JPH08225359A - Ceramic plate - Google Patents

Ceramic plate

Info

Publication number
JPH08225359A
JPH08225359A JP3532895A JP3532895A JPH08225359A JP H08225359 A JPH08225359 A JP H08225359A JP 3532895 A JP3532895 A JP 3532895A JP 3532895 A JP3532895 A JP 3532895A JP H08225359 A JPH08225359 A JP H08225359A
Authority
JP
Japan
Prior art keywords
ceramic plate
thermal expansion
ceramic
coefficient
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3532895A
Other languages
Japanese (ja)
Inventor
Toshio Shimizu
寿雄 清水
Mitsunobu Otani
光伸 大谷
Yukio Noda
征雄 野田
Hajime Kimura
元 木村
Moichi Murata
茂一 村田
Teruki Ueda
輝基 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ORIBESUTO KK
ORIENTAL ASBEST
Toray Industries Inc
Original Assignee
ORIBESUTO KK
ORIENTAL ASBEST
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ORIBESUTO KK, ORIENTAL ASBEST, Toray Industries Inc filed Critical ORIBESUTO KK
Priority to JP3532895A priority Critical patent/JPH08225359A/en
Publication of JPH08225359A publication Critical patent/JPH08225359A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a ceramic plate which is excellent in strength and shock resistance, despite that it is thin, and has high dimension accuracy with warpage and deformation reduced by specifying the coefficient of thermal expansion in a ceramic plate of a multi-layered structure which is mainly made of ceramic materials. CONSTITUTION: In a ceramic plate which is mainly made of ceramic materials and has a three-layered structure, the coefficient of thermal expansion of the plate is adjusted not over 7×10<-6> / deg.C, preferably not over 6.5×10<-6> / deg.C, and the difference in the coefficient of thermal expansion between the adjacent layers is adjusted not over 2×10<-6> / deg.C, preferably 0.2×10<-6> -2×10<-6> / deg.C, more preferably 0.5×10<-6> -1×10<-6> / deg.C. It is preferred that the coefficient of thermal expansion of the surface layer is adjusted smaller than that of the adjacent inner layer at least on one side surface layer. Further, the thickness of each layer is preferably made 0.05-2mm and the whole thickness of the fired product is more preferably set to 2-100mm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、抄造法を利用して製造
する陶磁器板とその製造方法とに関する。本発明にかか
る陶磁器板は、薄くても、強度や寸法特性に優れ、主
に、建築の外壁材、内壁材、床材などに好ましく利用で
きる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ceramic plate manufactured by a papermaking method and a manufacturing method thereof. The ceramic plate according to the present invention is excellent in strength and dimensional characteristics even if it is thin, and can be preferably used mainly as an outer wall material, an inner wall material, a floor material and the like of construction.

【0002】[0002]

【従来の技術】近年、建築や家具製造の業界において、
大型陶磁器板の市場が急速に拡大している。大型陶磁器
板は、取扱いの容易さや施工のしやすさなどの点から、
軽量であることが要求されるので、通常は薄板として製
造されている。しかし、前記業界で使用する大型陶磁器
板は、薄くても外部からの衝撃に対し十分な強度特性を
備え、また、反りや変形などがなく、良好な寸法精度が
必要である。このような薄い陶磁器板を製造するのに
は、通常、抄造法が用いられている。たとえば、特公昭
60−3038号公報に記載の方法があげられる。すな
わち、ハイ土粉末および繊維材料を必須成分とするスラ
リーを抄造して製造した所定含水量の陶磁器板用シート
と、釉薬および繊維材料を必須成分とするスラリーを抄
造して製造した所定含水量の釉薬シートとを重ね合わ
せ、ロール型プレス機を用い一体化した後、焼成する方
法である。
2. Description of the Related Art In recent years, in the construction and furniture manufacturing industries,
The market for large ceramic plates is expanding rapidly. Large porcelain plates are easy to handle and easy to construct.
Since it is required to be lightweight, it is usually manufactured as a thin plate. However, the large porcelain plate used in the above-mentioned industry is required to have sufficient strength characteristics against external impact even if it is thin, and to have good dimensional accuracy without warping or deformation. A papermaking method is usually used to manufacture such a thin ceramic plate. For example, the method described in JP-B-60-3038 can be used. That is, a sheet for a ceramic plate having a predetermined water content produced by making a slurry containing high-earth powder and a fiber material as an essential component, and a predetermined water content produced by making a slurry having a glaze and a fiber material as an essential component This is a method in which a glaze sheet is overlaid, integrated using a roll-type press machine, and then baked.

【0003】また、本発明者らは、陶磁器材料の粉末と
繊維材料とバインダー成分とからなるスラリーから薄い
抄造シートを製造して必要枚数を積層し、積層した抄造
シートを加圧、一体化して焼成し、同一組成のシート状
焼成体を重ね合わせた、多層陶磁器板の製造方法を提案
した(特開平6−144914号公報参照)。この陶磁
器板は、反りも変形も小さく、強度特性にも優れてい
た。
Further, the inventors of the present invention produced thin papermaking sheets from a slurry composed of a powder of ceramic material, a fiber material and a binder component, laminated a required number of sheets, and pressed and integrated the laminated papermaking sheets. A method for producing a multilayer ceramic plate by firing and stacking sheet-like fired bodies having the same composition has been proposed (see JP-A-6-144914). This ceramic plate had small warpage and deformation, and had excellent strength characteristics.

【0004】[0004]

【発明が解決しようとする課題】しかし、大型陶磁器板
の需要の増大や用途の多様化にともない、あらたな品質
の高度化とコストダウンとが望まれるようになってき
た。本発明者は、このような要望に応える手段を検討し
た結果、前記特開平6−144914号公報に記載の陶
磁器板とその製造方法をもとに進展をはかることが望ま
しいとの結論に達し、研究を続け、本発明の、耐衝撃性
や強度特性に優れ、かつ、反りも変形も小さく寸法精度
の高い陶磁器板とその製造方法とを完成することができ
た。
However, as the demand for large porcelain plates has increased and the applications have diversified, there has been a demand for new sophistication of quality and cost reduction. The present inventor, as a result of examining means for responding to such a demand, came to the conclusion that it is desirable to make progress based on the ceramic plate and the manufacturing method thereof described in JP-A-6-144914, By continuing research, it was possible to complete the ceramic plate of the present invention, which is excellent in impact resistance and strength characteristics, has less warpage and deformation, and has high dimensional accuracy, and a manufacturing method thereof.

【0005】[0005]

【課題を解決するための手段】本発明は、主成分を陶磁
器材料とする少なくとも3層構造の陶磁器板であって、
陶磁器板の熱膨張係数が7×10-6/℃を超えることな
く、かつ、隣接する層の熱膨張係数の差が2×10-6
℃を超えないことを特徴とする陶磁器板を提供する。本
発明の陶磁器板においては、少なくとも片側の表面層に
おいては、表面層の熱膨張係数が隣接する内層の熱膨張
係数よりも小さいことが好ましく、各層の厚み範囲は
0.05〜2mmが好適である。焼成体全体の厚み範囲
は2〜10mm、とくに3〜8mmが好ましい。また、
陶磁器板の、少なくとも片側の表面層に着色材料を配合
しておくとことにより、たとえば、自然石様の美しい美
観が得られる。
DISCLOSURE OF THE INVENTION The present invention is a ceramic plate having at least a three-layer structure whose main component is a ceramic material,
The coefficient of thermal expansion of the ceramic plate does not exceed 7 × 10 -6 / ° C, and the difference in coefficient of thermal expansion between adjacent layers is 2 × 10 -6 /
Provided is a ceramic plate characterized by not exceeding ℃. In the ceramic plate of the present invention, in at least one surface layer, the coefficient of thermal expansion of the surface layer is preferably smaller than that of the adjacent inner layer, and the thickness range of each layer is preferably 0.05 to 2 mm. is there. The thickness range of the entire fired body is preferably 2 to 10 mm, particularly preferably 3 to 8 mm. Also,
By mixing a coloring material in at least one surface layer of the ceramic plate, for example, a beautiful aesthetic like natural stone can be obtained.

