JPH08224822A - Fiber reinforced resin composite molding and manufacture thereof - Google Patents

Fiber reinforced resin composite molding and manufacture thereof

Info

Publication number
JPH08224822A
JPH08224822A JP7056652A JP5665295A JPH08224822A JP H08224822 A JPH08224822 A JP H08224822A JP 7056652 A JP7056652 A JP 7056652A JP 5665295 A JP5665295 A JP 5665295A JP H08224822 A JPH08224822 A JP H08224822A
Authority
JP
Japan
Prior art keywords
mixture
thermoplastic resin
fiber
solidified
cotton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7056652A
Other languages
Japanese (ja)
Inventor
Ryosaku Kadowaki
良策 門脇
Shuji Yumitori
修二 弓取
Takao Yokumoto
貴生 浴本
Toshiaki Okumura
俊明 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP7056652A priority Critical patent/JPH08224822A/en
Publication of JPH08224822A publication Critical patent/JPH08224822A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE: To obtain a molding having excellent sound absorbing and heat insulating properties by providing a mixture of a thermoplastic resin fiber and a reinforced fiber and a substrate material, and forming on the substrate material, a flocculent mixture non-solidified layer whose thermoplastic resin fiber is unmelted and unsolidified through a mixture solidified layer wherein a thermoplastic resin is melted and solidified. CONSTITUTION: When a composite molding is to be manufactured, a flocculent mixture C arranged in between a heating member 2 and a heat depriving member 3 is heated from the heating member 2. At this time, a substrate material 1 is arranged between the heating member 2 and the flocculent mixture C and heated to a melt temperature or higher of a thermoplastic resin fiber in the flocculent mixture C. On the other hand, the temperature of the member 3 is kept in a melt temperature or lower of the thermoplastic resin fiber so as to avoid heat melt at the member 3. Thus, a flocculent mixture non-solidified layer B having a melted and solidified thermoplastic resin on one face of the substrate material 1 whose thermoplastic resin fiber does not melt nor solidify through a mixture solidified layer A for heightening structural strength as a whole, and containing cavities among the fibers for providing sound absorbing and vibration absorbing functions is formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、繊維状熱可塑性樹脂と
強化繊維の混合物と、例えばアルミ箔の如き金属等の基
板材とを複合してなり、吸音性能、断熱性能、振動減衰
性能等を有する繊維強化樹脂複合成形体、およびその製
法に関するものであり、この複合成形体は、たとえば自
動車等に用いられるアンダーシールド材やノイズシール
ド材の如く、エンジン音の遮音や吸音性能が求められる
部材等として有効に活用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention comprises a composite of a fibrous thermoplastic resin and a reinforcing fiber and a substrate material such as metal such as aluminum foil, which is used for sound absorption performance, heat insulation performance, vibration damping performance, etc. The present invention relates to a fiber-reinforced resin composite molded body having the following, and a manufacturing method thereof. The composite molded body is a member that is required to have sound insulation and sound absorption performance for engine sound, such as an undershield material and a noise shield material used in automobiles and the like. Etc. can be effectively utilized.

【0002】[0002]

【従来の技術】例えば自動車等の車体下部に取り付けら
れる吸音用のアンダーシールド材としては、従来より、
ガラス繊維マットをアルミ箔等で包み込んだものや多孔
質体からなる吸音性部材を、鋼板等の金属基材の片面に
接着剤等で接合したものが用いられている。
2. Description of the Related Art For example, as an under shield material for absorbing sound which is attached to a lower portion of a vehicle body of an automobile or the like,
The one in which a glass fiber mat is wrapped in aluminum foil or the like or a sound absorbing member made of a porous body is bonded to one surface of a metal base material such as a steel plate with an adhesive or the like is used.

【0003】他方繊維強化熱可塑性樹脂系の複合材料
は、安価でしかも優れた機械的特性を有しており、また
リサイクル性にも優れているといった特徴を有している
ところから、様々の分野で広く活用されている。この種
の複合材料の代表的な材料構成は、強化繊維としてガラ
ス繊維や炭素繊維を使用し、熱可塑性樹脂としてポリプ
ロピレン等のポリオレフィン系樹脂を複合したものであ
り、最近では、この種の繊維強化熱可塑性樹脂系複合材
料を、上記の様なアンダーシールド材やノイズシールド
材等として有効利用しようとする動きも見られる。
On the other hand, fiber-reinforced thermoplastic resin-based composite materials are inexpensive and have excellent mechanical properties, and also have excellent recyclability. Is widely used in. A typical material structure of this type of composite material is one in which glass fiber or carbon fiber is used as a reinforcing fiber, and a polyolefin resin such as polypropylene is compounded as a thermoplastic resin. There is also a tendency to effectively use the thermoplastic resin-based composite material as the above-mentioned under shield material, noise shield material, or the like.

【0004】ところが、通常の繊維強化熱可塑性樹脂系
複合材料は、安価で錆を生じることがなくしかもリサイ
クル性にも優れているといった利点を有している反面、
肝心の吸音性能は備えていない。従って、この複合材料
をアンダーシールド材等の素材として利用する際には、
あくまでも基板材としての機能を期待し得るに止まり、
その表面に上記と同様のアルミ箔等で包み込んだガラス
繊維マット等の吸音部材を貼り付けなければならない。
However, the ordinary fiber-reinforced thermoplastic resin-based composite material has the advantages that it is inexpensive, does not cause rust, and is excellent in recyclability.
It does not have the essential sound absorption performance. Therefore, when using this composite material as a material such as an undershield material,
It can only be expected to function as a substrate material,
A sound absorbing member such as a glass fiber mat wrapped with aluminum foil or the like similar to the above must be attached to the surface thereof.

