JPH08225302A - Production of hydrogen - Google Patents

Production of hydrogen

Info

Publication number
JPH08225302A
JPH08225302A JP5820395A JP5820395A JPH08225302A JP H08225302 A JPH08225302 A JP H08225302A JP 5820395 A JP5820395 A JP 5820395A JP 5820395 A JP5820395 A JP 5820395A JP H08225302 A JPH08225302 A JP H08225302A
Authority
JP
Japan
Prior art keywords
hydrogen
steam
gas
concentration
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5820395A
Other languages
Japanese (ja)
Inventor
Ryohei Kusaka
亮平 日下
Toshio Takahashi
俊夫 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP5820395A priority Critical patent/JPH08225302A/en
Publication of JPH08225302A publication Critical patent/JPH08225302A/en
Pending legal-status Critical Current

Links

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

PURPOSE: To provide a method for producing hydrogen, capable of making the concentration of carbon monoxide in a mixed gas to be fed to a PSA process into not larger than fixed value, minimizing the capacity of an adsorption column of the PSA process and surely reducing the residual CO concentration in a product hydrogen gas to not larger than an allowable value. CONSTITUTION: This method for producing hydrogen comprises subjecting a desulfurized petroleum-based hydrocarbon and steam to high-temperature steam reforming reaction in a reaction tube of external heating type packed with a catalyst, subjecting a formed reformed gas comprising hydrogen, carbon monoxide, carbon dioxide and methane to CO modifying reaction on a catalyst of a high-temperature column, treating the prepared mixed gas rich in hydrogen by a PSA device to produce high-purity hydrogen. In this method, when operation load of a hydrogen production device is raised, steam is injected into the reformed gas to be sent to the high-temperature modifying column to reduce the concentration of carbon monoxide in the gas to be sent to the PSA device to not larger than a fixed value.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、石油系炭化水素を原料
にして、水蒸気改質反応によって得られる改質ガスを精
製して高純度の水素を製造する水素の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing hydrogen in which high-purity hydrogen is produced by refining a reformed gas obtained by a steam reforming reaction using a petroleum hydrocarbon as a raw material.

【0002】[0002]

【従来の技術】石油の重質留分の水素化分解用、あるい
は水素化脱硫用等に必要な大容量の水素ガスは、従来次
の方法によって製造されている。すなわち、原料のLP
G,ナフサ等の石油系炭化水素をコバルト−モリブデン
系水添触媒,酸化亜鉛等の吸着触媒を用いて硫黄分をほ
ぼ完全に除去した後(脱硫工程),ニッケル系触媒を充
填した外熱式の反応管内で、過熱した水蒸気とともに8
00℃前後の高温下で高温水蒸気改質反応を行わせて、
水素濃度の高い改質ガスを生成させ(高温水蒸気改質工
程)、続いて改質ガス中の一酸化炭素を水素に転換させ
るため、酸化鉄等からなる高温変成触媒上でCO変成反
応を行わせ、水素リッチの混合ガスを得ている(CO変
成工程)。
2. Description of the Related Art A large amount of hydrogen gas required for hydrocracking of petroleum heavy fractions, hydrodesulfurization, etc. has been conventionally produced by the following method. That is, the raw material LP
After removing sulfur from petroleum hydrocarbons such as G and naphtha using a cobalt-molybdenum hydrogenation catalyst and an adsorption catalyst such as zinc oxide (desulfurization process), an external heating system filled with a nickel catalyst 8 with superheated steam in the reaction tube of
By performing a high temperature steam reforming reaction at a high temperature around 00 ° C,
In order to generate a reformed gas with a high hydrogen concentration (high temperature steam reforming process) and then to convert carbon monoxide in the reformed gas into hydrogen, a CO shift reaction is carried out on a high temperature shift catalyst composed of iron oxide or the like. To obtain a hydrogen-rich mixed gas (CO shift process).