【0006】さらに、本発明は、陶磁器材料の粉末、繊
維材料、およびガラス転移点が10℃を超えない熱可塑
性有機質材料を必須成分とし、かつ、焼成後に互いに異
なる熱膨張係数を有する層に形成される、少なくとも2
種類のスラリーを調整する工程と、各スラリーをそれぞ
れ抄造し、シート状成形体とする工程と、各シート状成
形体を少なくとも50℃に予熱する工程と、各シート状
成形体を積層して少なくとも3層構造の積層体にする工
程と、積層体を加圧してシート状成形体を一体化した後
焼成する工程とを含むことを特徴とする、陶磁器板の製
造方法を提供する。なお、本発明において、表面層、中
間層を問わず、実質的に熱膨張係数の同じ層を積層する
ことができるが、「隣接する層」という場合には、とく
に断らない限り、熱膨張係数が異なる隣接層を示し、実
質的に熱膨張係数の同じ隣接層を意味しない。
Further, according to the present invention, a powder of ceramic material, a fiber material, and a thermoplastic organic material having a glass transition point not exceeding 10 ° C. are essential components and are formed into layers having different thermal expansion coefficients after firing. At least 2
A step of adjusting various kinds of slurries, a step of forming each slurry into a sheet-shaped molded body, a step of preheating each sheet-shaped molded body to at least 50 ° C., and laminating each sheet-shaped molded body at least Provided is a method for producing a ceramic plate, which comprises a step of forming a laminated body having a three-layer structure and a step of pressurizing the laminated body to integrate the sheet-shaped formed body and then firing. In the present invention, regardless of the surface layer or the intermediate layer, layers having substantially the same coefficient of thermal expansion can be laminated, but the term “adjacent layers” means the coefficient of thermal expansion unless otherwise specified. Indicate different adjacent layers, and do not mean adjacent layers having substantially the same coefficient of thermal expansion.

【0007】[0007]

【作用と実施態様】本発明にかかる陶磁器板の構成、作
用および製造方法を、実施態様例をあげながら詳細に説
明する。本発明の陶磁器板は、厚みや組成によって異な
るが、少なくとも3層、現在の技術水準では5〜20層
程度を積層するのが現実的である。そして、少なくとも
1層の熱膨張係数が他の層の熱膨張係数と異なり、か
つ、焼成体全体の熱膨張係数が所要の値に調整され、そ
の結果、陶磁器板の反りや変形の発生が抑制され、強度
特性が向上している。
Actions and Embodiments The construction, action and manufacturing method of the ceramic plate according to the present invention will be described in detail with reference to embodiments. The ceramic plate of the present invention varies depending on the thickness and composition, but it is realistic to stack at least three layers, or about 5 to 20 layers in the current technical level. The coefficient of thermal expansion of at least one layer is different from the coefficient of thermal expansion of the other layers, and the coefficient of thermal expansion of the entire fired body is adjusted to a required value, and as a result, the occurrence of warpage or deformation of the ceramic plate is suppressed. And the strength characteristics are improved.

【0008】まず、本発明の陶磁器板の熱膨張の作用と
態様について説明する。本発明の陶磁器板は、少なくと
も3層の抄造シートを積層し、焼成して製造することが
できる。焼成後の陶磁器板を構成する層のうち少なくと
も2層は、相互に熱膨張係数が異なる(以下、熱膨張の
異なる層と略称する)。熱膨張の異なる層は、焼成過程
において組成の相違と焼成条件とに応じた、異なる熱収
縮率で収縮する。その結果、陶磁器板の熱膨張の異なる
2層の接合面では、収縮率の相違にもとづく歪応力が内
在する。したがって、外部から陶磁器板に衝撃力が加え
られても、歪応力が内在する接合面で衝撃力が分散し、
クラックの発生を防止する作用を生じる。また、熱膨張
係数の異なる隣接2層間では、焼成時に熱膨張係数が小
さくなる層に圧縮応力が、大きくなる層に引張応力が発
生するので、双方の層に発生する応力を適正化すれば、
陶磁器板の反りや変形の発生を防止する作用を生じさ
せ、強度を向上することができる。また、陶磁器板の表
面層の熱膨張係数を、中間層の熱膨張係数よりも小さく
なるように構成しておくと、熱膨脹の小さい表面層には
圧縮応力が発生し、表面強度が向上する。また、表面層
の収縮が小さくなるので、表面に緩やかな凸状になる傾
向を生じ、端部が反るのを抑止するものと考えられる。
First, the function and mode of thermal expansion of the ceramic plate of the present invention will be described. The ceramic plate of the present invention can be manufactured by stacking at least three layers of papermaking sheets and firing. At least two layers of the layers constituting the ceramic plate after firing have different thermal expansion coefficients (hereinafter, abbreviated as layers having different thermal expansion). The layers having different thermal expansions shrink with different thermal shrinkages depending on the difference in composition and the firing conditions during the firing process. As a result, strain stress due to the difference in shrinkage is inherent in the two-layer bonded surface of the ceramic plate having different thermal expansions. Therefore, even if an impact force is applied to the ceramic plate from the outside, the impact force is dispersed at the joint surface where strain stress is inherent,
It produces an effect of preventing the occurrence of cracks. Further, between two adjacent layers having different thermal expansion coefficients, a compressive stress is generated in a layer having a small thermal expansion coefficient during firing, and a tensile stress is generated in a layer having a large thermal expansion coefficient. Therefore, if the stresses generated in both layers are optimized,
The strength of the ceramic plate can be improved by causing the effect of preventing the ceramic plate from being warped or deformed. Further, when the coefficient of thermal expansion of the surface layer of the ceramic plate is set to be smaller than the coefficient of thermal expansion of the intermediate layer, compressive stress is generated in the surface layer having a small coefficient of thermal expansion, and the surface strength is improved. Further, since the shrinkage of the surface layer is small, it is considered that the surface tends to have a gentle convex shape to prevent the end portion from warping.

【0009】本発明の陶磁器板において隣接する層の熱
膨張係数の差は、0.2×10-6〜2×10-6/℃、と
くに0.5×10-6〜1×10-6/℃の範囲内に調整す
ることが好ましい。熱膨張係数の差が小さ過ぎると熱膨
張率の相違にもとづく効果が十分でなくなり、大き過ぎ
ると焼成過程で相間剥離やクラックが発生したり、反り
や変形の原因になる。また、焼成体全体の熱膨張係数が
7×10-6/℃を、できれば6.5×10-6/℃を超え
ないように調整することが好ましい。焼成時の冷却クラ
ック発生を抑制し、反りや変形が小さく強度、耐衝撃
性、耐熱衝撃性を向上させることができるからである。
また、陶磁器板の製造に際し、焼成工程の冷却速度を早
くすることができるので生産性を向上できる利点もあ
る。
In the ceramic plate of the present invention, the difference in coefficient of thermal expansion between adjacent layers is 0.2 × 10 −6 to 2 × 10 −6 / ° C., particularly 0.5 × 10 −6 to 1 × 10 −6. It is preferably adjusted within the range of / ° C. If the difference in the coefficient of thermal expansion is too small, the effect based on the difference in the coefficient of thermal expansion will not be sufficient, and if it is too large, phase separation and cracks will occur during the firing process, and warping and deformation will occur. Further, it is preferable to adjust the thermal expansion coefficient of the entire fired body not to exceed 7 × 10 −6 / ° C., preferably 6.5 × 10 −6 / ° C. This is because generation of cooling cracks during firing can be suppressed, warpage and deformation can be reduced, and strength, impact resistance, and thermal shock resistance can be improved.
In addition, there is also an advantage that productivity can be improved because the cooling rate in the firing step can be increased in manufacturing the ceramic plate.