【0005】何れにしても従来の吸音材は、構造強度を
確保するための基材と、吸音性能等を与えるためのガラ
ス繊維マットや多孔質体等を別々に準備し、それらを貼
り合わせることによって製造しており、作業が煩雑で手
数を要し、その結果として製品コストが高くなるという
問題が指摘されている。他方、ガラス繊維マットの上下
面に合成樹脂フィルムやアルミ箔等を貼り合わせた構造
の断熱材は公知であり、この様な貼り合わせ材は吸音材
等としても利用できると考えられるが、現実には成形体
全体としての構造強度が不足するため、支持層として金
属板等を組み合わせなければ、上記の様な自動車用アン
ダーシールド材等として実用化することはできない。
In any case, the conventional sound absorbing material is prepared by separately preparing a base material for ensuring structural strength and a glass fiber mat or a porous body for providing sound absorbing performance, etc. and bonding them together. It has been pointed out that the manufacturing cost is high and the product cost is high as a result. On the other hand, a heat insulating material having a structure in which a synthetic resin film, an aluminum foil or the like is bonded to the upper and lower surfaces of a glass fiber mat is known, and it is considered that such a bonding material can be used as a sound absorbing material, etc. Since the structural strength of the molded body as a whole is insufficient, it cannot be put to practical use as the above-mentioned undershield material for automobiles unless a metal plate or the like is combined as the support layer.

【0006】[0006]

【発明が解決しようとする課題】本発明は上記の様な事
情に着目してなされたものであって、その目的は、優れ
た吸音特性や断熱特性、振動抑制作用等を有すると共に
優れた構造強度を有し、しかも比較的簡単な方法で製造
することのできる繊維強化樹脂複合成形体を提供しよう
とするものであり、本発明の他の目的は、その様な繊維
強化樹脂複合成形体を生産性よく製造することのできる
方法を提供しようとするものである。
SUMMARY OF THE INVENTION The present invention has been made by paying attention to the above circumstances, and its purpose is to have excellent sound absorbing characteristics, heat insulating characteristics, vibration suppressing effect and the like and to have an excellent structure. It is an object of the present invention to provide a fiber-reinforced resin composite molded body having strength and capable of being manufactured by a relatively simple method. Another object of the present invention is to provide such a fiber-reinforced resin composite molded body. It is intended to provide a method that can be manufactured with high productivity.

【0007】[0007]

【課題を解決するための手段】上記課題を解決すること
のできた本発明に係る繊維強化樹脂複合成形体の構成
は、熱可塑性樹脂繊維と強化繊維との混合物と基板材と
で構成され、基板材上に、前記熱可塑性樹脂が溶融固化
した混合物固化層(A)を介して、前記熱可塑性樹脂繊
維が溶融固化していない綿状混合物非固化層(B)が形
成されたものであるところに要旨を有するものである。
The structure of the fiber-reinforced resin composite molded article according to the present invention, which has been able to solve the above-mentioned problems, comprises a mixture of thermoplastic resin fibers and reinforcing fibers and a substrate material. Where a cotton-like mixture non-solidified layer (B) in which the thermoplastic resin fibers are not melt-solidified is formed on a plate material via a mixture solidified layer (A) in which the thermoplastic resin is melt-solidified It has the gist.

【0008】また本発明に係る製法の構成は、熱可塑性
樹脂繊維と強化繊維を含む綿状混合物を、加熱部材と奪
熱部材の間で加熱部材側のみから加熱することとし、こ
の際、加熱部材と前記綿状混合物の間には基板材を配置
すると共に、該加熱部材は上記熱可塑性樹脂繊維の溶融
温度以上に加熱され、奪熱部材は上記熱可塑性樹脂繊維
の溶融温度以下に保ち、前記綿状混合物を前記加熱部材
側からの加熱と、奪熱部材側への奪熱によって前記混合
物中の熱可塑性樹脂繊維を前記基板材側で加熱溶融させ
つつ、奪熱部材側では加熱溶融させないことにより、基
板材と、溶融固化した熱可塑性樹脂を有する混合物固化
層(A)と、熱可塑性樹脂繊維の溶融固化していない綿
状混合物非固化層(B)とからなる複合成形体とすると
ころに要旨を有している。
Further, in the constitution of the manufacturing method according to the present invention, the cotton-like mixture containing the thermoplastic resin fiber and the reinforcing fiber is heated only from the heating member side between the heating member and the heat absorbing member. A substrate material is arranged between the member and the cotton-like mixture, the heating member is heated to a temperature above the melting temperature of the thermoplastic resin fiber, and the heat-absorption member is maintained below the melting temperature of the thermoplastic resin fiber, The cotton-like mixture is heated from the heating member side and the thermoplastic resin fibers in the mixture are heated and melted on the substrate material side by heat removal to the heat removal member side, but not on the heat removal member side. As a result, a composite molded body including a substrate material, a mixture solidified layer (A) having a melted and solidified thermoplastic resin, and a non-melted cotton-like mixture non-solidified layer (B) of thermoplastic resin fibers is obtained. Where it has a gist There.

【0009】[0009]

【作用】上記の様に本発明の繊維強化樹脂複合成形体
は、熱可塑性樹脂繊維と強化繊維との混合物と、アルミ
箔等からなる基板材とで構成され、たとえば図1に示す
如く基板材1の片面に、溶融固化した熱可塑性樹脂を有
し全体としての構造強度を高める混合物固化層(A)を
介して、熱可塑性樹脂繊維が溶融固化しておらず繊維間
空隙を内包して吸音、断熱、振動吸収等の機能を発揮す
る綿状混合物非固化層(B)が形成されたものであり、
この様な繊維強化樹脂複合成形体は、以下に詳述する様
な方法により一体物として簡単に製造することができ
る。
As described above, the fiber-reinforced resin composite molded article of the present invention comprises a mixture of thermoplastic resin fibers and reinforcing fibers and a substrate material made of aluminum foil or the like. For example, as shown in FIG. 1, the thermoplastic resin fibers are not melted and solidified through the mixture solidified layer (A) which has the melted and solidified thermoplastic resin and enhances the structural strength as a whole, and the voids between the fibers are included to absorb the sound. , A cotton-like mixture non-solidifying layer (B) that exhibits functions such as heat insulation and vibration absorption is formed,
Such a fiber-reinforced resin composite molded body can be easily manufactured as an integrated body by the method described in detail below.

