JPH08225317A - Amorphous sodium silicate-metal sulfate composite powder and its production - Google Patents

Amorphous sodium silicate-metal sulfate composite powder and its production

Info

Publication number
JPH08225317A
JPH08225317A JP7034862A JP3486295A JPH08225317A JP H08225317 A JPH08225317 A JP H08225317A JP 7034862 A JP7034862 A JP 7034862A JP 3486295 A JP3486295 A JP 3486295A JP H08225317 A JPH08225317 A JP H08225317A
Authority
JP
Japan
Prior art keywords
sodium silicate
metal sulfate
composite powder
sulfate
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7034862A
Other languages
Japanese (ja)
Other versions
JP3662966B2 (en
Inventor
Yoshiki Fukuyama
良樹 福山
Genji Taga
玄治 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP03486295A priority Critical patent/JP3662966B2/en
Priority to AU45654/96A priority patent/AU689367B2/en
Priority to US08/605,374 priority patent/US5707960A/en
Priority to CA002170103A priority patent/CA2170103A1/en
Priority to EP96102727A priority patent/EP0728837A1/en
Priority to CN96106049A priority patent/CN1053163C/en
Priority to KR1019960004382A priority patent/KR960031373A/en
Publication of JPH08225317A publication Critical patent/JPH08225317A/en
Application granted granted Critical
Publication of JP3662966B2 publication Critical patent/JP3662966B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/046Salts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/04Water-soluble compounds
    • C11D3/08Silicates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/122Sulfur-containing, e.g. sulfates, sulfites or gypsum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Glass Compositions (AREA)

Abstract

PURPOSE: To provide a powder composed mainly of amorphous sodium silicate useful as a builder for detergent and having water-softening property and low hygroscopicity. CONSTITUTION: This amorphous sodium silicate-metal sulfate composite powder contains a metal sulfate such as sodium sulfate in the form of a solid solution and satisfies the formulas 1.6<=n<=2.8 and 0.1<=S<=2.0 wherein (n) is SiO2 /Na2 O molar ratio and S(m<2> /g) is the specific surface area of the powder. The powder can be produced by pulverizing a sodium silicate cullet containing a metal sulfate in the form of a solid solution.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水軟化性を有し、且つ
吸湿性が小さく、洗剤ビルダーとして有用な非晶質珪酸
ナトリウム・金属硫酸塩複合粉末及びその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an amorphous sodium silicate / metal sulfate composite powder having a water softening property and a small hygroscopicity and useful as a detergent builder, and a method for producing the same.

【0002】[0002]

【従来の技術】非晶質珪酸ナトリウムは古くから知られ
ている。その代表である非晶質珪酸ナトリウムカレット
(珪酸ナトリウムガラス小片)は、珪砂と炭酸ナトリウ
ムまたは水酸化ナトリウムとを加熱溶融して得られ、S
iO2/Na2Oのモル比nは、通常、n=2〜3.3の
ものが一般的となっている。非晶質珪酸ナトリウムカレ
ットを水に高圧下で溶解した水ガラス溶液は、あらゆる
分野の製造工業の中でも最も多方面にわたる用途をもっ
ている素材であるが、非晶質珪酸ナトリウムカレット自
体は中間製品的な色彩が強く、洗剤ビルダーとして有用
な非晶質珪酸ナトリウムカレットの報告はない。
Amorphous sodium silicate has been known for a long time. A typical example thereof is amorphous sodium silicate cullet (small piece of sodium silicate glass) obtained by heating and melting silica sand and sodium carbonate or sodium hydroxide.
The molar ratio n of iO 2 / Na 2 O is generally n = 2 to 3.3. The water glass solution in which amorphous sodium silicate cullet is dissolved in water under high pressure is the most versatile material in the manufacturing industry in all fields, but amorphous sodium silicate cullet itself is an intermediate product. There is no report of amorphous sodium silicate cullet which has strong color and is useful as a detergent builder.

【0003】本発明者らは、非晶質珪酸ナトリウムカレ
ットの粉砕物が水軟化性を示し、洗剤ビルダーとして好
適に使用できることを見い出し、既に提案した(特願平
6−161867号)。
The present inventors have found that a pulverized product of amorphous sodium silicate cullet exhibits water softening property and can be suitably used as a detergent builder and has already proposed it (Japanese Patent Application No. 6-161867).

【0004】本発明者らは、珪酸ナトリウム粉末が水に
溶解する場合、まずNaイオンが溶出し、次いで珪酸イ
オンが溶出すると考えている。また、珪酸ナトリウム粉
末の水軟化機構は、水中のCaイオンとMgイオンの濃
度を次のようにして低減することによると考えている。
The present inventors believe that when sodium silicate powder is dissolved in water, Na ions are first eluted, and then silicate ions are eluted. Further, it is considered that the water softening mechanism of the sodium silicate powder is due to the reduction of the concentration of Ca ion and Mg ion in water as follows.

【0005】Caイオン:Naイオンが溶出した後も溶
解せずに残存する珪酸にCaイオンが結合する。
Ca ion: Ca ion is bonded to silicic acid which remains without being dissolved even after Na ion is eluted.

【0006】Mgイオン:溶出した珪酸イオンがMgイ
オンと珪酸マグネシウムの沈澱を生成する。
Mg ion: The eluted silicate ion forms a precipitate of Mg ion and magnesium silicate.

【0007】ところで、Mgイオンについては溶液中の
OHイオンと水酸化マグネシウム沈澱を生成して濃度
が減少するし、また水中のMgイオン濃度はCaイオン
濃度に比べてはるかに少ないことが分かっている。そこ
で、本発明者らは水軟化性能を大きくするには、Caイ
オンを多く結合するような珪酸ナトリウムを調製すれば
よいと考えた。即ち、珪酸ナトリウムのNaイオン溶出
を多くし、一方、珪酸イオンの溶解を抑制して、珪酸に
よるCaイオンの結合サイトを増加すればよいのであ
る。このような珪酸ナトリウムは、該珪酸ナトリウムの
SiO2/Na2Oのモル比nと比表面積とを制御するこ
とによって調製できることが判明した。
By the way, for the Mg ions to decrease the concentration to generate OH over ion magnesium hydroxide precipitate in the solution, also Mg ion concentration in water is found to be much less than the Ca ion concentration There is. Therefore, the present inventors considered that in order to enhance the water softening performance, it is sufficient to prepare sodium silicate capable of binding a large amount of Ca ions. That is, it is sufficient to increase the elution of Na ions from sodium silicate, while suppressing the dissolution of silicate ions to increase the binding sites of Ca ions by silicic acid. It has been found that such sodium silicate can be prepared by controlling the SiO 2 / Na 2 O molar ratio n and the specific surface area of the sodium silicate.