【0010】本発明の陶磁器板を構成する各層の熱膨張
係数の測定法について説明する。陶磁器板各層、少なく
とも熱膨張の異なる層は孔構造が異なるので、表面から
染料水を染込ませると各層の染色に濃淡を生じる。濃淡
の境界をたとえばマイクロファイバスコープで拡大観察
すれば、各層の境界を識別することができる。隣接する
層の孔構造の差異が小さ過ぎて染色の濃淡を識別しにく
いときは、EPMA(電子プローブX線マイクロアナラ
イザー)を用い、各層の組成の差を測定して境界を識別
すればよい。各層の境界を識別したら、陶磁器板を境界
に沿ってスライスし、測定対象の層から測定用サンプル
を採取することができる。焼成体全体の熱膨張係数の測
定用サンプルは、スライスすることなくそのまま切断し
て採取する。採取したサンプルは、市販の押し棒式示差
熱膨脹計を用い、室温(t0 )から所定温度(t:70
0℃を採用)に昇温してサンプルの長さ(室温時:
0 、t℃時:l)を測定し、次式によって算出する。
A method for measuring the coefficient of thermal expansion of each layer constituting the ceramic plate of the present invention will be described. Since each layer of the ceramic plate, at least the layer having different thermal expansion, has a different pore structure, when dye water is impregnated from the surface, the dyeing of each layer becomes shaded. The boundary of each layer can be identified by magnifying and observing the boundary of light and shade with a microfiberscope, for example. When the difference in the pore structure of the adjacent layers is too small to discriminate the tint of staining, EPMA (electron probe X-ray microanalyzer) is used to measure the difference in the composition of each layer to identify the boundary. Once the boundaries of each layer have been identified, the ceramic plate can be sliced along the boundaries and a measurement sample can be taken from the layer to be measured. A sample for measuring the coefficient of thermal expansion of the entire fired body is cut as it is and collected without slicing. The sample collected was measured from room temperature (t 0 ) to a predetermined temperature (t: 70) using a commercially available push rod type differential thermal expansion meter.
Increase the temperature to 0 ° C and increase the length of the sample (at room temperature:
l 0 , at t ° C .: 1) is measured and calculated by the following formula.

【0011】α(熱膨張係数)=(l−l0 )/{l・
(t−t0 )} 本発明の陶磁器板を構成する各層の厚みは、0.05〜
2mmが好ましく、焼成体全体の厚みは、使用目的や陶
磁器板の表面積にもよるが、2〜10mmの範囲、とく
に3〜8mmの範囲が好ましい。陶磁器板の厚みは、通
常、抄造した薄いシート状成形体を必要な枚数だけ積層
し、加圧一体化し、焼成することにより調整する。各層
の厚みが0.05mmよりも薄いと均一なシートの製造
が難しくなり、2mmよりも厚いと良品質が得られ難く
なる場合がある。各層の厚みが同じである必要はない。
また、焼成体全体の厚みが1mmよりも薄いと割れや反
りが生じやすく、10mmよりも厚いと焼成が難しくな
る。
Α (coefficient of thermal expansion) = (l−l 0 ) / {l ·
(T−t 0 )} The thickness of each layer constituting the ceramic plate of the present invention is 0.05 to
2 mm is preferable, and the thickness of the whole fired body depends on the purpose of use and the surface area of the ceramic plate, but is preferably in the range of 2 to 10 mm, particularly preferably in the range of 3 to 8 mm. The thickness of the ceramic plate is usually adjusted by laminating a required number of thin sheet-shaped molded products, integrating them under pressure, and firing. If the thickness of each layer is less than 0.05 mm, it may be difficult to produce a uniform sheet, and if it is more than 2 mm, it may be difficult to obtain good quality. The thickness of each layer does not have to be the same.
Further, if the thickness of the entire fired body is less than 1 mm, cracking or warpage easily occurs, and if it is more than 10 mm, firing becomes difficult.

【0012】本発明の陶磁器板には、陶磁器原料にカオ
リン、各種粘土類、陶石、けい石、珪灰石、長石、ドロ
マイト、アルミナ、ジルコニア、フェライトなどの無機
物を単独または混合し、主成分として使用する。本発明
において、陶磁器板の熱膨張係数は、主に使用する陶磁
器原料の組成、粒度分布などによって調整することがで
きる。熱膨張係数を大きくする陶磁器板中のアルカリ金
属酸化物の含有量が7重量%を超えないように、かつ、
陶磁器板中に残存する結晶性石英の含有量が10重量%
を超えないように原料を調整することが好ましい。
In the ceramic plate of the present invention, kaolin, various clays, porcelain stone, silica stone, wollastonite, feldspar, dolomite, alumina, zirconia, ferrite and other inorganic substances are used alone or as a main component in the ceramic raw material. use. In the present invention, the coefficient of thermal expansion of the ceramic plate can be adjusted mainly by the composition of the ceramic raw material used, the particle size distribution and the like. The content of the alkali metal oxide in the ceramic plate for increasing the coefficient of thermal expansion does not exceed 7% by weight, and
Content of crystalline quartz remaining in the ceramic plate is 10% by weight
It is preferable to adjust the raw materials so as not to exceed the above.

【0013】本発明の陶磁器板の少なくとも表面層に顔
料を配合すれば、任意の色彩を有する陶磁器板にするこ
とができる。あるいは、両側の表面層にそれぞれ別色彩
の顔料を配合し、陶磁器板に多様な色彩効果をもたらす
こともできる。さらに、表面層を複数の色彩の異なる極
薄層で重ね合わせて構成すれば、各色が重なって見える
部分と透けて見える部分とが複雑な大理石調の模様の陶
磁器板が得られる。各種色彩の顔料を、鱗片状や斑点状
に分散して表面層の原料スラリーに加えておくと、天然
みかげ石様の陶磁器板が得られる。表面の着色層や模様
層の厚みは、用途に応じて決めることができるが、光沢
を付与するため表面に研磨加工を施す場合には、焼成後
の表面層に少なくとも0.5mmの厚みをもたせること
が望ましい。
By incorporating a pigment into at least the surface layer of the ceramic plate of the present invention, a ceramic plate having an arbitrary color can be obtained. Alternatively, pigments of different colors may be mixed in the surface layers on both sides to provide various color effects to the ceramic plate. Further, when the surface layer is formed by superposing a plurality of ultrathin layers having different colors, it is possible to obtain a ceramic plate having a marble-like pattern in which a portion where each color is seen and a portion where it is seen through are complicated. When pigments of various colors are dispersed in scales or spots and added to the raw material slurry for the surface layer, a natural granite-like ceramic plate is obtained. The thickness of the colored layer or the pattern layer on the surface can be determined according to the application, but when polishing the surface to impart gloss, the surface layer after firing should have a thickness of at least 0.5 mm. Is desirable.