【0010】以下、本発明に係る製法を詳述しつつ、得
られる繊維強化樹脂複合成形体の特徴を説明していく。
図2は、本発明方法を例示する概略工程説明図であり、
原料素材としては、アルミ箔の如き金属材等からなる基
板材1と、熱可塑性樹脂繊維と強化繊維を含む綿状混合
物Cが使用される。そして複合成形体を製造するに当た
っては、該綿状混合物Cを加熱部材2と奪熱部材3の間
で加熱部材2側のみから加熱することとし、この際、加
熱部材2と該綿状混合物Cの間にはアルミ箔等の基板材
1を配置すると共に、該加熱部材2は、綿状混合物中の
熱可塑性樹脂繊維の溶融温度以上に加熱する一方、奪熱
部材3は該熱可塑性樹脂繊維の溶融温度未満に保ち、該
綿状混合物Cを加熱部材2側からの加熱と、奪熱部材3
側への奪熱によって、該綿状混合物C中の熱可塑性樹脂
繊維を前記基板材1側で加熱溶融させつつ、奪熱部材3
側では加熱溶融させない様にして適度の圧力で加圧成形
する。
The features of the obtained fiber-reinforced resin composite molded article will be described below in detail while explaining the production method according to the present invention.
FIG. 2 is a schematic process explanatory view illustrating the method of the present invention,
As the raw material, a substrate material 1 made of a metal material such as aluminum foil, and a cotton-like mixture C containing thermoplastic resin fibers and reinforcing fibers are used. In producing the composite molded body, the cotton-like mixture C is heated only between the heating member 2 and the heat absorbing member 3 from the side of the heating member 2. At this time, the heating member 2 and the cotton-like mixture C are heated. A substrate material 1 such as aluminum foil is placed between the heating members 2 and the heating member 2 is heated to a temperature higher than the melting temperature of the thermoplastic resin fibers in the cotton-like mixture, while the heat removal member 3 is connected to the thermoplastic resin fibers. Of the cotton-like mixture C from the heating member 2 side and the heat-absorption member 3
The heat absorbing member 3 heats and melts the thermoplastic resin fibers in the cotton-like mixture C on the side of the substrate material 1 by heat absorption to the side.
On the side, pressure molding is carried out at an appropriate pressure so as not to heat and melt.

【0011】そうすると、図2(B)に示す如く、綿状
混合物Cの基板材1に接した加熱部材2側では、該綿状
混合物C内の熱可塑性樹脂繊維が溶融して基板材1との
界面に流延すると共に強化繊維の繊維間空隙を満たし、
これを冷却すると熱可塑性樹脂が繊維間空隙を満たして
溶融固化した混合物固化層(A)が基板材1と強固に接
合した状態で形成される。一方奪熱部材3側は、熱可塑
性樹脂繊維の溶融温度未満の低温であるので、該綿状混
合物C内の熱可塑性樹脂繊維は溶融せず繊維間空隙を残
したままの綿状混合物非固化層(B)として残される。
Then, as shown in FIG. 2B, on the heating member 2 side of the cotton-like mixture C in contact with the substrate material 1, the thermoplastic resin fibers in the cotton-like mixture C are melted to form the substrate material 1. It is cast on the interface of the
When this is cooled, the mixture solidified layer (A) in which the thermoplastic resin fills the inter-fiber voids and is melted and solidified is formed in a state of being strongly bonded to the substrate material 1. On the other hand, the heat-absorptive member 3 side is at a temperature lower than the melting temperature of the thermoplastic resin fiber, so that the thermoplastic resin fiber in the cotton-like mixture C is not melted and the cotton-like mixture is not solidified while leaving the interfiber void. It is left as layer (B).

【0012】従って、所望する混合物固化層(A)や綿
状混合物非固化層(B)の厚みに応じて、加熱部材2の
加熱温度や加熱時間、奪熱部材3の温度等を適宜コント
ロールすれば、必要に応じた構造強度を有する厚みの混
合物固化層(A)が、基板材1上に強固に接合した状態
で形成されると共に、繊維間空隙を有し吸音、断熱、振
動減衰等の諸機能を備えた綿状混合物非固化層(B)が
一体的に接合された繊維強化樹脂複合成形体が得られ
る。
Therefore, the heating temperature and heating time of the heating member 2, the temperature of the heat absorbing member 3 and the like can be appropriately controlled according to the desired thickness of the solidified layer (A) of the mixture and the non-solidified layer (B) of the cotton-like mixture. For example, the solidified mixture layer (A) having a thickness having a required structural strength is formed on the substrate material 1 in a state of being strongly bonded to the substrate material 1 and has voids between the fibers to absorb sound, insulate heat, or reduce vibration. A fiber-reinforced resin composite molded body in which the cotton-like mixture non-solidified layer (B) having various functions is integrally bonded is obtained.

【0013】この際、混合物固化層(A)と綿状混合物
非固化層(B)の境界部では、綿状混合物非固化層
(B)内の強化繊維が混合物固化層(A)内の強化繊維
と連なって埋め込まれた状態となっているのみならず、
熱可塑性樹脂繊維も混合物固化層(A)に埋め込まれた
状態となっているので、結局、混合物固化層(A)と綿
状混合物非固化層(B)は該強化繊維熱可塑性樹脂繊維
を介して強固に結合されることになり、基板材1と混合
物固化層(A)および綿状混合物非固化層(B)が一体
化された繊維強化樹脂複合成形体が得られることにな
る。
At this time, at the boundary between the solidified mixture layer (A) and the non-solidified cotton-like mixture layer (B), the reinforcing fibers in the non-solidified cotton-like mixture layer (B) are reinforced in the solidified mixture layer (A). Not only is it embedded with the fibers,
Since the thermoplastic resin fibers are also embedded in the mixture solidified layer (A), the mixture solidified layer (A) and the cotton-like mixture non-solidified layer (B) are eventually reinforced by the reinforcing fiber thermoplastic resin fibers. As a result, the fiber-reinforced resin composite molded body in which the substrate material 1, the mixture solidified layer (A) and the cotton-like mixture non-solidified layer (B) are integrated is obtained.