【0003】この後、水素リッチ混合ガス中の二酸化炭
素,メタン,一酸化炭素を除去するためPSA装置で処
理して、水素純度が、例えば99.99 vol %以上の高純度
ガスを製造している(PSA工程)。PSA装置(Pres
sure Swing Adsorption)は、水素以外の成分を高圧下で
選択的に吸着し、減圧下で脱着する吸着剤を充填した吸
着塔を複数塔(4〜10塔)設け、各塔をそれぞれ吸着
−脱着−置換−昇圧からなるサイクリック運転を行わせ
るとともに、各塔間のサイクルを時間的にずらして、装
置全体としては自動連続吸着装置として作動するように
工夫した装置(以下、PSA装置という)である。
After that, a high-purity gas having a hydrogen purity of, for example, 99.99 vol% or more is produced by treating with a PSA device to remove carbon dioxide, methane and carbon monoxide in the hydrogen-rich mixed gas ( PSA step). PSA equipment (Pres
sure Swing Adsorption) is a multiple adsorption tower (4-10 towers) filled with an adsorbent that selectively adsorbs components other than hydrogen under high pressure and desorbs it under reduced pressure. -A system (hereinafter referred to as a PSA system) designed to operate as an automatic continuous adsorption system as a whole by performing cyclic operation consisting of substitution and pressurization and shifting the cycle between each tower in time. is there.

【0004】PSA装置は、原料ガス自体の圧力を利用
する装置であるため、ユーティリティが不要で、運転経
費が安く経済的であること、装置の維持管理が容易であ
ること等の利点があるため広く利用されているが、反面
次のような問題を有していることも事実である。
Since the PSA device is a device that utilizes the pressure of the raw material gas itself, it has the advantages that it does not require a utility, it has a low operating cost and is economical, and that it is easy to maintain and manage. Although it is widely used, it also has the following problems.

【0005】前述のように、PSA装置で処理する水素
リッチ混合ガスは、含有量の多い順から水素,二酸化炭
素,一酸化炭素及びメタンの成分から成っているが、こ
れらの成分の内で、製品水素を使用する前記の水素化分
解装置あるいは水素化脱硫装置の方から最も含有量が少
ないことが要求される成分は、一酸化炭素であり、その
許容含有量も例えば20ppm 程度と非常に少ない。
As described above, the hydrogen-rich mixed gas processed by the PSA device is composed of hydrogen, carbon dioxide, carbon monoxide and methane components in descending order of content. Among these components, The component required to have the lowest content from the above-mentioned hydrocracker or hydrodesulfurizer using product hydrogen is carbon monoxide, and its allowable content is very low, for example, about 20 ppm. .

【0006】一方、PSA装置の吸着剤の方から見た場
合、上記の混合ガス中の成分の中で、最も吸着しにくい
成分は一酸化炭素であり、従ってPSA装置の装置容量
は、装置に入る混合ガス中の一酸化炭素の設計最大濃度
と、PSA装置を出る製品水素中の許容される残存一酸
化炭素の濃度によって、大きく左右される。すなわち、
PSA装置を経済的にコンパクトにするためには、装置
に入る混合ガス中の一酸化炭素の最大濃度を極力小さく
することが最も有効であることが分かる。
On the other hand, when viewed from the adsorbent of the PSA device, the most difficult component to adsorb among the components in the above mixed gas is carbon monoxide. Therefore, the device capacity of the PSA device depends on the device. It is largely influenced by the designed maximum concentration of carbon monoxide in the incoming gas mixture and the acceptable concentration of residual carbon monoxide in the product hydrogen leaving the PSA unit. That is,
It can be seen that in order to economically make the PSA device compact, it is most effective to make the maximum concentration of carbon monoxide in the mixed gas entering the device as small as possible.

【0007】ここでCO変成反応について考えてみる
と、この反応は発熱反応であり、平衡的には低温ほど反
応は進行し、残存一酸化炭素は少なくなる。この低温で
反応を行わせる触媒として、例えば200℃前後でも活
性を有する低温変成触媒がある。低温変成触媒は、酸化
銅,酸化亜鉛等を主成分とする触媒であるが、スタート
時に水素ガスによる特別な還元操作が必要なこと、微量
の硫黄化合物によっても容易に被毒され活性が低下する
などの難点があり、最近は使用されなくなって来てい
る。
Considering the CO conversion reaction, this reaction is an exothermic reaction, and in equilibrium, the lower the temperature, the more the reaction proceeds and the less carbon monoxide remains. As a catalyst for carrying out the reaction at this low temperature, for example, there is a low temperature shift catalyst which is active even at around 200 ° C. The low-temperature shift catalyst is a catalyst whose main component is copper oxide, zinc oxide, etc., but it requires a special reduction operation with hydrogen gas at the time of start, and it is easily poisoned by a small amount of sulfur compounds and its activity decreases. However, it has become obsolete these days.