【0014】つぎに、本発明の陶磁器板の好ましい製造
方法を、実施態様例をあげながら具体的に説明する。ま
ず、陶磁器原料の粉末と所定の配合比の繊維材料とに水
に加え、さらに所定量のガラス転移点が10℃を超えな
い熱可塑性有機質材料(以下、有機質材料と略称する)
を加え、パルパーなどを用い、攪拌、混合しスラリーに
する。繊維材料は、主に陶磁器原料を抄造し、あるいは
陶磁器板の強度を補強するために使用する。具体的に
は、天然繊維、天然および合成パルプ、レーヨン、ビニ
ルアルコール系重合体、ポリエステルなどの各種有機合
成繊維類、ガラスファイバー、セラミックファイバー、
ロックウール、チタン酸カリウムなどの各種無機繊維類
があげられる。無機繊維は、焼成によって消失しないの
で、焼成時の収縮を防止し製品の強度を向上する作用が
ある。これらの繊維は混合して使用してもよい。有機質
材料は、陶磁器用素地の空隙率を低くする作用がある。
有機質材料としては、天然ゴム、スチレン−ブタジエン
共重合体、アクリロニトリル−ブタジエン共重合体、ポ
リアクリル酸エステルなどのガラス転移点が10℃を超
えない有機重合体があげられる。
Next, a preferred method for manufacturing a ceramic plate of the present invention will be specifically described with reference to embodiments. First, a thermoplastic organic material (hereinafter, abbreviated as an organic material) in which a powder of a ceramic raw material and a fiber material having a predetermined mixing ratio are added to water, and further, a glass transition point of a predetermined amount does not exceed 10 ° C.
Is added, and the mixture is stirred and mixed using a pulper or the like to form a slurry. The fiber material is mainly used for making a ceramic raw material or for reinforcing the strength of a ceramic plate. Specifically, natural fibers, natural and synthetic pulp, rayon, vinyl alcohol polymers, various organic synthetic fibers such as polyester, glass fibers, ceramic fibers,
Various inorganic fibers such as rock wool and potassium titanate can be used. Since the inorganic fiber does not disappear by firing, it has an action of preventing shrinkage during firing and improving the strength of the product. These fibers may be mixed and used. The organic material has a function of reducing the porosity of the ceramic body.
Examples of the organic material include natural rubbers, styrene-butadiene copolymers, acrylonitrile-butadiene copolymers, polyacrylic acid esters, and other organic polymers having a glass transition point not exceeding 10 ° C.

【0015】スラリーの調合比は、陶磁器板の構成や使
用目的によって異なるが、好ましい組成を例示すると、
陶磁器材料100重量部に対し、繊維材料を1〜25重
量部、有機質材料を1〜50重量%の範囲で加え、調合
するとよい。この組成では、比較的多量の陶磁器材料と
繊維材料とが含まれ、空隙率が小さくても、適量の有機
質材料が配合されているので、得られる積層体が柔軟性
を有し、全体としての取扱いが容易になる。繊維材料が
少ないと抄造するのが困難になり、また、過大になると
繊維材料の消失による陶磁器板の収縮変形や反りが大き
くなる。有機質材料の配合量が、1重量%以下では添加
する効果が充分でなくなり、50重量%を超えると焼成
工程での収縮が大きくなって好ましくない。
The mixing ratio of the slurry varies depending on the structure of the ceramic plate and the purpose of use, but a preferable composition is as follows:
It is advisable to add 1 to 25 parts by weight of the fiber material and 1 to 50% by weight of the organic material to 100 parts by weight of the ceramic material to mix them. In this composition, a relatively large amount of ceramic material and fiber material are included, and even if the porosity is small, an appropriate amount of organic material is blended, so that the obtained laminate has flexibility, and as a whole, Easy to handle. When the amount of the fiber material is small, it becomes difficult to make the paper, and when the amount of the fiber material is excessively large, shrinkage deformation and warpage of the ceramic plate due to the loss of the fiber material increase. If the compounding amount of the organic material is 1% by weight or less, the effect of addition is not sufficient, and if it exceeds 50% by weight, shrinkage in the firing step becomes large, which is not preferable.

【0016】スラリーには前記の3成分の他に陶磁器板
の特性や製造時の操作性を向上するために、各種の薬剤
を添加することができる。例えば、アニオン系の有機高
分子電解液、カチオン系の有機電解液、カチオン系の無
機コロイド液、多価金属塩類などの定着剤や凝集剤;各
種顔料、着色微粒子、みかげ石の粉末などの表面化粧材
料;アスベスト繊維、ガラス繊維、ワラストナイトがあ
げられる。
In addition to the above three components, various chemicals can be added to the slurry in order to improve the characteristics of the ceramic plate and the operability during manufacturing. For example, anionic organic polymer electrolytes, cationic organic electrolytes, cationic inorganic colloids, fixing agents and flocculants such as polyvalent metal salts; various pigments, colored fine particles, surface makeup such as granite powder Material: Asbestos fiber, glass fiber, wollastonite.

【0017】本製造方法では、陶磁器板の層の間に熱膨
張係数差を付与するために、陶磁器材料の粉末、繊維材
料、有機質材料を必須成分とする少なくとも2種類のス
ラリーを調合する。すなわち、調合する各スラリーを抄
造し、得たシート状成形体を積層一体化して焼成したと
きに、陶磁器板を構成する層のうち、少なくとも2層の
熱膨張係数が相互に好ましい範囲で異なるように調整し
て調合する。
In the present manufacturing method, at least two kinds of slurries containing the ceramic material powder, the fiber material and the organic material as essential components are prepared in order to impart a difference in thermal expansion coefficient between the layers of the ceramic plate. That is, when the respective slurries to be prepared are made into paper, and the obtained sheet-shaped compacts are laminated and integrated and fired, at least two layers of the layers constituting the ceramic plate differ in thermal expansion coefficient within mutually preferable ranges. Adjust to and mix.

【0018】つぎに、調合したスラリーを、例えば、長
網式や丸網式の抄造機を用いてシート状成形体に抄造す
る。抄造した各シート状成形体を3層以上、所要の層数
に積層し、加圧して一体化する。加圧に際し、シート状
成形体を少なくとも50℃に予熱しておくことが好まし
い。より低圧で緻密な歪みの少ない陶磁器板用素地を得
られるからである。通常、原料として配合した有機重合
体のガラス転移点よりも50℃以上、高い温度に加熱し
ておく。加圧操作には水圧プレスや機械プレスなどを使
用できるが、本発明では、均一、かつ連続的に長尺シー
トに大きな線圧を付与できるロールプレスの使用が好ま
しい。
Next, the prepared slurry is formed into a sheet-shaped compact by using, for example, a Fourdrinier or round-net machine. Each of the sheet-shaped compacts produced is laminated in a required number of layers of three layers or more, and pressurized to be integrated. It is preferable to preheat the sheet-shaped molded product to at least 50 ° C. before pressurizing. This is because it is possible to obtain a base material for a ceramic plate that is dense and has less distortion at a lower pressure. Usually, it is heated to a temperature higher than the glass transition point of the organic polymer blended as a raw material by 50 ° C. or higher. A hydraulic press or a mechanical press can be used for the pressing operation, but in the present invention, it is preferable to use a roll press that can uniformly and continuously apply a large linear pressure to the long sheet.

【0019】得られる加圧積層体は、空隙率が0.1〜
0.4、吸水率が10〜30重量%、さらに好ましくは
15〜25%になるように調整することが望ましい。空
隙率や吸水率は、スラリー組成や積層体の加圧条件によ
って調整することができる。ロールプレスの線圧が10
0kg/cm以下であると、空隙率を0.1〜0.4の
範囲に調整することが困難である。空隙率を0.4以下
にすることによって、焼成時の収縮が押さえられ、反り
や変形がない表面の平滑な陶磁器板を製造できる。空隙
率が0.1以下では、陶磁器板素地として高圧縮になり
すぎ、素地内での残留応力によって焼成時に割れや反り
を生じやすい。吸水率が過大であると焼成時の収縮が大
きくなり過ぎ、過少であると陶磁器板素地として高圧縮
になりすぎる傾向にある。
The resulting pressure-laminated product has a porosity of 0.1 to 0.1.
0.4, the water absorption is 10 to 30% by weight, and more preferably 15 to 25%. The porosity and the water absorption can be adjusted depending on the slurry composition and the pressurization condition of the laminate. Roll press linear pressure is 10
When it is 0 kg / cm or less, it is difficult to adjust the porosity to the range of 0.1 to 0.4. By setting the porosity to 0.4 or less, shrinkage during firing is suppressed, and a ceramic plate having a smooth surface without warping or deformation can be manufactured. When the porosity is 0.1 or less, the ceramic plate base material is excessively compressed, and residual stress in the base material easily causes cracking or warpage during firing. If the water absorption is too large, the shrinkage during firing will be too large, and if it is too small, the ceramic plate base material will tend to be highly compressed.