【0014】この時の加熱および加圧条件は、熱可塑性
樹脂の種類(特に溶融温度)や目標とする混合物固化層
(A)の肉厚等によっても変わってくるので一律に決め
ることはできないが、熱可塑性樹脂として最も一般的な
ポリプロピレン系樹脂を使用する場合の好ましい加熱温
度は180〜250℃、より好ましくは200〜230
℃、整形圧力は5〜400kg/cm2 、より一般的に
は50〜200kg/cm2 の範囲である。尚上記で
は、加熱手段として加熱板を用いる例を示したが、この
他赤外線加熱や高温ガスの吹き付け加熱等を採用するこ
とも可能である。
The heating and pressurizing conditions at this time vary depending on the type of the thermoplastic resin (particularly the melting temperature) and the target thickness of the solidified mixture layer (A), and therefore cannot be uniformly determined. The preferred heating temperature when using the most common polypropylene resin as the thermoplastic resin is 180 to 250 ° C., more preferably 200 to 230.
The shaping pressure is in the range of 5 to 400 kg / cm 2 , and more generally 50 to 200 kg / cm 2 . In the above description, an example in which a heating plate is used as the heating means has been shown, but in addition to this, infrared heating, high-temperature gas spray heating, or the like can also be adopted.

【0015】上記加熱部材2と奪熱部材3を用いた加熱
加圧成形に当たっては、加熱部材2による熱可塑性樹脂
繊維の加熱溶融後に該加熱部材2を水冷等により冷却す
ることによって冷却固化してもよいが、この方法では加
熱部材2の加熱・冷却による熱ロスが軽視できなくなる
ので、好ましくは、加熱部材2による加熱によって基板
材1側の熱可塑性樹脂繊維を溶融させた後、これを冷却
・整形型に移し、冷却固化しながら整形する方法を採用
することが好ましい。この場合、冷却固化前の積層素材
は軟質で容易に変形するので、例えば図2(C)に示す
如く、目的とする最終成形体の形状に応じた冷却・整形
型4a,4bに移して形状を整える様にしておけば、板
状のみならず任意の形状の成形体を得ることができる。
成形原料となる綿状混合物Cと加熱部材2の間に介装さ
れる基板材1は、未固化状態の半製品が加熱部材2の加
熱面に付着するのを防止する離型材としての機能を果た
すと共に、加熱部材2上から冷却・整形型へ移す際の支
持材としての機能も発揮する。
In the heat and pressure molding using the heating member 2 and the heat absorbing member 3, the thermoplastic resin fibers are heated and melted by the heating member 2 and then the heating member 2 is cooled by water cooling or the like to be cooled and solidified. However, since heat loss due to heating / cooling of the heating member 2 cannot be neglected in this method, it is preferable that the thermoplastic resin fiber on the substrate material 1 side is melted by heating by the heating member 2 and then cooled. -It is preferable to adopt a method of transferring to a shaping mold and shaping while cooling and solidifying. In this case, since the laminated material before being cooled and solidified is soft and easily deformed, it is transferred to the cooling / shaping dies 4a, 4b according to the shape of the final molded article as shown in FIG. By adjusting the above, it is possible to obtain a molded product having an arbitrary shape as well as a plate shape.
The substrate material 1 interposed between the cotton-like mixture C which is a forming raw material and the heating member 2 has a function as a release material that prevents the semi-finished product in an unsolidified state from adhering to the heating surface of the heating member 2. At the same time, it also functions as a support material when transferring from the heating member 2 to the cooling / shaping mold.

【0016】かくして得られる繊維強化樹脂複合成形体
は、前記図1に示した如く、また上記説明からも明らか
である様に、基板材1の表面に、強化繊維の繊維間空隙
が熱可塑性樹脂の溶融物で満たされた状態で冷却固化し
た剛性の混合物固化層(A)と、強化繊維と熱可塑性樹
脂繊維の繊維間空隙をそのまま残し吸音、断熱、振動抑
制機能を備えた綿状混合物非固化層(B)が接合一体化
された構造のものとなる。
The fiber-reinforced resin composite molded body thus obtained has a thermoplastic resin having interfiber voids of reinforcing fibers on the surface of the substrate material 1 as shown in FIG. 1 and as is clear from the above description. Rigid mixture solidified layer (A) cooled and solidified in the state of being filled with the melt, and a cotton-like mixture with sound absorbing, heat insulating and vibration suppressing functions leaving the interfiber voids of the reinforcing fibers and the thermoplastic resin fibers as they are. It has a structure in which the solidified layer (B) is joined and integrated.

【0017】次に、上記繊維強化樹脂複合成形体を構成
する原料素材について説明する。まず基板材1に期待さ
れる主たる作用は、上記の様に加熱・溶融した熱可塑性
樹脂が加熱部材2の加熱面に接合するのを防止すること
であるから、加熱部材2による加熱に耐える耐熱性を有
するものであればよく、またこの基板材1はそれ自身で
構造強度を高める機能まで期待されるものではないか
ら、アルミ箔の如き薄肉の金属箔や耐熱性樹脂フィルム
等を使用することができる。殊に、前記図2(C)に示
した様に、冷却固化・整形用の型で最終整形を行なう場
合は、その様な薄肉の基板材1を選択使用することによ
って、何ら支障なく任意の形状に整えることができるの
で好ましい。また、基板材1として金属箔を使用すれ
ば、例えば最終製品として自動車用アンダーシールド材
等として提供するときの意匠性も高められ、商品価値を
高めることができるので好ましい。この基板材1には、
必要に応じて混合物固化層(A)との接合力を高めるた
めの表面処理、例えば樹脂コーティング等を施しておく
ことも有効である。
Next, the raw material for the fiber-reinforced resin composite molded body will be described. First, the main action expected of the substrate material 1 is to prevent the thermoplastic resin that has been heated and melted as described above from joining to the heating surface of the heating member 2. Since it is not expected that the substrate material 1 itself has a function of enhancing the structural strength, use of thin metal foil such as aluminum foil or heat resistant resin film You can In particular, as shown in FIG. 2 (C), when final shaping is performed with a mold for cooling and solidifying / shaping, by selecting and using such a thin substrate material 1, it is possible to perform any shaping without any trouble. It is preferable because it can be shaped. Further, it is preferable to use a metal foil as the substrate material 1 because, for example, the designability when it is provided as an under shield material for automobiles as a final product and the like, and the commercial value can be increased. In this substrate material 1,
It is also effective to carry out a surface treatment for enhancing the bonding strength with the mixture solidified layer (A), for example, a resin coating or the like, if necessary.