【0008】しかしながら、SiO2/Na2Oのモル比
nを小さくすると、Naイオンの溶出が速くなり、初期
の水軟化性能は増大するが吸湿性が増し、長時間の保存
中に吸湿して水アメ状に変化してしまい、また、そうな
ると水軟化性が失われるという問題があった。
However, when the SiO 2 / Na 2 O molar ratio n is decreased, the elution of Na ions is accelerated, and the initial water softening performance is increased, but the hygroscopicity is increased, and the moisture is absorbed during long-term storage. There was a problem that it changed into a water candy shape, and if so, the water softening property was lost.

【0009】[0009]

【発明が解決しようとする課題】そこで本発明の目的
は、水軟化性能が大きく、且つ吸湿性が小さく、洗剤ビ
ルダーとして好適に使用できる非晶質珪酸ナトリウムを
主体とした粉末及びその製造方法を提供することにあ
る。
Therefore, an object of the present invention is to provide a powder mainly composed of amorphous sodium silicate which has a large water softening property and a small hygroscopicity and can be suitably used as a detergent builder, and a method for producing the same. To provide.

【0010】[0010]

【課題を解決するための手段】本発明者らは、古くから
珪酸ナトリウムカレットの製造に携わってきており、珪
酸ナトリウムカレットの製造および物性について研究を
積み重ねてきた。その結果、非晶質珪酸ナトリウムカレ
ットに金属硫酸塩を固溶させることにより吸湿性を小さ
くできることを見い出し、本発明を提案するに到った。
The present inventors have been involved in the production of sodium silicate cullet for a long time, and have conducted extensive research on the production and physical properties of sodium silicate cullet. As a result, they have found that hygroscopicity can be reduced by solid-dissolving amorphous sodium silicate cullet with a metal sulfate, and the present invention has been proposed.

【0011】即ち、本発明は、金属硫酸塩を固溶して含
み、且つ、SiO2/Na2Oのモル比をnとし、比表面
積をS(m2/g)としたとき、下記式 1.6≦n≦2.8 0.1≦S≦2.0 を満足することを特徴とする非晶質珪酸ナトリウム・金
属硫酸塩複合粉末である。
That is, the present invention contains the metal sulfate as a solid solution, the molar ratio of SiO 2 / Na 2 O is n, and the specific surface area is S (m 2 / g). It is an amorphous sodium silicate / metal sulfate composite powder characterized by satisfying 1.6 ≦ n ≦ 2.8 0.1 ≦ S ≦ 2.0.

【0012】本発明において、金属硫酸塩は、非晶質珪
酸ナトリウム・金属硫酸塩複合粉末(以下、単に複合粉
末という。)中に固溶して含まれている。金属硫酸塩
は、複合粉末が水中に添加されたときに先に溶出し、非
晶質珪酸ナトリウムと水との実質の接触面積を増大させ
るものと考えられる。そして、水との接触面積が増大す
るので、同じ水軟化性を発揮させる場合にSiO2/N
2Oのモル比を大きくすることができ、Na2O含有量
を小さくできる結果、吸湿性の低減につながると考えて
いる。
In the present invention, the metal sulfate is contained as a solid solution in the amorphous sodium silicate / metal sulfate composite powder (hereinafter simply referred to as composite powder). It is believed that the metal sulphate elutes first when the composite powder is added to water and increases the substantial contact area between the amorphous sodium silicate and water. Further, since the contact area with water increases, when the same water softening property is exhibited, SiO 2 / N
It is believed that the molar ratio of a 2 O can be increased and the Na 2 O content can be decreased, resulting in a decrease in hygroscopicity.

【0013】金属硫酸塩としては、硫酸リチウム、硫酸
ナトリウム、硫酸カリウム、硫酸ルビジウム、硫酸セシ
ウムなどのアルカリ金属硫酸塩;硫酸マグネシウム、硫
酸カルシウム、硫酸ストロンチウム、硫酸バリウムなど
のアルカリ土類金属硫酸塩や硫酸アルミニウムなどを用
いることができる。洗剤の配合成分としての観点でアル
カリ金属硫酸塩が好ましく、さらには硫酸ナトリウムが
より好ましい。
Examples of the metal sulfates include alkali metal sulfates such as lithium sulfate, sodium sulfate, potassium sulfate, rubidium sulfate, and cesium sulfate; alkaline earth metal sulfates such as magnesium sulfate, calcium sulfate, strontium sulfate, and barium sulfate; Aluminum sulfate or the like can be used. From the viewpoint of a blending component of a detergent, an alkali metal sulfate is preferable, and sodium sulfate is more preferable.

【0014】金属硫酸塩の存在量は、イオウ元素を分析
することによって定量することができる。例えば、後述
する蛍光X線によりイオウ元素を定量することができ
る。本発明の複合粉末中のイオウ元素は0.3重量%〜
9.0重量%の範囲であることが水との接触面積を増大
して水軟化性を良好に発揮させるために好ましい。さら
に良好な水軟化性を発揮させる場合には、イオウ元素は
0.7重量%〜7.0重量%であることが好ましく、
1.0重量%〜4.0重量%であることがより好まし
い。
The amount of metal sulfate present can be quantified by analyzing elemental sulfur. For example, the sulfur element can be quantified by fluorescent X-rays described later. The elemental sulfur in the composite powder of the present invention is 0.3% by weight to
It is preferably in the range of 9.0% by weight in order to increase the contact area with water and to exhibit the water softening property satisfactorily. In order to exhibit a better water softening property, the sulfur element is preferably 0.7% by weight to 7.0% by weight,
It is more preferably 1.0% by weight to 4.0% by weight.

