbon group, and l, m, and n are 2 ≦ l + m +
Represents 0 or a positive integer that satisfies n. ) A curable composition comprising a silsesquioxane ladder polymer having a number average molecular weight of 500 or more and a titanium catalyst.
ダーポリマー、チタン系触媒、式(2) 【化2】 (式中、R4 は1価の炭化水素基を表し、kは1≦k≦
7を満足する正の整数である。)で表される多官能性架
橋剤、及び水を含む硬化性組成物。2. A silsesquioxane ladder polymer represented by formula (1), a titanium-based catalyst, and formula (2): (In the formula, R 4 represents a monovalent hydrocarbon group, and k is 1 ≦ k ≦
It is a positive integer that satisfies 7. C.) A curable composition containing a polyfunctional crosslinking agent represented by the formula (4) and water.
ダーポリマー、チタン系触媒、及びシリカ系架橋剤を含
む硬化性組成物。3. A curable composition containing a silsesquioxane ladder polymer represented by the formula (1), a titanium catalyst, and a silica crosslinking agent.
スキオキサンラダーポリマー、チタン系触媒、請求項2
記載の式(2)で表される多官能性架橋剤、及びシリカ
系架橋剤を含む硬化性組成物。4. A silsesquioxane ladder polymer represented by the formula (1) according to claim 1, a titanium-based catalyst, and claim 2.
A curable composition comprising a polyfunctional crosslinking agent represented by the formula (2) described above and a silica-based crosslinking agent.
スキオキサンラダーポリマー100重量部に対して、2
0〜200体積部の有機溶媒に均一に溶解あるいは分散
させた請求項1〜4のいずれか1項記載の硬化性組成物
を、用いた有機溶媒の沸点より低い温度で8時間以上保
持し、その後20〜400℃の範囲で段階的あるいは連
続的に昇温させることを特徴とする厚さ0.5mm以上
の肉厚成形体の作製方法。5. 2 parts by weight relative to 100 parts by weight of the silsesquioxane ladder polymer represented by the formula (1) according to claim 1.
The curable composition according to any one of claims 1 to 4, which is uniformly dissolved or dispersed in 0 to 200 parts by volume of an organic solvent, is held at a temperature lower than the boiling point of the organic solvent used for 8 hours or more, Then, a method for producing a thick-walled molded product having a thickness of 0.5 mm or more, which is characterized by heating stepwise or continuously in the range of 20 to 400 ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP33563995A JP3596697B2 (en) | 1994-12-01 | 1995-12-01 | Method for producing curable composition and thick molded body thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6-321196 | 1994-12-01 | ||
JP32119694 | 1994-12-01 | ||
JP33563995A JP3596697B2 (en) | 1994-12-01 | 1995-12-01 | Method for producing curable composition and thick molded body thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH08225648A true JPH08225648A (en) | 1996-09-03 |
JP3596697B2 JP3596697B2 (en) | 2004-12-02 |
Family
ID=26570399
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP33563995A Expired - Fee Related JP3596697B2 (en) | 1994-12-01 | 1995-12-01 | Method for producing curable composition and thick molded body thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3596697B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008231403A (en) * | 2007-02-20 | 2008-10-02 | Suzuka Fuji Xerox Co Ltd | Two-part type thermosetting resin composition and method for producing heat-resistant transparent resin molded article |
JP2013544902A (en) * | 2010-09-29 | 2013-12-19 | ワッカー ケミー アクチエンゲゼルシャフト | Curable organopolysiloxane composition |
US9567487B2 (en) | 2015-01-08 | 2017-02-14 | Korea Institute Of Science And Techonlogy | Coating compositions comprising polyorgano-silsesquioxane and a wavelength converting agent, and a wavelength converting sheet using the same |
-
1995
- 1995-12-01 JP JP33563995A patent/JP3596697B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008231403A (en) * | 2007-02-20 | 2008-10-02 | Suzuka Fuji Xerox Co Ltd | Two-part type thermosetting resin composition and method for producing heat-resistant transparent resin molded article |
JP2013544902A (en) * | 2010-09-29 | 2013-12-19 | ワッカー ケミー アクチエンゲゼルシャフト | Curable organopolysiloxane composition |
US8846808B2 (en) | 2010-09-29 | 2014-09-30 | Wacker Chemie Ag | Curable organopolysiloxane composition |
US9567487B2 (en) | 2015-01-08 | 2017-02-14 | Korea Institute Of Science And Techonlogy | Coating compositions comprising polyorgano-silsesquioxane and a wavelength converting agent, and a wavelength converting sheet using the same |
Also Published As
Publication number | Publication date |
---|---|
JP3596697B2 (en) | 2004-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2605229B2 (en) | Acrylic functional siloxane | |
EP0725103B1 (en) | Thermosetting silicone resins | |
US5623030A (en) | Curable composition and process for producing molded articles using the same | |
JPH08211616A (en) | Radiation-curing composition, its curing method and pattern forming method | |
JPH09136961A (en) | High-vinyl-content low-molecular-weight liquid resin for injection molding | |
JPH05262989A (en) | Room temperature curing organopolysiloxane composition | |
JP2636616B2 (en) | Room temperature curable silicone rubber composition and cured product thereof | |
JPS59152955A (en) | Curable silicone composition | |
JPH0632985A (en) | Curable organopolysiloxane composition | |
JP3712029B2 (en) | Method for producing room temperature curable organopolysiloxane composition | |
JP2634924B2 (en) | Acrylic functional polydiorganosiloxane-containing composition curable by ultraviolet light | |
JPH05262985A (en) | One part heat curable organopolysiloxane composition | |
JPH09324122A (en) | Quick-setting organosiloxane composition having suppressing agent | |
JPH0478656B2 (en) | ||
JPH0834922A (en) | Silicone elastomer composition curing at room temperature | |
JP2518952B2 (en) | Acrylamide polysiloxane composition having improved thermal stability | |
JPH08225648A (en) | Curable composition and production of thick-wall molding therefrom | |
JPH07268101A (en) | Method for curing polytitanosiloxane | |
JPH09279032A (en) | Precured product based on silicon compound and method for making molding therefrom | |
AU677666B2 (en) | Method for curing organosiloxane compositions in the presence of cure inhibiting materials | |
JPH08225647A (en) | Curable composition and production of molding therefrom | |
JPH0211659A (en) | Sealing composition | |
JPH04359061A (en) | Room temperature curing organopolysiloxane composition and cured product thereof | |
JPS6225161A (en) | Room temperature curing polyorganosiloxane composition | |
JPH05112721A (en) | Fluorosilicone composition and gel-like cured article prepared therefrom |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20031224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040212 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040401 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20040901 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20040902 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070917 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080917 Year of fee payment: 4 |
|
LAPS | Cancellation because of no payment of annual fees |