【0008】このため、最近の水素製造装置において
は、CO変成工程は運転管理の容易な酸化鉄を主成分と
する高温変成触媒のみで構成するのが一般的になってい
る。CO変成反応の平衡の他の特性として、変成塔に入
るガス中のスチーム含有量が多い程、反応は有利に進む
ことである。しかし最近の水素製造装置においては、水
蒸気改質工程は主に熱経済の理由から、原料炭化水素に
対するスチーム量(スチーム/カーボン比と呼ばれる)
を少なくして運転する傾向にあり、このためCO変成工
程に入る改質ガス中のスチーム含有量も少なくなってき
ているのが実情である。
For this reason, in recent hydrogen production apparatuses, the CO shift process is generally constituted only by a high-temperature shift catalyst whose main component is iron oxide, which is easy to operate and manage. Another characteristic of the equilibrium of the CO shift reaction is that the higher the steam content in the gas entering the shift tower, the more favorable the reaction. However, in recent hydrogen production equipment, the steam reforming process is mainly due to thermal economy, and the amount of steam relative to the raw material hydrocarbons (called steam / carbon ratio).
Therefore, the steam content in the reformed gas entering the CO shift process is also decreasing.

【0009】[0009]

【発明が解決しようとする課題】本発明は、以上の従来
技術の問題点を背景にしてなされたものであって、水素
製造装置の負荷が大きくなった場合に、PSA工程に入
る混合ガス中の一酸化炭素の濃度を一定値以下にして、
PSA工程の吸着塔の容量を小さくできるとともに、製
品水素ガス中の残存CO濃度も確実に許容値以下にでき
る水素の製造方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned problems of the prior art. In the mixed gas entering the PSA step when the load on the hydrogen production apparatus becomes large. Keep the concentration of carbon monoxide below a certain level,
An object of the present invention is to provide a method for producing hydrogen which can reduce the capacity of the adsorption tower in the PSA step and can surely make the residual CO concentration in the product hydrogen gas to be less than or equal to the allowable value.

【0010】[0010]

【課題を解決するための手段】請求項1記載の発明の要
旨とするところは、脱硫した石油系炭化水素をスチーム
とともに触媒を充填した外熱式の反応管中で高温水蒸気
改質反応を行わせ、生成する水素,一酸化炭素,二酸化
炭素及びメタンからなる改質ガスを高温変成塔の触媒上
でCO変成反応を行わせ、得られる水素リッチの混合ガ
スをPSA装置で処理して高純度の水素を製造する水素
の製造方法において、水素製造装置の運転負荷が高くな
った場合に高温変成塔に入る前記改質ガス中にスチーム
を注入してPSA装置に入るガス中の一酸化炭素の濃度
を一定値以下にすることを特徴とする水素の製造方法に
あり、請求項2記載の発明の要旨とするところは、請求
項1記載の水素の製造方法において、PSA装置を出る
製品ガス中の一酸化炭素の濃度を連続測定してその濃度
が増加傾向にある場合には、高温変成塔に入る改質ガス
に注入するスチーム量を増量することを特徴とする水素
の製造方法にある。
The object of the invention as set forth in claim 1 is to carry out a high temperature steam reforming reaction in an externally heated reaction tube in which a desulfurized petroleum hydrocarbon is filled with a catalyst together with steam. The produced reformed gas composed of hydrogen, carbon monoxide, carbon dioxide, and methane is subjected to a CO shift reaction on the catalyst of the high-temperature shift tower, and the resulting hydrogen-rich mixed gas is treated with a PSA device to obtain high purity. In the method for producing hydrogen for producing hydrogen as described above, when the operation load of the hydrogen production apparatus becomes high, steam is injected into the reformed gas that enters the high temperature shift tower to remove carbon monoxide in the gas that enters the PSA apparatus. A method for producing hydrogen characterized in that the concentration is set to a certain value or less, and the gist of the invention according to claim 2 is that in the method for producing hydrogen according to claim 1, in the product gas leaving the PSA apparatus. Monoacid If the concentration thereof continuously measuring the concentration of carbon tends to increase, in the production method of the hydrogen, characterized by increasing the amount of steam injected into the reformed gas entering the high temperature shift tower.