【0020】なお、本発明における空隙率は次の(2)
式から、吸水率は(3)式から求めた価である。 空隙率=1−[W0 /V0 ]/[(W1 ・ρ1 +W2 ・ρ2 )/W0 ] ・・・・・(2) ただし、V0 :105℃、24時間乾燥後の試料の容積[cm3 ] W0 : 同上 の重量[g] W1 :400℃、2時間乾燥後の試料の減量[g] W2 :400℃、2時間乾燥後の試料の殘量[g] ρ1 :試料に含まれる有機質原料の密度[g/cm3 ] ρ2 :試料に含まれる無機質原料の密度[g/cm3 ] 吸水率(重量%)={(吸水後の重量−吸水前の重量)/吸水前の重量} ×100 ・・・・・(3) 陶磁器板の厚みは、通常、焼成後に所望の厚みになるよ
うに薄いシート状成形体を必要な枚数だけ積層し、加圧
一体化して調整すればよい。積層、加圧操作を何段階か
に分けて行うこともできる。分けて行う場合、一旦加圧
加工されたシート状成形体は結着性がよくないので、未
加工のシート状成形体を挾み込んで加圧一体化したり、
また、加圧加工されたシートの少なくとも片側に未加工
シートを積層して加圧一体化することが好ましい。ま
た、少なくとも2枚の陶磁器板、あるいは一旦仮焼成し
た陶磁器板の間に接着成分として、ガラスクロス、ガラ
スマットのようなシート状物を挾んだり、陶磁器材料粉
末を均一に散布し、それらの接着成分が溶融する温度で
焼成すれば、強固に接着一体化することができる。
The porosity in the present invention is defined by the following (2)
From the equation, the water absorption rate is the value obtained from the equation (3). Porosity = 1- [W 0 / V 0 ] / [(W 1 · ρ 1 + W 2 · ρ 2 ) / W 0 ] (2) However, V 0 : 105 ° C., after drying for 24 hours Sample volume [cm 3 ] W 0 : same as above [g] W 1 : 400 ° C, weight loss of sample after drying for 2 hours [g] W 2 : 400 ° C, weight of sample after drying for 2 hours [ g] ρ 1 : Density [g / cm 3 ] of the organic raw material contained in the sample ρ 2 : Density [g / cm 3 ] of the inorganic raw material contained in the sample Water absorption rate (wt%) = {(weight after water absorption− (Weight before water absorption) / weight before water absorption} × 100 (3) The thickness of a ceramic plate is usually obtained by laminating a required number of thin sheet-shaped compacts so as to have a desired thickness after firing. The pressure may be integrated for adjustment. The stacking and pressurizing operations can be performed in several stages. When performed separately, since the sheet-shaped molded product that has been pressure-processed does not have good binding properties, it is possible to sandwich the unprocessed sheet-shaped molded product for pressure integration.
Further, it is preferable to stack an unprocessed sheet on at least one side of the pressure-processed sheet to integrate the sheet under pressure. In addition, a sheet material such as a glass cloth or a glass mat is sandwiched as an adhesive component between at least two ceramic plates or a ceramic plate which has been temporarily calcined, or ceramic material powder is evenly dispersed to bond them. If it is baked at a temperature at which is melted, it can be firmly bonded and integrated.

【0021】ついで、一体化した積層体を、ローラハー
スキルンやトンネルキルンなどを用いて焼成する。ロー
ラハースキルンは、長尺のシート状積層体を、均一に連
続して効率よく焼成することができるので、好ましく用
いることができる。一体化した積層体は、ローラハース
キルン内の、適温に設定された予熱帯、焼成帯および冷
却帯を、適切な時間で順次連続的に通過し、発生する分
解ガスを速やかに除去しつつ、各シート状成形体がシー
ト状焼成体に転化され、本発明の陶磁器板に焼成され
る。焼成帯部分のローラは、ローラ上を通過するシート
状物の垂下りを防止するために50mm以下のピッチで
配置することが望ましい。
Then, the integrated laminated body is fired using a roller hearth kiln, a tunnel kiln or the like. The roller hearth kiln can be preferably used because a long sheet-shaped laminate can be uniformly and efficiently fired continuously. The integrated laminate passes through the preheat zone, the firing zone and the cooling zone set to an appropriate temperature in the roller hearth kiln in succession successively at an appropriate time, and quickly removes the generated decomposition gas, Each sheet-shaped compact is converted into a sheet-shaped fired body and fired into the ceramic plate of the present invention. It is desirable to arrange the rollers in the firing zone at a pitch of 50 mm or less in order to prevent the sheet-like material passing over the rollers from hanging down.

【0022】焼成温度は、目的の特性などによって決め
るが、通常、1000〜1350℃、好ましくは、11
50〜1250℃の範囲である。予熱帯では穏やかな条
件で昇温する方がよい。なかでも常温〜250℃の温度
域における昇温速度は、好ましくは50℃/分以下に、
より好ましくは40℃/分以下に、また、250〜50
0℃の温度域における昇温速度は、好ましくは20℃/
分以下に、より好ましくは10℃/分以下に設定する。
これらの温度域での昇温速度が早すぎると、積層体中の
有機質繊維や熱可塑性有機質材料の熱分解に伴う分解ガ
スが急激に発生したり、異常発熱によってシート状焼成
体間の層間剥離が多発するようになる。さらに、冷却帯
においても時間をかけて、とくに700〜300℃の温
度域における降温速度は、好ましくは20℃/分以下
に、より好ましくは10℃/分以下に設定する。降温速
度が早すぎると、焼成体の層間に大きな剪断応力が発生
し、層間剥離やクラック発生の原因になる。
The firing temperature is determined depending on the desired characteristics, etc., but is usually 1000 to 1350 ° C., preferably 11
It is in the range of 50 to 1250 ° C. In the pretropical zone, it is better to raise the temperature under mild conditions. Above all, the rate of temperature rise in the temperature range of normal temperature to 250 ° C. is preferably 50 ° C./min or less,
More preferably at 40 ° C / min or less, and 250 to 50
The rate of temperature increase in the temperature range of 0 ° C is preferably 20 ° C /
It is set to not more than minutes, more preferably not more than 10 ° C./minute.
If the heating rate in these temperature ranges is too fast, decomposition gas due to the thermal decomposition of the organic fibers and thermoplastic organic materials in the laminate will suddenly occur, or delamination between the sheet-like fired bodies due to abnormal heat generation Will occur frequently. Further, in the cooling zone, the rate of temperature decrease is set to preferably 20 ° C./min or less, more preferably 10 ° C./min or less, especially in the temperature range of 700 to 300 ° C. If the rate of temperature decrease is too fast, a large shear stress is generated between the layers of the fired body, which causes delamination and cracks.