【0015】本発明の複合粉末中で、金属硫酸塩は固溶
している。しかし、固溶する金属硫酸塩には固溶限界が
あり、その値は金属硫酸塩の種類と非晶質珪酸ナトリウ
ムのモル比に依存する。例えば、金属硫酸塩が硫酸ナト
リウムの場合、固溶限界はおおよそ15重量%程度であ
る。したがって、それぞれの固溶限界値を越えて金属硫
酸塩を含有させた場合には、固溶しきれない金属硫酸塩
相が、金属硫酸塩を固溶した珪酸ナトリウム相中に析出
して海島構造を形成する。さらに、このような海島構造
を形成した粒子を粉砕した場合、金属硫酸塩相と金属硫
酸塩を固溶した珪酸ナトリウム相とがそれぞれ独立して
粒子を形成して、これらの粒子の混合物を形成する。本
発明においては、金属硫酸塩を固溶した非晶質珪酸ナト
リウム・金属硫酸塩複合粒子が形成されていればよい。
したがって、金属硫酸塩を固溶した非晶質珪酸ナトリウ
ム・金属硫酸塩複合粒子中に金属硫酸塩相が析出してい
てもよく、また、金属硫酸塩を固溶した非晶質珪酸ナト
リウム・金属硫酸塩複合粒子と金属硫酸塩粒子とが混合
されていてもよい。
In the composite powder of the present invention, the metal sulfate is in solid solution. However, the metal sulphate that forms a solid solution has a solid solution limit, and its value depends on the type of metal sulphate and the molar ratio of amorphous sodium silicate. For example, when the metal sulfate is sodium sulfate, the solid solubility limit is about 15% by weight. Therefore, when the metal sulfates are contained in excess of the respective solid solution limit values, the metal sulfate phase that cannot be completely dissolved precipitates in the sodium silicate phase in which the metal sulfate is dissolved, resulting in a sea-island structure. To form. Furthermore, when the particles having such a sea-island structure are crushed, the metal sulfate phase and the sodium silicate phase in which the metal sulfate is solid-solved independently form particles, and a mixture of these particles is formed. To do. In the present invention, it is sufficient that the amorphous sodium silicate / metal sulfate composite particles in which a metal sulfate is dissolved are formed.
Therefore, the metal sulfate phase may be precipitated in the amorphous sodium silicate / metal sulfate composite particles in which the metal sulfate is solid-dissolved, or the amorphous sodium silicate / metal in which the metal sulfate is solid-dissolved. The sulfate composite particles and the metal sulfate particles may be mixed.

【0016】また、前記したように本発明における複合
粉末の水軟化性能と吸湿性は、複合粉末のモル比(Si
2/Na2O)にも影響を受ける。SiO2/Na2Oの
モル比をnとすると、下記式 1.6≦n≦2.8 を満足しなければらない。但し、ここで分母のNa2
は、珪酸ナトリウムに基づくNa2Oであり、金属硫酸
塩に基づくナトリウム分を含まない。nが1.6より小
さくなると、吸湿性が大きくなる上に、複合粉末の珪酸
イオンの溶解が速くなり、一度珪酸と結合したCaイオ
ンが再度水中へ溶出してしまうために、水軟化性に乏し
くなり好ましくない。逆にnが2.8より大きくなる
と、Naイオン溶出量が減少し、Caイオンと結合する
サイトが少なくなるので、結果として水軟化性が小さく
なり好ましくない。さらに良好な水軟化性を発揮させか
つ吸湿性を抑制させる場合には、1.8≦n≦2.2を
満足することが好ましい。
As described above, the water softening performance and hygroscopicity of the composite powder according to the present invention are determined by the molar ratio (Si
It is also affected by O 2 / Na 2 O). If the molar ratio of SiO 2 / Na 2 O is n, the following formula 1.6 ≦ n ≦ 2.8 must be satisfied. However, here the denominator of Na 2 O
Is Na 2 O based on sodium silicate and does not contain sodium based on metal sulfate. When n is smaller than 1.6, the hygroscopicity is increased and the dissolution of silicate ions in the composite powder is accelerated, and Ca ions that have once bound with silicic acid are eluted again into water, resulting in a water softening property. It becomes scarce and is not preferable. On the other hand, when n is larger than 2.8, the elution amount of Na ions is reduced and the number of sites binding with Ca ions is reduced, resulting in poor water softening property, which is not preferable. In order to exhibit more favorable water softening property and suppress hygroscopicity, it is preferable that 1.8 ≦ n ≦ 2.2 is satisfied.

【0017】さらに、本発明の複合粉末の水軟化性能と
吸湿性はその比表面積にも影響を受ける。複合粉末の比
表面積をS(m2/g)とすると、下記式 0.1≦S≦2.0 を満足しなければならない。比表面積の値が0.1m2
/gより小さくなると、Na溶出量が少なくなり、水軟
化性能が低下するため好ましくない。一方、比表面積の
値が2.0m2/gより大きくなると、Na溶出と同時
に珪酸イオンの溶解も速くなり、上記したモル比nが低
い場合と同様に水軟化性が悪くなるし、吸湿性も増大す
るので好ましくない。また、比表面積を2.0m2/g
より大きくするようなことは、一般的な粉砕方法では非
常に困難である。さらに良好な水軟化性を発揮させかつ
吸湿性を抑制させる場合には、0.5≦S≦1.5であ
ることが好ましい。
Further, the water softening performance and hygroscopicity of the composite powder of the present invention are affected by its specific surface area. When the specific surface area of the composite powder is S (m 2 / g), the following formula 0.1 ≦ S ≦ 2.0 must be satisfied. Specific surface area is 0.1m 2
If it is less than / g, the elution amount of Na decreases and the water softening performance decreases, which is not preferable. On the other hand, when the value of the specific surface area is more than 2.0 m 2 / g, the dissolution of silicate ions is accelerated at the same time as the elution of Na, the water softening property is deteriorated and the hygroscopicity is the same as when the molar ratio n is low. Also increases, which is not preferable. The specific surface area is 2.0 m 2 / g
Making it larger is very difficult with common grinding methods. In order to exhibit more favorable water softening property and suppress hygroscopicity, 0.5 ≦ S ≦ 1.5 is preferable.

【0018】本発明の複合粉末は非晶質である。ただ
し、これは完全な非晶質であることのみをいうのではな
く、珪酸ナトリウムの微結晶及び金属硫酸塩の微結晶が
含まれている場合をも含む。一般に、微結晶を含んだ非
晶質物質のX線回折パターンは、非晶質物質に起因する
ハローパターン中にブロードなピークが認められる。こ
のブロードなピークは、非晶質中に含まれる微結晶によ
るものである。微結晶の量はハローパターン中に占める
ブロードピークの面積から求められる。
The composite powder of the present invention is amorphous. However, this includes not only the case of being completely amorphous, but also the case of containing fine crystals of sodium silicate and fine crystals of metal sulfate. In general, in an X-ray diffraction pattern of an amorphous substance containing fine crystals, a broad peak is recognized in a halo pattern due to the amorphous substance. This broad peak is due to fine crystals contained in the amorphous material. The amount of fine crystals can be determined from the area of broad peaks in the halo pattern.