【0011】[0011]

【作用】高温変成塔に入るガス組成(スチームも含む)
が同じ場合には、高温変成塔を出るガス中の一酸化炭素
の濃度は、、装置負荷の増加とともに空間速度が大きく
なるため、図2に図示されるように高くなる。従って、
もしPSA装置の最高入口濃度を図2のB点でもって設
計すれば、PSA装置の吸着塔の容量は相当大きなもの
になるが、本発明のようにA点でもって設計すれば、吸
着塔の容量をかなりコンパクトにできる。さらに石油の
水素化脱硫用に設置される水素製造装置においては、水
素製造装置の容量は、いくつかの条件を考慮して相当の
余裕をもって決定されるため、A点を超える高い負荷で
運転される日数は、年間を通してもそれ程多くないのが
実状であり、装置負荷がA点を超えた場合に必要なスチ
ーム注入のコストもそれ程嵩まないと言える。
[Function] Gas composition (including steam) entering the high temperature shift tower
If the same, the concentration of carbon monoxide in the gas exiting the high temperature shift tower will be high as shown in FIG. 2 because the space velocity will increase with increasing equipment load. Therefore,
If the maximum inlet concentration of the PSA device is designed at the point B in FIG. 2, the capacity of the adsorption tower of the PSA device becomes considerably large, but if it is designed at the point A as in the present invention, The capacity can be made quite compact. Furthermore, in the hydrogen production equipment installed for the hydrodesulfurization of petroleum, the capacity of the hydrogen production equipment is determined with a considerable margin in consideration of some conditions, and therefore it is operated at a high load exceeding point A. It can be said that the number of days required for the steam injection is not so large even during the whole year, and the cost of steam injection required when the device load exceeds point A does not increase so much.

【0012】CO変成工程で注入するスチームの量は、
水蒸気改質工程での前記のスチーム/カーボン比から決
まる改質ガス中のスチーム含有量,CO変成工程の反応
温度から決まる平衡定数,CO変成工程出口の所定CO
濃度などを用いて容易に計算により求められるので、最
小限必要な少ないスチーム量を注入するよう制御でき
る。しかし、安全のためPSA工程を出る製品ガス中の
一酸化炭素の濃度を常時測定して、万一増加傾向が見ら
れる場合は、前記の注入スチーム量を増加する制御方法
を採用することにより、製品ガス中のCO濃度を確実に
許容値以下にできる。
The amount of steam injected in the CO conversion process is
The steam content in the reformed gas determined by the steam / carbon ratio in the steam reforming process, the equilibrium constant determined by the reaction temperature in the CO conversion process, and the predetermined CO at the CO conversion process outlet.
Since it can be easily calculated by using the concentration and the like, it is possible to control so as to inject a minimum required and small amount of steam. However, for safety, the concentration of carbon monoxide in the product gas leaving the PSA process is constantly measured, and if there is an increasing tendency, by adopting the control method for increasing the amount of injected steam, The CO concentration in the product gas can be surely kept below the allowable value.

【0013】[0013]

【実施例】以下、本発明の水素の製造方法の実施例につ
いて説明する。図1は本発明の実施例の概略系統図であ
る。原料のLPG,ナフサ等の石油系炭化水素は、製品
水素の一部を利用する脱硫用のリサイクルガスととも
に、加熱炉にて400℃前後に予熱されてから、コバル
ト−モリブデン系水素化触媒及び酸化亜鉛の吸着触媒が
充填された脱硫塔に入り、原料中の硫黄化合物は全て水
素化されて硫化水素になって、次いで吸着触媒により、
ほぼ完全に除去される。
EXAMPLES Examples of the method for producing hydrogen according to the present invention will be described below. FIG. 1 is a schematic system diagram of an embodiment of the present invention. Petroleum hydrocarbons such as LPG and naphtha, which are raw materials, are preheated to around 400 ° C in a heating furnace together with a recycling gas for desulfurization that uses a part of product hydrogen, and then a cobalt-molybdenum hydrogenation catalyst and oxidation are performed. After entering the desulfurization tower filled with the zinc adsorption catalyst, all the sulfur compounds in the raw material are hydrogenated to hydrogen sulfide, and then by the adsorption catalyst,
Almost completely removed.