【0023】また、本発明にかかる陶磁器板は容易に表
面加工を施することができる。たとえば、シート状成形
体を積層加圧する際に、加圧機にエンボスロールを用
い、表面に凹凸模様を付与したり、釉薬紙や模様印刷の
フィルムを貼着して陶磁器板の表面に各種の模様を付与
することができる。表面にガラスビーズやフレーク、各
種の柄からなるガラス織物、みかげ石の細粉末などを融
着させ、各種模様を形成することもできる。また、加圧
した表面に、研削により凹凸模様を形成したり、研削や
サンドブラストにより粗面加工したり、種々の形状に端
面加工したり、裏面に溝やアリ足を形成したり、孔あけ
やネジ穴加工したり、種々の形状に曲げ加工した後焼成
することがで多種多様な陶磁器板を製造することができ
る。
The ceramic plate according to the present invention can be easily surface-treated. For example, when laminating and pressing sheet-shaped compacts, an embossing roll is used as a pressure machine to give an uneven pattern to the surface, or a glaze paper or a film for pattern printing is attached to form various patterns on the surface of a ceramic plate. Can be given. Various patterns can be formed by fusing glass beads or flakes, glass fabrics having various patterns, fine granite powder, etc. on the surface. In addition, the pressed surface may be ground to form an uneven pattern, may be ground or sandblasted to roughen the surface, may be machined into various shapes on the end surface, or may be formed with grooves or dovetails on the back surface, or may be drilled. A wide variety of ceramic plates can be manufactured by processing screw holes or bending into various shapes and then firing.

【0024】加工後の積層体を、たとえば1100〜1
350℃の温度で一旦仮焼成した後、上記加工を実施す
れば、効率よく、寸法精度の高い陶磁器板を製造するこ
とができる。また、表面に釉薬をスプレー掛けしたり、
模様状にプリントしたのち焼成したり、あるいは、80
0〜1350℃で仮焼成したのち、その表面に同様の釉
薬を施釉し、ついで、500〜1350℃に焼成して施
釉陶磁器板を製造することができる。この他、本発明の
陶磁器板は、用途に合わせた各種素材、たとえば、ケイ
カル板、ALC、コンクリート板、GRC板、石膏ボー
ド、合板、木材、ステンレス板、鋼板、プラスチック
板、ガラス板などに複合化して用いることができる。
The laminated body after processing is, for example, 1100 to 1
If the above-mentioned processing is performed after temporarily calcining at a temperature of 350 ° C., it is possible to efficiently manufacture a ceramic plate with high dimensional accuracy. Also, spray glaze on the surface,
Printed in a pattern and then baked, or 80
After calcining at 0 to 1350 ° C., the surface thereof is glazed with the same glaze, and then calcined at 500 to 1350 ° C. to manufacture a glazed ceramic plate. In addition to the above, the ceramic plate of the present invention is composited with various materials according to the application, for example, calcareous plate, ALC, concrete plate, GRC plate, gypsum board, plywood, wood, stainless steel plate, steel plate, plastic plate, glass plate and the like. It can be used after being converted.

【0025】[0025]

【実施例】本発明の陶磁器板の製造例と比較例として本
発明ではないが類似する陶磁器板とを製造したので、順
次説明する。 実施例1、比較例1、2 本実施例では、層間の熱膨張係数が異なる本発明の多層
構造の陶磁器板を製造し、力学特性などを測定した。さ
らに、比較例として各層の熱膨張係数が同じである多層
構造の陶磁器板を製造し、特性などを比較した。アプラ
イト55重量部、カオリン15重量部、アルミナ15
部、タルク5重量部、ワラストナイト10重量部とから
なる陶磁器材料粉末と、クラフトパルプ5重量部と、ス
チレン−ブタジエンゴムラテックス(SBRラテック
ス、ただし、ガラス転移点:−20℃)5重量部と、水
とを攪拌、混合し、固形分濃度が2重量%のスラリー
(A)を調整した。同様にアプライト65重量部、カオ
リン10重量部、アルミナ20部、タルク5重量部、ワ
ラストナイト10重量部とからなる陶磁器材料粉末を用
い、その他の成分と調整方法はスラリー(A)と同一に
して、固形分濃度が2重量%のスラリー(B)を調整し
た。以下、たとえば、スラリー(A)を出発物質とする
シート状成形体および焼成体には(A)を付記し、他の
スラリーなどについても同様に表示する。
EXAMPLE A ceramic plate of the present invention and a ceramic plate similar to the present invention, which is not the present invention, were manufactured as comparative examples, and will be described in order. Example 1 and Comparative Examples 1 and 2 In this example, a multilayer-structured ceramic plate of the present invention having different thermal expansion coefficients between layers was manufactured, and the mechanical properties and the like were measured. Further, as a comparative example, a ceramic plate having a multilayer structure in which each layer has the same coefficient of thermal expansion was manufactured, and the characteristics and the like were compared. 55 parts by weight of upright, 15 parts by weight of kaolin, 15 parts of alumina
Part, 5 parts by weight of talc, 10 parts by weight of wollastonite, a ceramic material powder, 5 parts by weight of kraft pulp, and 5 parts by weight of styrene-butadiene rubber latex (SBR latex, but glass transition point: -20 ° C). And water were stirred and mixed to prepare a slurry (A) having a solid content concentration of 2% by weight. Similarly, a ceramic material powder consisting of 65 parts by weight of uprite, 10 parts by weight of kaolin, 20 parts by weight of alumina, 5 parts by weight of talc, and 10 parts by weight of wollastonite was used, and the other components and the adjusting method were the same as those of the slurry (A). To prepare a slurry (B) having a solid content concentration of 2% by weight. Hereinafter, for example, (A) is added to the sheet-shaped molded product and the fired product using the slurry (A) as a starting material, and the same applies to other slurries and the like.

【0026】長網式抄紙機を用い、スラリー(A)と
(B)とから、それぞれ幅120cmのエンドレスシー
トを抄造し、多筒式乾燥機を通していずれも厚みが2m
m、含水率が0.5重量%のシート状成形体(A)と
(B)とを製造した(以下、シート状成形を単に成形体
という)。成形体(A)および(B)とを交互に積層し
て5層の積層体にした後、線圧350kg/cmの油圧
式ロールプレスを通して加圧した。得られた加圧積層体
を長さ3m、幅1.2m、厚み7mmに切断し、空隙率
と吸水率とを、前記した方法に準拠して測定した。切断
した加圧積層体をローラハースキルンを用い、1220
℃で60分間焼成し、シート状焼成体(A)および
(B)とが交互に積層一体化している5層構造の陶磁器
板にした。焼成した陶磁器板から焼成体(A)および
(B)のサンプルを採取し、それぞれ熱膨張係数(前記
した測定法に準拠)、曲げ強度(JIS A5209に
準拠)および衝撃強度(JIS K7111に準拠)を
測定した。また、陶磁器板の反りや変形を5段階評価
(5が最良)で判定した。
Using a Fourdrinier paper machine, an endless sheet having a width of 120 cm was made from each of the slurries (A) and (B), and a thickness of 2 m was obtained through a multi-cylinder dryer.
m, and a sheet-shaped molded product (A) and (B) having a water content of 0.5% by weight were produced (hereinafter, the sheet-shaped molded product is simply referred to as a molded product). The molded bodies (A) and (B) were alternately laminated to form a five-layer laminated body, and then the mixture was pressed through a hydraulic roll press having a linear pressure of 350 kg / cm. The obtained pressure laminated body was cut into a length of 3 m, a width of 1.2 m, and a thickness of 7 mm, and the porosity and the water absorption were measured according to the methods described above. Using a roller hearth kiln to cut the pressure laminated body, 1220
It was fired at 60 ° C. for 60 minutes to obtain a ceramic plate having a five-layer structure in which sheet-like fired bodies (A) and (B) were alternately laminated and integrated. Samples of the fired bodies (A) and (B) were taken from the fired ceramic plate, and the thermal expansion coefficient (based on the above-described measurement method), bending strength (based on JIS A5209) and impact strength (based on JIS K7111) were respectively taken. Was measured. Further, the warpage and deformation of the ceramic plate were evaluated by a 5-step evaluation (5 is the best).