【0018】次に、綿状混合物の原料素材となる熱可塑
性樹脂繊維としては、前記したポリプロピレン系樹脂の
他、ポリエチレン等の他のポリオレフィン系樹脂、AB
S樹脂、ポリエチレンテレフタレート等のポリエステル
系樹脂、ナイロン等のポリアミド系樹脂、ポリカーボネ
ート系樹脂、ポリスチレン系樹脂、ポリアセタール系樹
脂、ポリアクリレート系樹脂等の汎用樹脂、更にはポリ
スルホン、ポリフェニレンスルフィド、ポリエーテルエ
ーテルケトン、ポリイミド、ポリアミドイミド等の耐熱
性に優れた熱可塑性樹脂等も用いることができる。これ
らの中でも、コストや性能等を総合的に考慮して特に好
ましいのは、ポリプロピレン系樹脂である。該ポリプロ
ピレン系樹脂としては、ポリプロピレンのホモポリマー
は勿論のこと、ポリプロピレン−エチレンブロック共重
合体、ポリプロピレン−エチレンランダム共重合体、無
水マレイン変性ポリプロピレン系樹脂等を使用すること
ができ、これらの熱可塑性樹脂は夫々単独で使用しても
よく、あるいは2種以上を複合して使用することも可能
である。
Next, as the thermoplastic resin fiber used as the raw material of the cotton-like mixture, in addition to the above-mentioned polypropylene resin, other polyolefin resin such as polyethylene, AB
S resins, polyester resins such as polyethylene terephthalate, polyamide resins such as nylon, polycarbonate resins, polystyrene resins, polyacetal resins, polyacrylate resins, and other general-purpose resins, as well as polysulfones, polyphenylene sulfides, polyether ether ketones. It is also possible to use a thermoplastic resin having excellent heat resistance such as polyimide, polyamide-imide, or the like. Among these, polypropylene resin is particularly preferable in view of cost, performance and the like. As the polypropylene-based resin, not only polypropylene homopolymer but also polypropylene-ethylene block copolymer, polypropylene-ethylene random copolymer, maleic anhydride-modified polypropylene-based resin and the like can be used, and these thermoplastic resins are used. The resins may be used alone or in combination of two or more.

【0019】また好ましい強化繊維としては、例えばガ
ラス繊維、炭素繊維、金属繊維、セラミックス繊維、ア
ラミド繊維、ポリアミド繊維、ポリエステル繊維、アク
リル繊維等の人工繊維が挙げられるが、このほか麻や綿
等の天然繊維、更には古紙を解繊したセルロース系繊維
等を使用することも可能であるが、これらの中でも最も
一般的なのはガラス繊維や炭素繊維である。また、古紙
を解繊したセルロース系繊維を利用することは、リサイ
クルおよび環境保護の両面からして有利であるが、これ
らの天然繊維は剛性不足の嫌いがあるので、剛性の高い
上記の様な人工繊維を主たる強化繊維として使用し、そ
れらに空隙率や強度特性などを阻害しない範囲で天然繊
維を混合して使用することが望ましい。
Examples of preferable reinforcing fibers include artificial fibers such as glass fibers, carbon fibers, metal fibers, ceramic fibers, aramid fibers, polyamide fibers, polyester fibers and acrylic fibers, but also hemp and cotton. Natural fibers, and further cellulosic fibers obtained by defibrating used paper can be used, but the most common of these are glass fibers and carbon fibers. Further, it is advantageous to use cellulosic fibers obtained by defibrating waste paper from both aspects of recycling and environmental protection, but since these natural fibers have a tendency to lack rigidity, they have high rigidity as described above. It is desirable to use artificial fibers as the main reinforcing fibers, and to mix them with natural fibers within a range that does not impair the porosity and strength characteristics.

【0020】尚、上記熱可塑性樹脂と強化繊維の混合法
としては、圧縮空気等の圧縮気体を用いた気流混合法を
採用し、強化繊維と熱可塑性樹脂繊維を共に解繊しなが
ら混合する方法が好ましい。該気流混合法を採用すると
きの好ましい強化繊維の寸法サイズは、前記混合物固化
層(A)としての構造強度や綿状混合物非固化層(B)
としての吸音、断熱、振動抑制機能なども考慮して繊維
径が1〜100μm、より好ましくは3〜20μm程度
で繊維長が1〜100mm、より好ましくは5〜50m
m程度のものが好ましく、また熱可塑性樹脂繊維につい
ても、好ましい繊維系や繊維長さは上記強化繊維とほぼ
同程度の範囲である。
As a method for mixing the above-mentioned thermoplastic resin and reinforcing fibers, an air flow mixing method using a compressed gas such as compressed air is adopted, and the reinforcing fibers and the thermoplastic resin fibers are mixed together while being defibrated. Is preferred. The preferred size and size of the reinforcing fibers when the airflow mixing method is adopted are the structural strength as the mixture solidified layer (A) and the cotton-like mixture non-solidified layer (B).
In consideration of sound absorption, heat insulation, vibration suppressing function, etc., the fiber diameter is 1 to 100 μm, more preferably about 3 to 20 μm, and the fiber length is 1 to 100 mm, more preferably 5 to 50 m.
About m, the preferred fiber system and fiber length of the thermoplastic resin fiber are in the range of about the same as the reinforcing fiber.