【0014】脱硫された原料炭化水素は、次いで400
℃以上に過熱されたガス化剤である改質用のスチームと
ともに、ニッケル系触媒が充填された反応管等からなる
改質炉に入り、燃料の燃焼熱により高温水蒸気改質反応
に必要な反応熱を供給されて800℃前後で反応を終了
し、水素,一酸化炭素,二酸化炭素,メタン等からなる
改質ガスになって高温改質工程を出る。この後、改質ガ
スは、廃熱ボイラ等で熱回収されて、高温変成反応に好
適な350℃前後まで下がって次工程に移る。
The desulfurized raw hydrocarbon is then 400
Along with steam for reforming, which is a gasifying agent overheated to ℃ or above, enters a reforming furnace consisting of a reaction tube filled with a nickel-based catalyst, and the reaction required for high-temperature steam reforming reaction by the combustion heat of fuel. The heat is supplied to complete the reaction at around 800 ° C., and a high temperature reforming process is performed after forming a reformed gas composed of hydrogen, carbon monoxide, carbon dioxide, methane and the like. After that, the reformed gas is subjected to heat recovery in a waste heat boiler or the like, and is cooled to around 350 ° C., which is suitable for high temperature shift reaction, and moves to the next step.

【0015】高温変成工程においては、改質ガス中の一
酸化炭素は、酸化鉄を主成分とする高温変成触媒上で次
のCO変成反応により、水素に転換される。 CO+H2 O=H2 +CO2 Kp=(H2 )(CO2 )/(CO)(H2 O) Kpは平衡定数であり、反応温度の関数であって、反応
温度が低いほど大きくなる。装置負荷が図2のA点より
少ない負荷の場合は、変成塔触媒の空間速度が小さくな
るため、反応温度を下げて平衡定数;Kpを大きくする
ことができ、それだけ変成塔出口のCO濃度を少なくす
ることができる。
In the high temperature shift process, carbon monoxide in the reformed gas is converted into hydrogen by the following CO shift reaction on the high temperature shift catalyst containing iron oxide as a main component. CO + H 2 O = H 2 + CO 2 Kp = (H 2 ) (CO 2 ) / (CO) (H 2 O) Kp is an equilibrium constant, which is a function of the reaction temperature and increases as the reaction temperature decreases. When the apparatus load is less than the point A in Fig. 2, the space velocity of the shift converter catalyst becomes small, so the reaction temperature can be lowered to increase the equilibrium constant; Kp, and the CO concentration at the shift tower outlet can be increased accordingly. Can be reduced.

【0016】しかし、装置負荷が増加して、A点より大
きくなった場合は、空間速度も大きくなるため、反応温
度を下げることはできない。代わりに、高温変成塔に入
るガス中のスチーム量を増加すれば、Kpが一定下で
は、前記の平衡式から高温変成塔出口ガス中の残存一酸
化炭素が減少することが分かる。またKpが一定のもと
では、高温変成塔出口ガス中の一酸化炭素を決めれば、
前記の平衡式から注入するスチーム量は容易に計算によ
り求められる。従って、高温変成工程出口の一酸化炭素
を常時測定しながら、所定濃度より高くなってきた場合
は、この平衡上必要なスチーム量を計算器で計算し、こ
の計算値に近いスチーム量を制御器で設定して注入す
る。
However, when the load on the apparatus increases and becomes larger than point A, the space velocity also increases, so that the reaction temperature cannot be lowered. Instead, if the amount of steam in the gas entering the high temperature shift converter is increased, it can be seen from the above equilibrium equation that the amount of residual carbon monoxide in the outlet gas of the high temperature shift tower decreases when Kp is constant. If Kp is constant, if carbon monoxide in the high-temperature shift tower outlet gas is determined,
The amount of steam injected from the above equilibrium equation can be easily calculated. Therefore, when the concentration of carbon monoxide at the outlet of the high temperature shift process is constantly measured and the concentration becomes higher than the predetermined concentration, calculate the steam amount required for this equilibrium with a calculator, and adjust the steam amount close to this calculated value to the controller. Set and inject.

【0017】さらに、PSA工程を出る製品水素中の一
酸化炭素の濃度を常時測定して、増加傾向が見られる場
合は、前記の平衡上必要な量より多くのスチーム量を注
入することにより、製品ガス中のCO濃度を確実に許容
値以下に維持できる。
Further, the concentration of carbon monoxide in the product hydrogen leaving the PSA process is constantly measured, and if an increasing tendency is observed, by injecting a steam amount larger than the amount required for equilibrium, The CO concentration in the product gas can be reliably maintained below the allowable value.