【0027】次に比較のために、焼成体(A)または
(B)のみの5層からなる陶磁器板を上記と同じ方法で
製造し、比較例1および2として測定評価した。
Next, for comparison, a ceramic plate consisting of five layers of only the fired body (A) or (B) was manufactured by the same method as above, and measured and evaluated as Comparative Examples 1 and 2.

【0028】以上の結果をまとめて表1に示す。本発明
の陶磁器板は、曲げ強度および耐衝撃性に優れ、反りや
変形が発生していない。
The above results are summarized in Table 1. The ceramic plate of the present invention has excellent bending strength and impact resistance, and is free from warpage and deformation.

【0029】実施例2〜5、比較例3,4 これらの実施例と比較例とは、主に、熱膨張係数が7×
10-6/℃を超えない陶磁器板と超える陶磁器板とを比
較し、さらに層間の熱膨張係数の差の影響を知るために
実施した。表2で示す組成の成分を含む固形分濃度が2
重量%のスラリー(C)〜(H)を調整し、実施例1と
同様にして成形体(C)〜(H)を抄造した。さらに、
これらの成形体を表3で示すような構成で交互に積層
し、実施例1と同様にして積層体を加圧一体化し、陶磁
器板に焼成した。この間、評価のための測定を実施し
た。測定の結果をまとめて表3および表4に示す。本発
明の陶磁器板は、曲げ強度および耐衝撃性に優れ、反り
や変形が発生していない。熱膨張係数が7×10-6/℃
を超えない陶磁器板は強度特性に優れ、また、層間の熱
膨張係数の差は0.2×10-6〜2.0×10-6/℃が
好ましい。
Examples 2 to 5 and Comparative Examples 3 and 4 These examples and comparative examples mainly have a thermal expansion coefficient of 7 ×.
It was carried out in order to compare a ceramic plate that does not exceed 10 -6 / ° C. and a ceramic plate that does not exceed 10 −6 / ° C., and to know the influence of the difference in the coefficient of thermal expansion between layers. The solid content concentration including the components having the composition shown in Table 2 is 2
Weighted slurries (C) to (H) were prepared, and molded bodies (C) to (H) were produced in the same manner as in Example 1. further,
These molded bodies were alternately laminated in the constitution shown in Table 3, and the laminated body was pressure-integrated in the same manner as in Example 1 and fired on a ceramic plate. During this period, measurement for evaluation was performed. The measurement results are summarized in Tables 3 and 4. The ceramic plate of the present invention has excellent bending strength and impact resistance, and is free from warpage and deformation. Coefficient of thermal expansion is 7 × 10 -6 / ° C
It is preferable that the ceramic plate not exceeding 10 has excellent strength characteristics, and the difference in coefficient of thermal expansion between layers is 0.2 × 10 −6 to 2.0 × 10 −6 / ° C.

【0030】実施例6〜8 これらの実施例では、成形体の厚みと積層体の層数とを
変え、成形体(A)を表面層にした以外、実施例1と同
じ組成と同じ方法とで陶磁器板を製造し、所要の物性を
測定した。測定結果を表5に示す。陶磁器板の積層数が
多いほど強度特性がよくなる傾向にあることがわかる。
Examples 6 to 8 In these Examples, the same composition and method as in Example 1 were used except that the thickness of the molded body and the number of layers of the laminate were changed and the molded body (A) was used as the surface layer. A ceramic plate was manufactured in and the required physical properties were measured. The measurement results are shown in Table 5. It can be seen that the strength characteristics tend to improve as the number of laminated ceramic plates increases.

【0031】実施例9〜10、参考例 これらの実施例は、実施例1において、結合剤(SBR
ラテックス使用)と積層体に加える加圧力を変えた以外
は実施例1と同様にして陶磁器板を製造し、物性を測定
した。変更条件と物性の測定結果を表6に示す。なお、
参考例として、結合剤の無添加例を示す。
Examples 9-10, Reference Example These examples are the same as those in Example 1 except that the binder (SBR
A ceramic plate was manufactured in the same manner as in Example 1 except that the pressure applied to the laminate was changed to that using latex) and the physical properties were measured. Table 6 shows the changed conditions and the measurement results of the physical properties. In addition,
As a reference example, an example in which no binder is added is shown.

【0032】実施例11〜14 カレンダロールの表面温度と線圧の設定条件を変更した
以外は実施例1と同じ条件で陶磁器板を製造し、物性を
測定した。変更した条件と測定結果とを表7に示す。成
形体を加熱して積層加圧するとカレンダロールの線圧を
下げても優れた強度特性を有する陶磁器板を製造できる
ことがわかる。
Examples 11 to 14 Ceramic plates were manufactured under the same conditions as in Example 1 except that the setting conditions of the surface temperature and the linear pressure of the calendar roll were changed, and the physical properties were measured. Table 7 shows the changed conditions and the measurement results. It can be seen that when the formed body is heated and laminated and pressed, a ceramic plate having excellent strength characteristics can be manufactured even if the linear pressure of the calendar roll is lowered.

【0033】実施例15 実施例1において調整したスラリー(A)に、さらに、
2重量部の酸化コバルト系青色顔料を配合した以外は、
実施例1と同様にして陶磁器板を製造した。製造した陶
磁器板は、実施例1で製造した陶磁器板と同様のすぐれ
た強度特性を有し、表面、裏面ともに美麗な青色に着色
されていた。この陶磁器板は、特性、外観ともに建築の
内装材や外装材として好適であった。
Example 15 In addition to the slurry (A) prepared in Example 1,
Except for adding 2 parts by weight of cobalt oxide type blue pigment,
A ceramic plate was manufactured in the same manner as in Example 1. The produced ceramic plate had excellent strength characteristics similar to those of the ceramic plate produced in Example 1, and had a beautiful blue color on both the front and back surfaces. This ceramic plate was suitable as an interior or exterior material for construction in terms of characteristics and appearance.

【0034】実施例16 実施例1において調整したスラリー(A)に、さらに、
10重量部のみかげ石の微粉末を配合し、実施例1と同
様にして成形体を得た。表面層の成形体(A)を得られ
た成形体に置換えた以外は、実施例1と同様にして陶磁
器板を製造した。製造した陶磁器板は、実施例1で製造
した陶磁器板と同様のすぐれた曲げ強度と耐衝撃性とを
有し、かつ、表面は美麗な御影石調であった。この陶磁
器板は、特性、外観ともに建築の内装材や外装材として
好適であった。
Example 16 In addition to the slurry (A) prepared in Example 1,
A fine powder of granite was mixed in an amount of 10 parts by weight, and a molded body was obtained in the same manner as in Example 1. A ceramic plate was manufactured in the same manner as in Example 1 except that the molded body (A) for the surface layer was replaced with the molded body. The produced ceramic plate had the same excellent bending strength and impact resistance as the ceramic plate produced in Example 1, and the surface was a beautiful granite tone. This ceramic plate was suitable as an interior or exterior material for construction in terms of characteristics and appearance.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【表5】 [Table 5]

【0040】[0040]

【表6】 [Table 6]

【0041】[0041]

【表7】 [Table 7]

【0042】[0042]