【0019】本発明における非晶質とは、非晶質中に微
結晶が含まれている場合を含む。そして、非晶質である
というためには、一般には、ハローパターン中に占める
ブロードピークの面積から求めた微結晶量は20体積%
未満であることが好ましい。
The term "amorphous" in the present invention includes the case where fine crystals are contained in the amorphous. In order to be amorphous, generally, the amount of fine crystals obtained from the area of broad peaks in the halo pattern is 20% by volume.
It is preferably less than.

【0020】本発明の複合粉末の平均粒子径は液相自然
沈降法粒度分布計による測定で、1〜100μmの範囲
となることが好ましい。
The average particle size of the composite powder of the present invention is preferably in the range of 1 to 100 μm, as measured by a liquid phase spontaneous sedimentation particle size distribution meter.

【0021】本発明の複合粉末はどのような方法で製造
されてもよいが、下記の方法で製造することが簡単なプ
ロセスとなるため好適である。即ち、金属硫酸塩を固溶
して含む珪酸ナトリウム複合カレットを粉砕する方法で
ある。
The composite powder of the present invention may be manufactured by any method, but it is preferable to manufacture it by the following method because it is a simple process. That is, it is a method of crushing sodium silicate composite cullet containing a metal sulfate as a solid solution.

【0022】該珪酸ナトリウム複合カレットは次のよう
な方法で製造することができる。例えば、金属硫酸塩と
SiO2及び炭酸ナトリウムまたは水酸化ナトリウムと
を、該珪酸ナトリウム複合カレットのSiO2/Na2
のモル比nが1.6≦n≦2.8となるように加熱溶融
し、その後冷却する方法である。
The sodium silicate composite cullet can be manufactured by the following method. For example, metal sulfate and SiO 2 and sodium carbonate or sodium hydroxide are added to the SiO 2 / Na 2 O of the sodium silicate composite cullet.
Is melted by heating so that the molar ratio n becomes 1.6 ≦ n ≦ 2.8, and then cooled.

【0023】金属硫酸塩としては、既述の化合物を使用
することができる。金属硫酸塩は無水物でも含水塩でも
よい。SiO2としては珪石、珪砂、クリストバライト
石、溶融シリカ、無定形シリカ、シリカゾルなどのSi
2を主成分とする公知の物質を何等制限なく使用でき
る。工業的には、安価で取扱いが容易な点で珪砂が好ま
しく用いられている。さらに、アルカリ源である炭酸ナ
トリウムまたは水酸化ナトリウムは、各々を単独で用い
ても良いし、任意の割合で混合して用いることもでき
る。
As the metal sulfate, the above-mentioned compounds can be used. The metal sulfate may be anhydrous or hydrated salt. As SiO 2 , Si such as silica stone, silica sand, cristobalite stone, fused silica, amorphous silica, silica sol, etc.
A known substance containing O 2 as a main component can be used without any limitation. Industrially, silica sand is preferably used because it is inexpensive and easy to handle. Furthermore, sodium carbonate or sodium hydroxide, which is an alkali source, may be used alone, or may be used by mixing them at an arbitrary ratio.

【0024】これらの原料は加熱溶融される。その際の
温度は900〜1300℃の範囲でなければならない。
加熱溶融温度が900℃未満であると、SiO2が溶融
せず、目的の珪酸ナトリウム複合カレットが生成しない
ので好ましくない。また、1300℃を超えると、金属
硫酸塩が分解して金属硫酸塩の固溶量が低下し、吸湿性
の抑制効果が低下するので好ましくない。さらに、好ま
しい加熱溶融温度は1000〜1200℃である。
These raw materials are heated and melted. The temperature at that time must be in the range of 900 to 1300 ° C.
When the heating and melting temperature is lower than 900 ° C., SiO 2 is not melted and the intended sodium silicate composite cullet is not formed, which is not preferable. On the other hand, if it exceeds 1300 ° C, the metal sulfate is decomposed, the solid solution amount of the metal sulfate decreases, and the hygroscopicity suppressing effect decreases, which is not preferable. Furthermore, the preferable heating and melting temperature is 1000 to 1200 ° C.

【0025】加熱溶融時間については短い方が経済的に
好ましく、10時間以下で十分に均一な溶融物が生成す
る。この溶融物の冷却方法は、生成する金属硫酸塩を固
溶した珪酸ナトリウム相が非晶質となるような条件であ
ればよい。一般には、溶融状態から室温の環境へ取り出
す程度の冷却で十分である。冷却方法は、単に空冷する
方法の他、炉中で徐冷したり、水冷したりする方法を採
用することもできる。
A shorter heating and melting time is economically preferable, and a sufficiently uniform melt is produced in 10 hours or less. The method for cooling the melt may be such that the sodium silicate phase in which the produced metal sulfate is solid-solved becomes amorphous. Generally, cooling to such an extent that the molten state is taken out to the room temperature environment is sufficient. As a cooling method, a method of gradually cooling in a furnace or water cooling can be adopted in addition to a method of simply cooling by air.

【0026】冷却して得られた珪酸ナトリウム複合カレ
ットは次いで粉砕される。粉砕は公知の粉砕方法を採用
することができる。例えば、ボールミル、攪拌ミル、高
速回転微粉砕機、ジェット粉砕機、せん断ミル、コロイ
ドミル等の微粉砕機を用いることができる。このなか
で、最も一般的な粉砕機としてはボールミルを挙げるこ
とができる。その具体例としては、ポットミル、チュー
ブミル、コニカルミルなどの転動ミル;円形振動ミル、
旋動振動ミル、遠心ミルなどの振動ボールミル;そして
遊星ミル等を挙げることができる。
The sodium silicate composite cullet obtained by cooling is then ground. For the pulverization, a known pulverization method can be adopted. For example, a fine mill such as a ball mill, a stirring mill, a high-speed rotary fine mill, a jet mill, a shear mill and a colloid mill can be used. Among these, a ball mill can be mentioned as the most common crusher. Specific examples thereof include rolling mills such as pot mills, tube mills and conical mills; circular vibration mills,
Vibratory ball mills such as rotary vibration mills and centrifugal mills; and planetary mills.

【0027】また、上記した微粉砕機による粉砕の効率
を上げるために、微粉砕操作の前にジョークラッシャ
ー、ジャイレトリークラッシャー、コーンクラッシャ
ー、ハンマークラッシャーなどの中砕機あるいは粗砕機
により数mm程度の粒に砕いておくことが好ましい。
In order to increase the efficiency of pulverization by the above-mentioned fine pulverizer, before the fine pulverization operation, a medium crusher such as a jaw crusher, a gyratory crusher, a cone crusher, a hammer crusher, or a coarse crusher is used to adjust the crushing to about several mm. It is preferable to crush it into grains.