【0018】原料炭化水素としてナフサを用いて、スチ
ーム/カーボン比=3.0で高温水蒸気改質して得られ
た改質ガスに本発明を適用したケースのガス組成、流量
などの諸元を示す。 改質ガス 変成ガス※1 変成ガス※2 CO 16.1% 5.0% 3.0% CO2 11.2 19.7 21.2 H2 68.8 71.8 72.3 CH4 3.9 3.5 3.5 100.0 100.0 100.0 乾ガス量(Kmol/H)100.0 110.6 112.7スチーム量 ( 〃 ) 55.1 44.5 81.9 湿ガス量 ( 〃 )155.1 155.1 194.6 ※1;スチーム注入無しでCO変成したケース ※2;変成スチーム注入をしてCO変成したケース(本発明) 注入スチーム量;81.9−44.5+(112.7−110.6)=39.5(モル/H) 以上から、CO変成工程に入るガス量に対して約25%
のスチーム量(100%負荷時)を注入することによ
り、吸着するCOの量を40%減少できることが分か
る。
Specifications of the gas composition, flow rate, etc. in the case where the present invention is applied to a reformed gas obtained by high temperature steam reforming at a steam / carbon ratio of 3.0 using naphtha as a raw material hydrocarbon are shown. Show. Reformed gas Modified gas * 1 Modified gas * 2 CO 16.1% 5.0% 3.0% CO 2 11.2 19.7 21.2 H 2 68.8 71.8 72.3 CH 4 3. 9 3.5 3.5 100.0 100.0 100.0 Dry gas amount (Kmol / H) 100.0 110.6 112.7 Steam amount (〃) 55.1 44.5 81.9 Wet gas amount (〃) 155.1 155.1 194.6 * 1; CO-transformed case without steam injection * 2; CO-transformed case with modified steam injection (invention) Injection steam amount; 81.9-44.5 + (112) 7-110.6) = 39.5 (mol / H) From above, about 25% of the amount of gas entering the CO shift process
It can be seen that the amount of CO adsorbed can be reduced by 40% by injecting the steam amount of (at 100% load).

【0019】[0019]

【発明の効果】以上説明した水素の製造方法によれば、
水素製造装置の負荷の高い時に、PSA装置に入るガス
中のCO濃度を一定値以下にすることにより、PSA装
置の吸着塔の容量を小さくできるとともに、PSA装置
を出る製品ガス中のCO濃度を確実に許容値以下にでき
る効果が得られる。
According to the method for producing hydrogen described above,
By keeping the CO concentration in the gas entering the PSA unit below a certain value when the load of the hydrogen production unit is high, the capacity of the adsorption tower of the PSA unit can be reduced and the CO concentration in the product gas leaving the PSA unit can be reduced. It is possible to obtain the effect that the value can be surely made equal to or less than the allowable value.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例の概略系統図。FIG. 1 is a schematic system diagram of an embodiment of the present invention.

【図2】変成塔出口ガス中のCO濃度と装置負荷の関係
を示す図。
FIG. 2 is a diagram showing a relationship between CO concentration in a gas exiting a shift converter and an apparatus load.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】脱硫した石油系炭化水素をスチームととも
に触媒を充填した外熱式の反応管中で高温水蒸気改質反
応を行わせ、生成する水素,一酸化炭素,二酸化炭素及
びメタンからなる改質ガスを高温変成塔の触媒上でCO
変成反応を行わせ、得られる水素リッチの混合ガスをP
SA装置で処理して高純度の水素を製造する水素の製造
方法において、水素製造装置の運転負荷が高くなった場
合に高温変成塔に入る前記改質ガス中にスチームを注入
してPSA装置に入るガス中の一酸化炭素の濃度を一定
値以下にすることを特徴とする水素の製造方法。
1. A reformer comprising hydrogen, carbon monoxide, carbon dioxide and methane produced by performing a high temperature steam reforming reaction in an externally heated reaction tube filled with a catalyst together with desulfurized petroleum hydrocarbons and steam. CO gas on the catalyst of the high temperature shift tower
The metamorphic reaction is performed, and the resulting hydrogen-rich mixed gas is added to P
In a method for producing hydrogen for producing high-purity hydrogen by processing with an SA device, steam is injected into the reformed gas that enters the high temperature shift tower when the operating load of the hydrogen production device becomes high, and the PSA device is provided with the steam. A method for producing hydrogen, characterized in that the concentration of carbon monoxide in the incoming gas is kept below a certain value.
【請求項2】請求項1記載の水素の製造方法において、
PSA装置を出る製品水素中の一酸化炭素の濃度を連続
測定してその濃度が増加傾向にある場合には、高温変成
塔に入る改質ガスに注入するスチーム量を増量すること
を特徴とする水素の製造方法。
2. The method for producing hydrogen according to claim 1,
When the concentration of carbon monoxide in the product hydrogen leaving the PSA device is continuously measured and the concentration tends to increase, the amount of steam injected into the reformed gas entering the high temperature shift converter is increased. Method for producing hydrogen.
JP5820395A 1995-02-23 1995-02-23 Production of hydrogen Pending JPH08225302A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5820395A JPH08225302A (en) 1995-02-23 1995-02-23 Production of hydrogen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5820395A JPH08225302A (en) 1995-02-23 1995-02-23 Production of hydrogen