【0021】なお熱可塑性樹脂として粉末状のものを使
用した場合、前述の如く綿状混合物非固化層(B)内の
熱可塑性樹脂はその成形工程で溶融されず、粉粒状の熱
可塑性樹脂は強化繊維の繊維間隙間に混入しているだけ
となり、取扱い時あるいは搬送時などの振動で該粉粒状
熱可塑性樹脂が脱落することも考えられるので好ましく
ない。
When a powdery thermoplastic resin is used, the thermoplastic resin in the non-solidified layer (B) of the cotton-like mixture is not melted in the molding step, as described above, and the powdery thermoplastic resin is It is not preferable because only the fibers of the reinforcing fibers are mixed in the space between the fibers, and the powdery granular thermoplastic resin may fall off due to vibration during handling or transportation.

【0022】綿状混合物を構成するこれら熱可塑性樹脂
繊維と強化繊維の配合比率は特に制限されず、要求され
る構造強度や吸音、断熱、振動減衰性能の程度も考慮し
てその都度決めればよく、熱可塑性樹脂繊維:強化繊維
の重量比で10〜90%:90〜10%の広い範囲から
選定できるが、より一般的なのは30〜70%:70〜
30%の範囲である。
The mixing ratio of these thermoplastic resin fibers and reinforcing fibers constituting the cotton-like mixture is not particularly limited, and may be determined each time in consideration of the required structural strength, sound absorption, heat insulation and vibration damping performance. The thermoplastic resin fiber: reinforcing fiber weight ratio can be selected from a wide range of 10 to 90%: 90 to 10%, but a more general range is 30 to 70%: 70 to
It is in the range of 30%.

【0023】上記気流混合法を採用すれば、強化繊維や
熱可塑性樹脂繊維の寸法サイズや配合比率等に拘らず、
どの様な場合でも両者を効率よく均一混合することがで
きるので好ましい。
If the above-mentioned air flow mixing method is adopted, regardless of the dimensional size and the compounding ratio of the reinforcing fibers and the thermoplastic resin fibers,
In any case, both can be efficiently and uniformly mixed, which is preferable.

【0024】混合物固化層(A)と綿状混合物非固化層
(B)の厚みは、求められる複合成形体の構造強度や吸
音、断熱、衝撃緩和性能の程度に応じて設定すべきもの
であって一律に決めることはできないが、標準的な基準
としては示すならば、支持強化層としての混合物固化層
(A)の厚さは2〜4mm程度、吸音等の機能層として
の綿状混合物非固化層(B)の厚さは5〜10mmの範
囲が一般的である。
The thickness of the mixture solidified layer (A) and the cotton-like mixture non-solidified layer (B) should be set according to the required structural strength of the composite molded article and the degree of sound absorption, heat insulation, and impact relaxation performance. Although it cannot be uniformly determined, if it is shown as a standard standard, the thickness of the mixture solidified layer (A) as the support reinforcing layer is about 2 to 4 mm, and the cotton-like mixture non-solidified as the functional layer for sound absorption or the like. The thickness of the layer (B) is generally in the range of 5 to 10 mm.

【0025】[0025]

【実施例】以下実施例によって本発明を更に具体的に示
すが、下記実施例は本発明を制限するものではなく、前
・後記の趣旨を逸脱しない範囲で変更実施することは全
て本発明の技術範囲に包含される。
EXAMPLES The present invention will be described in more detail with reference to the following examples, but the following examples do not limit the present invention, and all modifications and changes within the scope of the present invention will be made without departing from the gist of the preceding and the following. It is included in the technical scope.

【0026】実施例1 繊維径13μm、繊維長13mmのチョップドガラス繊
維(旭ファイバーグラス社製、商品名「FT599」)
40重量部と、3デニール、繊維長13mmのポリプロ
ピレン系樹脂繊維(大和紡績社製)60重量部とを、圧
縮空気を用いた気流混合法によって解繊しながら均一に
混合し、綿状混合物を得た。
Example 1 Chopped glass fibers having a fiber diameter of 13 μm and a fiber length of 13 mm (Asahi Fiber Glass Co., Ltd., trade name “FT599”)
40 parts by weight and 60 parts by weight of polypropylene resin resin having a denier of 3 mm and a fiber length of 13 mm (manufactured by Daiwa Spinning Co., Ltd.) were uniformly mixed while being defibrated by an air flow mixing method using compressed air to obtain a cotton-like mixture. Obtained.

【0027】200℃に加熱した加熱盤上にアルミ箔を
置き、この上に上記綿状混合物を重ね合わせ、その上か
ら、表面温度を50℃に保った金属板を押し付け、面圧
50kgf/cm2 で加圧しつつ2分間保持することに
より、綿状混合物における加熱盤上のアルミ箔側のプロ
ピレン系樹脂を溶融させた。
An aluminum foil is placed on a heating plate heated to 200 ° C., the cotton-like mixture is superposed on the aluminum foil, and a metal plate whose surface temperature is kept at 50 ° C. is pressed against the aluminum foil, and the surface pressure is 50 kgf / cm. by holding pressurized while 2 minutes at 2, to melt the propylene-based resin of the aluminum foil side of the heating platen in cotton-like mixture.

【0028】次いでこの半製品を、上下面を何れも50
℃に設定した賦形用金型に移し、面圧100kgf/c
2 で加圧しつつ冷却して整形し、アルミ箔と、プロピ
レン系樹脂繊維が溶融固化しガラス繊維の繊維間隙を満
たした状態の固相部3mmと、プロピレン系樹脂繊維と
ガラス繊維が均一に混合したままで繊維間空隙を残した
綿状部8mmとからなる3層複合構造の繊維強化樹脂複
合成形体を得た。該複合成形体においては、アルミ箔と
固相部が溶融固化したプロピレン系樹脂によって強固に
接合すると共に、固相部と綿状部は両部の界面に跨がっ
て存在するガラス繊維によって結合されており、3層が
強固に一体化していた。
Next, this semi-finished product is manufactured with 50
Transferred to a shaping mold set to ℃, surface pressure 100kgf / c
by cooling with pressurized with m 2 shaping, and aluminum foil, and the solid phase portion 3mm states propylene resin fiber satisfies the fiber interstices of the glass fibers were melted and solidified, the propylene resin and glass fibers are uniformly A fiber-reinforced resin composite molded body having a three-layer composite structure composed of a cotton-like portion 8 mm in which inter-fiber voids were left as it was mixed was obtained. In the composite molded body, the aluminum foil and the solid phase portion are firmly bonded by the propylene resin melted and solidified, and the solid phase portion and the cotton-like portion are bonded by the glass fiber existing across the interface between both portions. The three layers were firmly integrated.