【0028】さらに、粉砕の効率を上げるために粉砕助
剤を用いることができる。粉砕助剤としては、「最新粉
体の材料設計(株式会社テクノシステム発行)」p28
表2.5に挙げられているような公知の粉砕助剤を何等
制限なく使用することができる。珪酸ナトリウム複合カ
レットとの適合性の点でジエチレングリコール、トリエ
タノールアミンが好ましい。粉砕助剤の添加量は、1重
量%以下で十分である。
Further, a grinding aid can be used in order to increase the grinding efficiency. As a grinding aid, "Latest powder material design (published by Techno System Co., Ltd.)"
Known grinding aids such as those listed in Table 2.5 can be used without any restrictions. Diethylene glycol and triethanolamine are preferable from the viewpoint of compatibility with sodium silicate composite cullet. The addition amount of the grinding aid is 1% by weight or less.

【0029】[0029]

【発明の効果】本発明により得られた複合粉末は、優れ
た水軟化能を示し、また、吸湿性が小さいために保存安
定性にも優れている。
EFFECT OF THE INVENTION The composite powder obtained by the present invention exhibits excellent water softening ability, and also has excellent storage stability due to its low hygroscopicity.

【0030】[0030]

【実施例】以下、実施例および比較例により本発明をさ
らに詳細に説明するが、本発明はこれら実施例に制限さ
れるものではない。尚、実施例および比較例における測
定値は次に示す方法により測定した。
The present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples. The measured values in Examples and Comparative Examples were measured by the following methods.

【0031】(1)複合粉末中のイオウ元素pの定量 蛍光X線分析装置により複合粉末中のイオウ元素の濃度
(重量%)を測定した。
(1) Quantification of sulfur element p in the composite powder The concentration (% by weight) of the sulfur element in the composite powder was measured by a fluorescent X-ray analyzer.

【0032】(2)複合粉末のモル比n 複合粉末を水に溶解させ、溶液中の酸化ナトリウム量及
びシリカ量を個別に測定して、その比からモル比nを計
算した。
(2) Molar ratio n of composite powder The composite powder was dissolved in water, the amount of sodium oxide and the amount of silica in the solution were individually measured, and the molar ratio n was calculated from the ratio.

【0033】・酸化ナトリウム量 メチルオレンジ溶液を指示薬とし、塩酸溶液で中和滴定
した。
Amount of sodium oxide A methyl orange solution was used as an indicator and neutralization titration was carried out with a hydrochloric acid solution.

【0034】・シリカ量 フッ化ナトリウムを試料と反応させ、遊離した水酸化ナ
トリウムを塩酸で中和滴定した。塩酸の所要量から酸化
ナトリウムに相当する分を差し引いてシリカ量を求め
た。
Amount of silica Sodium fluoride was reacted with the sample, and the liberated sodium hydroxide was neutralized and titrated with hydrochloric acid. The amount of silica was determined by subtracting the amount corresponding to sodium oxide from the required amount of hydrochloric acid.

【0035】H2SiO3+6NaF+H2O→Na2Si
6+4NaOH (シリカ1molに対し4molの水酸化ナトリウムが
析出する。) (3)複合粉末の比表面積 透過法(恒圧式空気透過法)を用いて測定した。具体的
には、下式のKozeny−Carmanの式から、質
量Wと時間tを測定することにより比表面積Swを求め
た。
H 2 SiO 3 + 6NaF + H 2 O → Na 2 Si
F 6 +4 NaOH (4 mol of sodium hydroxide is precipitated per 1 mol of silica.) (3) Specific surface area of composite powder It was measured using a permeation method (constant pressure air permeation method). Specifically, the specific surface area Sw was obtained by measuring the mass W and the time t from the following Kozeny-Carman equation.

【0036】Sw = (140/ρ)×((△P×A×t)/(η×L×
Q)×ε3/(1-ε)21/2 ただし、 ε :試料充填層の空隙率で、ε=1−W/(ρ×A×L) ρ :粉体の密度 g/cm3 η :空気の粘性係数 mPa sec L :試料層の厚さ cm Q :試料層透過空気量 cm3 △p :試料層両端の圧力差 g/cm2 A :試料層の断面積 cm2 t :Qcm3の空気が試料層を透過するのに要する時間
sec W :試料の重量 g である。ここで、L=1.2cm、Q=20cm3、△P=
30g/cm2、A=2cm2、ρは、粉砕前のカレットの真比
重であり、ηは化学便覧(改訂3版基礎編II)から1a
tm、25℃の値である0.0182mPa secを採用し
た。
Sw = (140 / ρ) × ((ΔP × A × t) / (η × L ×
Q) × ε 3 / (1-ε) 2 ) 1/2 where ε is the porosity of the sample packed layer, ε = 1-W / (ρ × A × L) ρ: Powder density g / cm 3 η: Viscosity coefficient of air mPa sec L: Sample layer thickness cm Q: Sample layer permeation air volume cm 3 △ p: Pressure difference between both ends of sample layer g / cm 2 A: Cross sectional area of sample layer cm 2 t: Time required for Qcm 3 air to pass through the sample layer
sec W: It is the weight g of the sample. Here, L = 1.2 cm, Q = 20 cm 3 , ΔP =
30 g / cm 2 , A = 2 cm 2 , ρ is the true specific gravity of the cullet before crushing, and η is 1a from the Chemical Handbook (Revised 3rd Edition Basic Edition II).
0.0182 mPa sec which is the value of tm and 25 ° C was adopted.

【0037】(4)微結晶の量 複合粉末のX線回折パターンにおいて、図1に示すよう
に2θ=32゜付近にブロードピークが認められる場
合、そのブロードピークの面積から微結晶量を求めるこ
とができる。このブロードピークは2θ=26゜付近と
2θ=36゜付近でハローパターンから屈曲している。
これら両屈曲点を直線で結び、その直線をバックグラウ
ンドとしてブロードピークの積分強度を計算した(この
値をNIBとする)。一方、全パターンの積分強度は、
2θ=8゜のときの点と2θ=125゜のときの点とを
直線で結び、その直線をバックグラウンドとして計算し
た(この値をNITとする)。以上の値を用いて微結晶
の量を計算した。
(4) Amount of fine crystals When an X-ray diffraction pattern of the composite powder shows a broad peak near 2θ = 32 ° as shown in FIG. 1, the amount of fine crystals should be determined from the area of the broad peak. You can This broad peak is bent from the halo pattern around 2θ = 26 ° and around 2θ = 36 °.
Conclusion These two bending points in a straight line was calculated integrated intensity of the broad peak that straight as a background (this value and NI B). On the other hand, the integrated intensity of all patterns is
A point when the point of time of 2 [Theta] = 8 ° and 2 [Theta] = 125 [deg connected by a straight line, and calculates the linear as a background (this value and NI T). The amount of fine crystals was calculated using the above values.