【発明の効果】本発明は、少なくとも1層の熱膨張係数
の異なる層を挿入するという簡単な製造条件の調整によ
り、形状が大きく、薄く、強度特性に優れた多層構造陶
磁器板を提供するものである。用途によっては容易に表
面を美麗に仕上げることができるので、建築の内装材や
外装材、床材、家具や実験台の天板、カウンター、各種
インテリア素材、トンネルの内装材、土木関係などの広
汎な用途に供することができ、産業的な利用価値が大き
い。
EFFECTS OF THE INVENTION The present invention provides a multi-layered ceramic plate having a large shape, a thin shape, and excellent strength characteristics by adjusting at least one manufacturing condition of inserting at least one layer having a different thermal expansion coefficient. Is. Depending on the application, the surface can be easily finished beautifully, so it can be used for a wide range of purposes such as interior and exterior materials for architecture, floor materials, furniture and laboratory tabletops, counters, various interior materials, tunnel interior materials, and civil engineering-related materials. It can be used for various purposes and has great industrial utility value.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 33/13 8913−2E E04F 13/14 103A E04F 13/14 103 B28B 11/00 Z (72)発明者 野田 征雄 滋賀県大津市園山1丁目1番1号東レ株式 会社滋賀事業場内 (72)発明者 木村 元 滋賀県大津市園山1丁目1番1号東レ株式 会社滋賀事業場内 (72)発明者 村田 茂一 滋賀県滋賀郡志賀町小野朝日1丁目2番4 号 (72)発明者 上田 輝基 滋賀県野洲郡野洲町永原388番地─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical indication C04B 33/13 8913-2E E04F 13/14 103A E04F 13/14 103 B28B 11/00 Z (72) Inventor Masao Noda 1-1-1, Sonoyama, Otsu City, Shiga Prefecture Toray Co., Ltd. Shiga Business Site (72) Inventor Gen Kimura 1-1-1, Sonoyama, Otsu City, Shiga Prefecture Toray Co., Ltd. Shiga Business Site (72) Inventor Shigekazu Murata 1-2-4 Ono Asahi, Shiga-cho, Shiga-gun, Shiga (72) Inventor Teruki Ueda 388 Nagahara, Yasu-cho, Yasu-gun, Shiga

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】主成分を陶磁器材料とする少なくとも3層
構造の陶磁器板であって、陶磁器板の熱膨張係数が7×
10-6/℃を超えることなく、かつ、隣接する層の熱膨
張係数の差が2×10-6/℃を超えないことを特徴とす
る陶磁器板。
1. A ceramic plate having a structure of at least three layers, which comprises a ceramic material as a main component, wherein the coefficient of thermal expansion of the ceramic plate is 7 ×.
10 -6 / ° C. without exceeding, and ceramic plate, wherein a difference in thermal expansion coefficients of adjacent layers does not exceed 2 × 10 -6 / ℃.
【請求項2】少なくとも片側の表面層においては、表面
層の熱膨張係数が隣接する内層の熱膨張係数よりも小さ
いことを特徴とする、請求項1記載の陶磁器板。
2. The ceramic plate according to claim 1, wherein the thermal expansion coefficient of the surface layer is smaller than the thermal expansion coefficient of the adjacent inner layer in at least one surface layer.
【請求項3】各層の厚みがそれぞれ0.05〜2mmで
あることを特徴とする、請求項1または2記載の陶磁器
板。
3. The ceramic plate according to claim 1 or 2, wherein each layer has a thickness of 0.05 to 2 mm.
【請求項4】焼成体全体の厚みが2〜10mmであるこ
とを特徴とする、請求項1、2または3記載の陶磁器
板。
4. The ceramic plate according to claim 1, 2 or 3, wherein the thickness of the entire fired body is 2 to 10 mm.
【請求項5】少なくとも片側の表面層には着色材料が配
合されていることを特徴とする、請求項1〜4のいずれ
かに記載の陶磁器板。
5. The ceramic plate according to any one of claims 1 to 4, wherein a coloring material is mixed in at least one surface layer.
【請求項6】陶磁器材料の粉末、繊維材料、およびガラ
ス転移点が10℃を超えない熱可塑性有機質材料を必須
成分とし、かつ、焼成後に互いに異なる熱膨張係数を有
する層に形成される、少なくとも2種類のスラリーを調
整する工程と、各スラリーをそれぞれ抄造し、シート状
成形体とする工程と、各シート状成形体を少なくとも5
0℃に予熱する工程と、各シート状成形体を積層して少
なくとも3層構造の積層体にする工程と、積層体を加圧
してシート状成形体を一体化した後焼成する工程とを含
むことを特徴とする陶磁器板の製造方法。
6. A ceramic material powder, a fiber material, and a thermoplastic organic material having a glass transition point not exceeding 10 ° C., which are essential components, and are formed into layers having different thermal expansion coefficients after firing. At least 5 steps of adjusting two kinds of slurries, making each of the slurries into a sheet-shaped molded body
It includes a step of preheating to 0 ° C., a step of laminating each sheet-shaped molded body to form a laminated body having at least a three-layer structure, and a step of pressurizing the laminated body to integrate the sheet-shaped molded body and then firing. A method for manufacturing a ceramic plate, comprising:
JP3532895A 1995-02-23 1995-02-23 Ceramic plate Pending JPH08225359A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3532895A JPH08225359A (en) 1995-02-23 1995-02-23 Ceramic plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3532895A JPH08225359A (en) 1995-02-23 1995-02-23 Ceramic plate

Publications (1)

Publication Number Publication Date
JPH08225359A true JPH08225359A (en) 1996-09-03

Family

ID=12438765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3532895A Pending JPH08225359A (en) 1995-02-23 1995-02-23 Ceramic plate

Country Status (1)

Country Link
JP (1) JPH08225359A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102674808A (en) * 2012-06-11 2012-09-19 大埔县富大陶瓷有限公司 High-toughness composite matte ceramic product and manufacturing method thereof
JP2013231276A (en) * 2012-04-27 2013-11-14 Shin Etsu Polymer Co Ltd Siding material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013231276A (en) * 2012-04-27 2013-11-14 Shin Etsu Polymer Co Ltd Siding material
CN102674808A (en) * 2012-06-11 2012-09-19 大埔县富大陶瓷有限公司 High-toughness composite matte ceramic product and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4177105B2 (en) Non-combustible panel containing ocher and non-combustible decorative panel using the same
JP2004516957A (en) Non-combustible composite panel and non-combustible decorative composite panel using the same
JP2000170361A (en) Melamine sheet-laminated decorative floor covering material and its manufacture
EP0271073B1 (en) Artificial marble
TW434146B (en) Incombustible board for interior decoration and facing architectures and a process for preparation thereof
EP4107330A1 (en) Board, method of manufacturing a board and a panel comprising such board material
JP2009132078A (en) Non-combustible board and manufacturing method of the same
JPH08225359A (en) Ceramic plate
AU780320B2 (en) Prefabricated durable building material
US10974488B2 (en) Engineered plank and its manufacturing method
CN1149283A (en) Thin flat ceramic plate and method of manufacturing the same
WO2001071094A1 (en) Hardened body, and method and device for manufacturing the hardened body
JPH08225360A (en) Ceramic plate and production thereof
KR100763751B1 (en) Ceramic thin plate for constrution exterior and the manufacturing method thereof
JP2912125B2 (en) Ceramic plate and manufacturing method thereof
JPH08225361A (en) Ceramic plate and production thereof
JPH08225362A (en) Ceramic plate and production thereof
JPH0752118A (en) Pottery plate and manufacture thereof
JP2912126B2 (en) Ceramic plate and manufacturing method thereof
JPH0752119A (en) Pottery plate and manufacture thereof
KR20050046262A (en) Ornament composite panel having incombustibility
CN206106532U (en) Inorganic rostone fiber cement composite sheet
CA2188441A1 (en) Thin flat ceramic plate and method of manufacturing the same
JPH03253342A (en) Decorative material
KR102612707B1 (en) Limited-combustible high pressure laminate and manufacturing method of same