【0029】この複合成形体から直径88mmの試験片
を切り出して吸音特性を測定したところ、1500Hz
における吸音係数は0.5であり、優れた吸音特性を有
していることが確認された。
A test piece having a diameter of 88 mm was cut out from this composite molded body, and its sound absorption property was measured to be 1500 Hz.
The sound absorption coefficient at 0.5 was confirmed to have excellent sound absorption characteristics.

【0030】実施例2 実施例1で用いたのと同じチョップドガラス繊維30重
量部と、実施例1で用いたのと同じポリプロピレン系樹
脂繊維(大和紡績社製)70重量部とを、圧縮空気を用
いた気流混合法によって解繊しながら均一に混合し、綿
状混合物を得た。
Example 2 30 parts by weight of the same chopped glass fiber used in Example 1 and 70 parts by weight of the same polypropylene resin fiber (manufactured by Daiwa Spinning Co., Ltd.) used in Example 1 were compressed air. The mixture was uniformly mixed while being defibrated by an air flow mixing method using to obtain a cotton-like mixture.

【0031】200℃に加熱したプレス下方盤の上にア
ルミ箔を置き、この上に上記綿状混合物を重ね合わせ、
その上から、表面温度を50℃に保ったプレス上盤を押
し付け、面圧55kgf/cm2 で加圧しつつ3分間保
持することにより、綿状混合物におけるプレス上方盤上
のアルミ箔側のプロピレン系樹脂を溶融させた。
An aluminum foil is placed on the lower plate of the press heated to 200 ° C., and the above cotton-like mixture is superposed on the aluminum foil.
On top of that, press the upper plate of the press whose surface temperature is kept at 50 ° C. and press for 3 minutes while pressing it with a surface pressure of 55 kgf / cm 2 to obtain a propylene-based propylene-based product on the aluminum foil side on the upper plate of the press in the cotton-like mixture. The resin was melted.

【0032】次いでこの半製品を、50℃に保った賦形
用金型内へ移して面圧80kgf/cm2 で加圧しつつ
冷却して整形し、アルミ箔と、プロピレン系樹脂繊維が
溶融固化しガラス繊維の繊維間隙を満たした状態の固相
部4mmと、プロピレン系樹脂繊維とガラス繊維が均一
に混合したままで繊維間空隙を残した綿状部6mmとか
らなる3層複合構造の繊維強化樹脂複合成形体を得た。
該複合成形体においては、アルミ箔と固相部が溶融固化
したプロピレン系樹脂によって強固に接合すると共に、
固相部と綿状部は両部の界面に跨がって存在するガラス
繊維によって結合されており、3層が強固に一体化して
いた。
Next, this semi-finished product is transferred into a shaping mold kept at 50 ° C. and cooled and shaped while being pressurized with a surface pressure of 80 kgf / cm 2 , and the aluminum foil and the propylene resin fiber are melted and solidified. A fiber having a three-layer composite structure consisting of a solid phase portion 4 mm in which the fiber gap of the glass fiber is filled and a cotton-like portion 6 mm in which the inter-fiber void is left while the propylene resin fiber and the glass fiber are uniformly mixed. A reinforced resin composite molded body was obtained.
In the composite molded body, the aluminum foil and the solid phase portion are firmly bonded by the propylene resin melted and solidified,
The solid phase portion and the cotton-like portion were bonded by the glass fiber existing across the interface between both portions, and the three layers were firmly integrated.

【0033】この複合成形体から直径88mmの試験片
を切り出して吸音特性を測定したところ、1500Hz
における吸音係数は0.4であり、優れた吸音特性を有
していることが確認された。
A test piece having a diameter of 88 mm was cut out from this composite molded body, and its sound absorption property was measured to be 1500 Hz.
The sound absorption coefficient at 0.4 was confirmed to have excellent sound absorption characteristics.

【0034】[0034]

【発明の効果】本発明の繊維強化樹脂複合成形体は、上
記の様に基板材と、支持強化層となる混合物固化層
(A)と、吸音、断熱、振動防止等の機能層となる綿状
混合物非固化層(B)が接合一体化されたものであり、
基材等による構造強度の補強などを要することなくその
ままの形態で吸音部材、断熱部材、衝撃緩衝部材等とし
て有効に活用することができる。そして本発明の方法に
よれば、上記の様に優れた構造強度と吸音等の諸機能を
兼ね備えた複合成形体を簡単な手順で効率よく製造する
ことができる。
As described above, the fiber-reinforced resin composite molded article of the present invention comprises the substrate material, the mixture solidified layer (A) which becomes the support reinforcing layer, and the cotton which becomes the functional layer for sound absorption, heat insulation, vibration prevention and the like. The mixture-like non-solidified layer (B) is joined and integrated,
It can be effectively used as it is as a sound absorbing member, a heat insulating member, a shock absorbing member, etc. without requiring reinforcement of structural strength by a base material or the like. According to the method of the present invention, it is possible to efficiently manufacture a composite molded body having excellent structural strength and various functions such as sound absorption as described above by a simple procedure.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る繊維強化樹脂複合成形体の構造を
例示する断面模式図である。
FIG. 1 is a schematic cross-sectional view illustrating the structure of a fiber-reinforced resin composite molded body according to the present invention.