【0038】 微結晶の量(体積%) = (NIB/NIT)×100 (5)水軟化能(Ca封鎖能) 複合粉末の水軟化性能は、Ca封鎖能で代表させた。エ
タノールアミンと塩酸にてpH=10に調節した5mm
ol/Lの塩化カルシウム水溶液1Lを350rpmで
攪拌しながら20℃で恒温とした。次に、試料である複
合粉末0.2gを精秤(単位:g)し、上記溶液に添加
した。350rpmで15分間攪拌した後、10mlを
サンプリングし、0.2μmのフィルターでろ過した。
得られたろ液中のCa濃度を誘導結合プラズマ発光分光
分析装置(ICP−AES)により測定して、この値か
らCaイオン量C(単位:mg)を計算した。Ca封鎖
能は次の式で計算した値で評価した。
Amount of microcrystals (volume%) = (NI B / NI T ) × 100 (5) Water softening ability (Ca sequestering ability) The water softening ability of the composite powder is represented by the Ca sequestering ability. 5mm adjusted to pH = 10 with ethanolamine and hydrochloric acid
1 L of an ol / L calcium chloride aqueous solution was kept at 20 ° C. while stirring at 350 rpm. Next, 0.2 g of the composite powder as a sample was precisely weighed (unit: g) and added to the above solution. After stirring at 350 rpm for 15 minutes, 10 ml was sampled and filtered through a 0.2 μm filter.
The Ca concentration in the obtained filtrate was measured by an inductively coupled plasma emission spectrophotometer (ICP-AES), and the Ca ion amount C (unit: mg) was calculated from this value. The Ca blocking ability was evaluated by the value calculated by the following formula.

【0039】Ca封鎖能=(20−C)/0.2
(単位:mg/試料g) (6)吸湿性 試料約20gを樹脂製カップに入れ、温度25℃、湿度
50%の恒温恒湿室中で3日間放置した後の重量増加△
Wを測定し、初期重量W0との比から次式により吸湿量
(重量%)を求めた。
Ca blocking ability = (20-C) /0.2
(Unit: mg / g of sample) (6) Hygroscopicity Approximately 20 g of sample was put into a resin cup and left for 3 days in a constant temperature and humidity chamber at a temperature of 25 ° C and a humidity of 50%.
W was measured, and the moisture absorption amount (% by weight) was calculated from the ratio with the initial weight W 0 by the following formula.

【0040】吸湿量=(△W/W0)×100
(単位:重量%) 実施例1 珪砂(SiO2 99.8%)200g、炭酸ナトリウム
(Na2CO3 99%)176.4g及び無水硫酸ナト
リウム59.1gを混合し、水100gを加えて、さら
に混合した。混合物を白金製坩堝に入れ、電気炉中に
て、室温から1200℃まで1.5時間で昇温し、その
後1200℃で3時間保持した。加熱熔融の後、灼熱状
態の内容物の入った坩堝を電気炉から取り出し、水浴中
に坩堝を浸して急冷却し、白濁した珪酸ナトリウム複合
カレットを得た。得られた珪酸ナトリウム複合カレット
をジョークラッシャー(間隙5mm)にて粉砕した。続
いて、ボールミル(ポット;内径135mm,容量2
L,ボール;直径30mm×33個,Al23製)に
て、回転速度60rpmで1時間粉砕した。その後、ジ
エチレングリコールを複合粉末の0.5重量%添加し、
さらに同条件にて65時間粉砕した。
Moisture absorption amount = (ΔW / W 0 ) × 100
(Unit: wt%) Example 1 200 g of silica sand (SiO 2 99.8%), 176.4 g of sodium carbonate (Na 2 CO 3 99%) and 59.1 g of anhydrous sodium sulfate were mixed, and 100 g of water was added, Further mixed. The mixture was put into a platinum crucible, heated from room temperature to 1200 ° C in 1.5 hours in an electric furnace, and then kept at 1200 ° C for 3 hours. After heating and melting, the crucible containing the contents of the cauterizing state was taken out of the electric furnace, immersed in a water bath and rapidly cooled to obtain a cloudy sodium silicate composite cullet. The obtained sodium silicate composite cullet was crushed with a jaw crusher (gap 5 mm). Then, ball mill (pot; inner diameter 135mm, capacity 2
L, balls; diameter 30 mm × 33 pieces, made of Al 2 O 3 ) and crushed at a rotation speed of 60 rpm for 1 hour. Then, add 0.5% by weight of the composite powder of diethylene glycol,
Further, it was pulverized under the same conditions for 65 hours.

【0041】得られた複合粉末のSiO2/Na2Oのモ
ル比nは2.00で、硫酸ナトリウムに基づくイオウ元
素の含有量は3.7重量%であった。また、複合粉末の
結晶性をX線回折で評価したところ、図1に示したよう
にハローパターンを示した。2θ=32゜付近にブロー
ドなークが認められ、ハローパターン中に占めるブロー
ドピークの面積から求めた微結晶量は9体積%であっ
た。複合粉末の物性を表1にまとめた。
The SiO 2 / Na 2 O molar ratio n of the obtained composite powder was 2.00, and the content of elemental sulfur based on sodium sulfate was 3.7% by weight. When the crystallinity of the composite powder was evaluated by X-ray diffraction, it showed a halo pattern as shown in FIG. Broad peaks were observed near 2θ = 32 °, and the amount of fine crystals obtained from the area of the broad peaks in the halo pattern was 9% by volume. The physical properties of the composite powder are summarized in Table 1.

【0042】実施例2 無水硫酸ナトリウムの添加量を26.3gにした以外は
実施例1と同様にして無色透明の珪酸ナトリウム複合カ
レットを得た。これを実施例1と同様に粉砕して複合粉
末を得、その結果を表1に示した。
Example 2 A colorless and transparent sodium silicate composite cullet was obtained in the same manner as in Example 1 except that the amount of anhydrous sodium sulfate added was 26.3 g. This was crushed in the same manner as in Example 1 to obtain a composite powder, and the results are shown in Table 1.