Publications (1)

Publication Number Publication Date
JPH08225302A true JPH08225302A (en) 1996-09-03

Family

ID=13077483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5820395A Pending JPH08225302A (en) 1995-02-23 1995-02-23 Production of hydrogen

Country Status (1)

Country Link
JP (1) JPH08225302A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008524106A (en) * 2004-12-17 2008-07-10 テキサコ ディベラップメント コーポレイション Apparatus and method for producing hydrogen
WO2011030821A1 (en) 2009-09-10 2011-03-17 国立大学法人東京大学 Method for simultaneously producing carbon nanotubes and hydrogen, and device for simultaneously producing carbon nanotubes and hydrogen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008524106A (en) * 2004-12-17 2008-07-10 テキサコ ディベラップメント コーポレイション Apparatus and method for producing hydrogen
WO2011030821A1 (en) 2009-09-10 2011-03-17 国立大学法人東京大学 Method for simultaneously producing carbon nanotubes and hydrogen, and device for simultaneously producing carbon nanotubes and hydrogen
US9061909B2 (en) 2009-09-10 2015-06-23 The University Of Tokyo Method for simultaneously producing carbon nanotubes and hydrogen, and device for simultaneously producing carbon nanotubes and hydrogen
EP2889268A1 (en) 2009-09-10 2015-07-01 The University of Tokyo Method for simultaneously producing carbon nanotubes and hydrogen, and device for simultaneously producing carbon nanotubes and hydrogen
US10633249B2 (en) * 2009-09-10 2020-04-28 The University Of Tokyo Device for simultaneously producing carbon nanotubes and hydrogen

Similar Documents

Publication Publication Date Title
CA2323020C (en) Production of hydrogen using methanation and pressure swing adsorption
CA2745359C (en) A method and apparatus for producing power and hydrogen
US6506349B1 (en) Process for removal of contaminants from a gas stream
RU2378188C2 (en) Hydrogen synthesis method using steam reforming with partial oxidation
JP5721310B2 (en) Oxygen removal
EP1180544B1 (en) Method of manufacturing synthesis gas
EP2002877B1 (en) Method for hydrogen separation from gas streams using pressure swing adsorption process
US20160083811A1 (en) Method for reducing iron oxide to metallic iron using coke oven gas
US10399852B2 (en) Process and apparatus for treating a sour synthesis gas
US4356161A (en) Process for reducing the total sulfur content of a high CO2 -content feed gas
KR20230029615A (en) How to produce hydrogen
KR20230029630A (en) How to produce hydrogen
EP2657215A1 (en) Method and device for producing methanol
KR20120089441A (en) Method and apparatus for producing a treated hydrocarbon containing stream for use as a feed to a hydrogen plant having a steam methane reformer
EA019982B1 (en) Synthesis gas production method
EP0749939B1 (en) Continuously controlling the heat content of a partial oxidation unit feed-gas stream
KR20020096932A (en) A process for preparing a low-sulfur reformate gas for use in a fuel cell system
JP4264791B2 (en) Fuel reformer, operating method thereof, and fuel cell power generator using the same
US20100176346A1 (en) Process and system for conducting isothermal low-temperature shift reaction using a compact boiler
JPH08225302A (en) Production of hydrogen
KR20180124050A (en) Method and apparatus for producing a mixed feed stream for steam reforming plants
JP5102420B2 (en) Desulfurization
JP4041085B2 (en) Fuel gas production system and method for stopping the same
JPH07115845B2 (en) Method for producing hydrogen and carbon monoxide
JPH0517163B2 (en)