【図2】本発明に係る製法を例示する概略断面工程説明
図である。
FIG. 2 is a schematic sectional process explanatory view illustrating the manufacturing method according to the present invention.

【符号の説明】[Explanation of symbols]

A 混合物固化層(A) B 綿状混合物非固化層(B) C 綿状混合物 1 基板材 2 加熱部材 3 奪熱部材 4a,4b 冷却・整形型 A mixture solidified layer (A) B cotton-like mixture non-solidified layer (B) C cotton-like mixture 1 substrate material 2 heating member 3 heat removal member 4a, 4b cooling / shaping type

───────────────────────────────────────────────────── フロントページの続き (72)発明者 奥村 俊明 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiaki Okumura 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Kobe Steel Works, Ltd. Kobe Research Institute

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 熱可塑性樹脂繊維と強化繊維との混合物
と基板材とで構成され、基板材上には、前記熱可塑性樹
脂が溶融固化した混合物固化層(A)を介して、前記熱
可塑性樹脂繊維が溶融固化していない綿状混合物非固化
層(B)が形成されていることを特徴とする繊維強化樹
脂複合成形体。
1. A mixture of a thermoplastic resin fiber and a reinforcing fiber and a substrate material, wherein the thermoplastic resin is melted and solidified on the substrate material through a mixture solidification layer (A). A fiber-reinforced resin composite molded article, comprising a cotton-like mixture non-solidified layer (B) in which resin fibers are not melted and solidified.
【請求項2】 熱可塑性樹脂繊維と強化繊維を含む綿状
混合物を、加熱部材と奪熱部材の間で加熱部材側のみか
ら加熱することとし、この際、加熱部材と前記綿状混合
物の間には基板材を配置すると共に、該加熱部材は上記
熱可塑性樹脂の溶融温度以上に加熱され、奪熱部材は上
記熱可塑性樹脂の溶融温度以下に保ち、前記綿状混合物
を前記加熱部材側からの加熱と、奪熱部材側への奪熱に
よって前記混合物中の熱可塑性樹脂を前記基板材側で加
熱溶融させつつ、奪熱部材側では加熱溶融させないこと
により、基板材と、溶融固化した熱可塑性樹脂を有する
混合物固化層(A)と、熱可塑性樹脂の溶融固化してい
ない綿状混合物非固化層(B)とからなる複合成形体を
得ることを特徴とする繊維強化樹脂複合成形体の製法。
2. A cotton-like mixture containing a thermoplastic resin fiber and a reinforcing fiber is heated only between the heating member and the heat absorbing member from the side of the heating member, and at this time, between the heating member and the cotton-like mixture. A substrate material is placed on the heating member, the heating member is heated to a temperature above the melting temperature of the thermoplastic resin, the heat absorbing member is kept below the melting temperature of the thermoplastic resin, and the cotton-like mixture is fed from the heating member side. Heating and melting of the thermoplastic resin in the mixture on the side of the substrate material by heat removal to the side of the heat absorbing member, while not melting on the side of the heat absorbing member, the substrate material and the heat solidified A fiber-reinforced resin composite molded article, characterized by obtaining a composite molded article comprising a mixture solidified layer (A) having a plastic resin and a cotton-like mixture non-solidified layer (B) of a thermoplastic resin which is not melt-solidified. Manufacturing method.
JP7056652A 1995-02-20 1995-02-20 Fiber reinforced resin composite molding and manufacture thereof Withdrawn JPH08224822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7056652A JPH08224822A (en) 1995-02-20 1995-02-20 Fiber reinforced resin composite molding and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7056652A JPH08224822A (en) 1995-02-20 1995-02-20 Fiber reinforced resin composite molding and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH08224822A true JPH08224822A (en) 1996-09-03

Family

ID=13033309

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7056652A Withdrawn JPH08224822A (en) 1995-02-20 1995-02-20 Fiber reinforced resin composite molding and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH08224822A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199161A (en) * 1999-01-11 2000-07-18 Kanebo Ltd Sound-absorbing nonwoven fabric and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000199161A (en) * 1999-01-11 2000-07-18 Kanebo Ltd Sound-absorbing nonwoven fabric and its production

Similar Documents

Publication Publication Date Title
KR100225617B1 (en) Stampable sheet made by papermaking technique and method for manufacturing lightweight molded stampable sheet
JP5571869B2 (en) Lightweight composite thermoplastic sheet with reinforcing skin
US5773121A (en) Syntactic foam core incorporating honeycomb structure for composites
US5900300A (en) High modulus and stiffness polymer foam/GMT composites
US20020009936A1 (en) Method for fabricating non-fiberglass sound absorbing moldable thermoplastic structure
EP0743632B1 (en) Acoustic absorbing component and production process thereof
JP5450722B2 (en) Method for forming vehicle interior member
IE872027L (en) Making laminated reinforced thermoplastic sheets
JP2015048571A (en) Molding including carbon fiber and natural fiber, and manufacturing method and use of the same
US20040234744A1 (en) Vehicle interior trim component of basalt fibers and thermoplastic binder and method of manufacturing the same
WO1996028297A1 (en) Sound absorbing component
US20170144388A1 (en) Moulded Product for Automotive Panels
US6416614B1 (en) Method for the production of a cellular composite material
US5922626A (en) Self-adhering reinforcing material for nonwoven textile fabrics
JPH08224822A (en) Fiber reinforced resin composite molding and manufacture thereof
WO2002064361A1 (en) Laminated resin material
JPH08226061A (en) Lamination molded article of fiber-reinforced resin and its production
JPH07229049A (en) Synthetic fiber material member using recycled plastic
JPH08226059A (en) Molding of fiber-reinforced resin and its production
EP2298541A1 (en) Moulded automotive part
JPH08224793A (en) Manufacture of fiber reinforced resin molding
JP7288798B2 (en) Laminate manufacturing method
KR100366979B1 (en) Non-woven Fabric Self-adhesive Reinforcement Material
JP2579568B2 (en) Method for producing glass fiber reinforced sheet
JPH06234129A (en) Preparation of composite

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507