【0043】実施例3 加熱溶融温度を1100℃にした以外は実施例1と同様
にして白濁した珪酸ナトリウム複合カレットを得、これ
を実施例1と同様に粉砕して複合粉末を得た。その結果
を表1にまとめた。
Example 3 A cloudy sodium silicate composite cullet was obtained in the same manner as in Example 1 except that the heating and melting temperature was 1100 ° C., and this was pulverized in the same manner as in Example 1 to obtain a composite powder. The results are summarized in Table 1.

【0044】実施例4 珪砂、炭酸ナトリウム、無水硫酸ナトリウムの混合量を
それぞれ200g、196g、60gとした以外は実施
例1と同様にして白濁した珪酸ナトリウム複合カレット
を得た。これを粉砕時間を140時間とした以外は実施
例1と同様に粉砕して複合粉末を得た。複合粉末の物性
を表1にまとめた。
Example 4 A cloudy sodium silicate composite cullet was obtained in the same manner as in Example 1 except that the amounts of silica sand, sodium carbonate and anhydrous sodium sulfate were 200 g, 196 g and 60 g, respectively. This was crushed in the same manner as in Example 1 except that the crushing time was 140 hours to obtain a composite powder. The physical properties of the composite powder are summarized in Table 1.

【0045】実施例5 珪砂、炭酸ナトリウム、無水硫酸ナトリウムの混合量を
それぞれ200g、168g、25gとした以外は実施
例1と同様にして無色透明の珪酸ナトリウム複合カレッ
トを得、これを実施例1と同様に粉砕して複合粉末を得
た。結果を表1にまとめた。
Example 5 A colorless and transparent sodium silicate composite cullet was obtained in the same manner as in Example 1 except that the amounts of silica sand, sodium carbonate and anhydrous sodium sulfate were 200 g, 168 g and 25 g, respectively. It was crushed in the same manner as above to obtain a composite powder. The results are summarized in Table 1.

【0046】比較例1 珪砂、炭酸ナトリウムの混合量をそれぞれ187.5
g、212.5gとし、無水硫酸ナトリウムを使用しな
かったこと以外は実施例1と同様にして無色透明の珪酸
ナトリウムカレットを得た。これを実施例1と同様に粉
砕して非晶質珪酸ナトリウム粉末を得た。結果を表1に
まとめた。
Comparative Example 1 Silica sand and sodium carbonate were mixed in an amount of 187.5, respectively.
g, 212.5 g, and colorless and transparent sodium silicate cullet was obtained in the same manner as in Example 1 except that anhydrous sodium sulfate was not used. This was pulverized in the same manner as in Example 1 to obtain amorphous sodium silicate powder. The results are summarized in Table 1.

【0047】比較例2 珪砂、炭酸ナトリウムの混合量をそれぞれ177g、2
33gとし、無水硫酸ナトリウムを使用しなかったこと
以外は実施例1と同様にして無色透明の珪酸ナトリウム
カレットを得た。これを実施例1と同様に粉砕して非晶
質珪酸ナトリウム粉末を得た。結果を表1にまとめた。
Comparative Example 2 Silica sand and sodium carbonate were mixed in amounts of 177 g and 2 respectively.
A colorless and transparent sodium silicate cullet was obtained in the same manner as in Example 1 except that the amount was 33 g and anhydrous sodium sulfate was not used. This was pulverized in the same manner as in Example 1 to obtain amorphous sodium silicate powder. The results are summarized in Table 1.

【0048】[0048]

【表1】 [Table 1]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は、実施例1で得られた本発明の非晶質珪
酸ナトリウム・金属硫酸塩複合粉末のX線回折パターン
である。
FIG. 1 is an X-ray diffraction pattern of the amorphous sodium silicate / metal sulfate composite powder of the present invention obtained in Example 1.

【手続補正書】[Procedure amendment]

【提出日】平成7年3月1日[Submission date] March 1, 1995

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0046[Correction target item name] 0046

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0046】比較例1 珪砂、炭酸ナトリウムの混合量をそれぞれ212.5
g、187.5gとし、無水硫酸ナトリウムを使用しな
かったこと以外は実施例1と同様にして無色透明の珪酸
ナトリウムカレットを得た。これを実施例1と同様に粉
砕して非晶質珪酸ナトリウム粉末を得た。結果を表1に
まとめた。
Comparative Example 1 Silica sand and sodium carbonate were mixed at 212.5 , respectively.
g, 187.5 g, and colorless and transparent sodium silicate cullet was obtained in the same manner as in Example 1 except that anhydrous sodium sulfate was not used. This was pulverized in the same manner as in Example 1 to obtain amorphous sodium silicate powder. The results are summarized in Table 1.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0047[Correction target item name] 0047

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0047】比較例2 珪砂、炭酸ナトリウムの混合量をそれぞれ177g、
23gとし、無水硫酸ナトリウムを使用しなかったこと
以外は実施例1と同様にして無色透明の珪酸ナトリウム
カレットを得た。これを実施例1と同様に粉砕して非晶
質珪酸ナトリウム粉末を得た。結果を表1にまとめた。
Comparative Example 2 Silica sand and sodium carbonate were mixed in amounts of 177 g and 2 respectively.
A colorless and transparent sodium silicate cullet was obtained in the same manner as in Example 1 except that the amount was 23 g and anhydrous sodium sulfate was not used. This was pulverized in the same manner as in Example 1 to obtain amorphous sodium silicate powder. The results are summarized in Table 1.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】金属硫酸塩を固溶して含み、且つ、SiO
2/Na2Oのモル比をnとし、比表面積をS(m2
g)としたとき、下記式 1.6≦n≦2.8 0.1≦S≦2.0 を満足することを特徴とする非晶質珪酸ナトリウム・金
属硫酸塩複合粉末。
1. A solid solution containing a metal sulfate, and SiO.
When the molar ratio of 2 / Na 2 O is n, the specific surface area is S (m 2 /
g), an amorphous sodium silicate / metal sulfate composite powder characterized by satisfying the following formula: 1.6 ≦ n ≦ 2.8 0.1 ≦ S ≦ 2.0.
【請求項2】金属硫酸塩を固溶して含む珪酸ナトリウム
カレットを粉砕することを特徴とする請求項1記載の非
晶質珪酸ナトリウム・金属硫酸塩複合粉末の製造方法。
2. The method for producing an amorphous sodium silicate / metal sulfate composite powder according to claim 1, wherein sodium silicate cullet containing a solid solution of metal sulfate is pulverized.
JP03486295A 1995-02-23 1995-02-23 Amorphous sodium silicate / metal sulfate composite powder and method for producing the same Expired - Fee Related JP3662966B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP03486295A JP3662966B2 (en) 1995-02-23 1995-02-23 Amorphous sodium silicate / metal sulfate composite powder and method for producing the same
US08/605,374 US5707960A (en) 1995-02-23 1996-02-22 Amorphous sodium silicate-metal sulfate composite powder
CA002170103A CA2170103A1 (en) 1995-02-23 1996-02-22 Amorphous sodium silicate-metal sulfate composite powder
AU45654/96A AU689367B2 (en) 1995-02-23 1996-02-22 Amorphous sodium silicate-metal sulfate composite powder
EP96102727A EP0728837A1 (en) 1995-02-23 1996-02-23 Amorphous sodium silicate-metal sulfate composite powder
CN96106049A CN1053163C (en) 1995-02-23 1996-02-23 Amorphous sodium silicate-metal sulfate composite powder
KR1019960004382A KR960031373A (en) 1995-02-23 1996-02-23 Amorphous sodium silicate-metal sulfate complex powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03486295A JP3662966B2 (en) 1995-02-23 1995-02-23 Amorphous sodium silicate / metal sulfate composite powder and method for producing the same

Publications (2)

Publication Number Publication Date
JPH08225317A true JPH08225317A (en) 1996-09-03
JP3662966B2 JP3662966B2 (en) 2005-06-22

Family

ID=12425986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03486295A Expired - Fee Related JP3662966B2 (en) 1995-02-23 1995-02-23 Amorphous sodium silicate / metal sulfate composite powder and method for producing the same

Country Status (7)

Country Link
US (1) US5707960A (en)
EP (1) EP0728837A1 (en)
JP (1) JP3662966B2 (en)
KR (1) KR960031373A (en)
CN (1) CN1053163C (en)
AU (1) AU689367B2 (en)
CA (1) CA2170103A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000003948A1 (en) * 1998-07-17 2000-01-27 Kao Corporation Composite powder
JP2009084492A (en) * 2007-10-01 2009-04-23 Kao Corp Composite powder
JP2012140304A (en) * 2011-01-04 2012-07-26 Nippon Chem Ind Co Ltd Surface modified alkali metal silicate and method for producing the same
CN104098104A (en) * 2014-07-18 2014-10-15 冷水江三A新材料科技有限公司 Preparation method of plastic film anti-blocking agent prepared by sodium alumino silicate
CN117361547A (en) * 2023-09-11 2024-01-09 金三江(肇庆)硅材料股份有限公司 Silicon dioxide particles and preparation method and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2197614C (en) * 1996-02-20 2002-07-02 Charles S. Taylor Surgical instruments and procedures for stabilizing the beating heart during coronary artery bypass graft surgery
CA2338822A1 (en) 1998-08-17 2000-02-24 The Procter & Gamble Company Multifunctional detergent materials
WO2008094706A2 (en) * 2007-02-01 2008-08-07 Cook Incorporated Closure device and method of closing a bodily opening

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4022704A (en) * 1971-06-21 1977-05-10 Stauffer Chemical Company Production of spray dried, high bulk density hydrous sodium silicate mixtures
US3835216A (en) * 1971-10-28 1974-09-10 Huber Corp J M Methods for production of alkali metal polysilicates
US3879527A (en) * 1971-10-28 1975-04-22 Huber Corp J M Alkali metal polysilicates and their production
US3956467A (en) * 1974-06-07 1976-05-11 Bertorelli Orlando L Process for producing alkali metal polysilicates
JPS59144727A (en) * 1983-02-08 1984-08-18 Daicel Chem Ind Ltd Preparation of phenylacetaldehyde
DE3702111A1 (en) * 1987-01-24 1988-08-04 Henkel Kgaa POROESE LAYERED SILICATE / SODIUM SULFATE AGGLOMERATE

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000003948A1 (en) * 1998-07-17 2000-01-27 Kao Corporation Composite powder
JP2009084492A (en) * 2007-10-01 2009-04-23 Kao Corp Composite powder
JP2012140304A (en) * 2011-01-04 2012-07-26 Nippon Chem Ind Co Ltd Surface modified alkali metal silicate and method for producing the same
CN104098104A (en) * 2014-07-18 2014-10-15 冷水江三A新材料科技有限公司 Preparation method of plastic film anti-blocking agent prepared by sodium alumino silicate
CN104098104B (en) * 2014-07-18 2015-10-14 冷水江三A新材料科技有限公司 The preparation method of lagoriolite plastic film open agent
CN117361547A (en) * 2023-09-11 2024-01-09 金三江(肇庆)硅材料股份有限公司 Silicon dioxide particles and preparation method and application thereof
CN117361547B (en) * 2023-09-11 2024-04-30 金三江(肇庆)硅材料股份有限公司 Silicon dioxide particles and preparation method and application thereof

Also Published As

Publication number Publication date
AU4565496A (en) 1996-08-29
CN1053163C (en) 2000-06-07
US5707960A (en) 1998-01-13
EP0728837A1 (en) 1996-08-28
JP3662966B2 (en) 2005-06-22
AU689367B2 (en) 1998-03-26
CN1143606A (en) 1997-02-26
CA2170103A1 (en) 1996-08-24
KR960031373A (en) 1996-09-17

Similar Documents

Publication Publication Date Title
TWI526410B (en) A method for producing a granulated body, a method for producing a molten glass, and a method for producing a glass article
CN107074603B (en) Method for producing glass raw material granules, method for producing molten glass, and method for producing glass article
JP3662966B2 (en) Amorphous sodium silicate / metal sulfate composite powder and method for producing the same
CN108698873B (en) Glass raw material granules and method for producing same
KR102228111B1 (en) Granulated body, production method therefor, and production method for glass article
US5422320A (en) Alkaline earth metal silicate compositions for use in glass manufacture
JP3312816B2 (en) Amorphous sodium silicate powder and method for producing the same
JPH0859225A (en) Noncrystalline potassium silicate powder and its production
JPH08143309A (en) Production of amorphous sodium silicate-sodium carbonate compound body
JP3217373B2 (en) Method for producing crystalline inorganic ion exchanger
EP0821655B1 (en) Method for producing crystalline, inorganic ion exchange material
JP6777085B2 (en) Manufacturing method of glass raw material granules, manufacturing method of molten glass, and manufacturing method of glass articles
JP6520358B2 (en) METHOD FOR PRODUCING GLASS SOURCE GRANULATED BODY, METHOD FOR PRODUCING MOLTEN GLASS, AND METHOD FOR PRODUCING GLASS ARTICLE
WO1998031631A1 (en) Method for producing crystalline inorganic builders

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140401

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees