JPH08223721A - Fault detection device for gas-insulated apparatus - Google Patents

Fault detection device for gas-insulated apparatus

Info

Publication number
JPH08223721A
JPH08223721A JP7046671A JP4667195A JPH08223721A JP H08223721 A JPH08223721 A JP H08223721A JP 7046671 A JP7046671 A JP 7046671A JP 4667195 A JP4667195 A JP 4667195A JP H08223721 A JPH08223721 A JP H08223721A
Authority
JP
Japan
Prior art keywords
pressure
gas
value
period
moving average
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7046671A
Other languages
Japanese (ja)
Inventor
Matsukichi Kato
松吉 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP7046671A priority Critical patent/JPH08223721A/en
Publication of JPH08223721A publication Critical patent/JPH08223721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)

Abstract

PURPOSE: To obtain a fault detection device which detects a fault correctly by a method wherein a pressure rise in terms of a direct current due to the fault is detected even when an arc fault is generated inside a gas-insulated electric apparatus in such a way that a pressure vibration component and an electric noise component are contained in a pressure sensor which detects the pressure rise due to the arc fault. CONSTITUTION: A pressure sensor 2 which detects a gas pressure is installed in a gas section 1 for a gas-insulated switchgear, and a moving average processing part 3 which detects the moving average value of its output signal is installed. A pressure rise detection part 4 which detects a pressure rise from the output of the moving average processing part 3 is installed, and a judgment part 5 which judges the gas section 1 to be a fault when the output exceeds a preset monitoring value is installed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ガス絶縁開閉装置やガ
ス絶縁変圧器などのガス絶縁電気機器の内部で、地絡ま
たは短絡故障が発生した際に、故障を検出するガス絶縁
電気機器の故障検出装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-insulated electric device, such as a gas-insulated switchgear or a gas-insulated transformer, which detects a fault when a ground fault or a short-circuit fault occurs inside the gas-insulated electrical device. The present invention relates to a failure detection device.

【0002】[0002]

【従来の技術】一般に、ガス絶縁開閉装置は遮断器ある
いは断路器などの機器を金属容器内に収納するととも
に、ある封入圧力値の六フッ化硫黄ガスなどの絶縁ガス
を封入して形成されており、小形化、高信頼性および安
全性に優れている。しかし、万一、ガス絶縁開閉装置の
内部で、地絡あるいは短絡故障が発生した場合には、ガ
ス絶縁開閉装置は密閉構造であるので、故障が発生した
ことを外部から目視により確認することは困難である。
このため、地絡あるいは短絡故障の発生時には、その故
障アークエネルギーによって絶縁ガスのガス圧力が上昇
するので、この圧力上昇を検出することによってガス絶
縁開閉装置の故障を検出することがある。この故障検出
装置は、従来、ガス絶縁開閉装置に圧力センサを設け
て、この圧力センサによって絶縁ガスの圧力値を計測す
る。そして、あるサンプリング周期で、圧力センサの出
力である圧力瞬時値と封入圧力値との差から圧力上昇値
を求め、この圧力上昇値が予め設定された監視値を越え
たときに、故障と判定するように構成されている。
2. Description of the Related Art Generally, a gas-insulated switchgear is formed by accommodating a device such as a circuit breaker or a disconnector in a metal container and encapsulating an insulating gas such as sulfur hexafluoride gas having a certain enclosing pressure value. It is compact, highly reliable and safe. However, if a ground fault or a short-circuit fault occurs inside the gas-insulated switchgear, the gas-insulated switchgear has a closed structure, so it is not possible to visually confirm from the outside that the fault has occurred. Have difficulty.
Therefore, when a ground fault or a short-circuit fault occurs, the gas pressure of the insulating gas rises due to the fault arc energy. Therefore, a failure of the gas insulated switchgear may be detected by detecting this pressure rise. Conventionally, this failure detection device is provided with a pressure sensor in the gas-insulated switchgear, and the pressure sensor measures the pressure value of the insulating gas. Then, at a certain sampling cycle, the pressure increase value is obtained from the difference between the instantaneous pressure value that is the output of the pressure sensor and the enclosed pressure value, and when this pressure increase value exceeds the preset monitoring value, it is determined that there is a failure. Is configured to.

【0003】また、ガス絶縁開閉装置においては、通
常、その内部は遮断器ガス区画や断路器ガス区画などの
複数のガス区画に区分されており、電力の安定供給の観
点から、故障が発生したガス区画以外の健全なガス区画
で、かつ電圧印加を行っても支障がないガス区画を早期
復旧し、停電時間を短くすることが必要となる。したが
って、故障区画を検出するために、故障区画検出装置が
使用される場合もあり、上記故障検出装置の出力はこの
故障区画検出装置の一入力としても利用される。
Further, in the gas-insulated switchgear, the inside thereof is usually divided into a plurality of gas compartments such as a circuit breaker gas compartment and a disconnector gas compartment, and a failure has occurred from the viewpoint of stable power supply. It is necessary to shorten the power outage time by recovering the sound gas section other than the gas section that is healthy and has no trouble even when voltage is applied, in an early stage. Therefore, in order to detect the faulty section, a faulty section detecting device may be used, and the output of the faulty detecting apparatus is also used as one input of the faulty section detecting device.

【0004】[0004]

【発明が解決しようとする課題】上記従来の故障検出装
置においては、以下の課題がある。故障が発生したとき
の絶縁ガスの圧力波形には直流的な圧力上昇分の他、圧
力波がガス絶縁電気機器の内壁で反射することなどによ
る圧力振動成分が含まれる。このため、圧力センサの出
力信号にもその圧力振動成分が含まれることになる。特
にこの圧力振動成分が直流的な圧力上昇分より大きい場
合には、封入圧力値を基準にして正負に振動することに
なる。したがって、単純に圧力センサの出力の圧力瞬時
値から封入圧力値を差し引いて圧力上昇を求めると、圧
力上昇が負となった場合には、圧力上昇が無いと誤って
検出し、故障が発生しているにもかかわらず、故障が検
出できないことがある。また、圧力センサの出力にAC
誘導ノイズなど電気的なノイズが重畳することがあり、
そのノイズを圧力上昇と誤検出し、故障発生していない
にもかかわらず、故障と誤検出する場合がある。
The above-mentioned conventional failure detection device has the following problems. The pressure waveform of the insulating gas when a failure occurs includes not only a direct pressure increase but also a pressure oscillation component due to the pressure wave being reflected by the inner wall of the gas-insulated electrical equipment. Therefore, the pressure oscillation component is also included in the output signal of the pressure sensor. In particular, when this pressure oscillation component is larger than the direct pressure increase, it oscillates positively and negatively based on the enclosed pressure value. Therefore, if the pressure rise is calculated by simply subtracting the enclosed pressure value from the instantaneous pressure value of the output of the pressure sensor, if the pressure rise becomes negative, it is falsely detected that there is no pressure rise, and a failure occurs. However, the failure may not be detected. In addition, the output of the pressure sensor is AC
Electrical noise such as induction noise may be superimposed,
The noise may be erroneously detected as an increase in pressure, and may be erroneously detected as a failure even though no failure has occurred.

【0005】そこで、本発明の目的は、ガス絶縁電気機
器の内壁反射による圧力振動成分や、圧力センサに重畳
する電気的ノイズ信号を除去して、故障による直流的な
圧力上昇分を検出し、故障を正しく検出することができ
るガス絶縁電気機器の故障検出装置を提供することであ
る。
Therefore, an object of the present invention is to eliminate a pressure vibration component due to reflection on the inner wall of a gas-insulated electric device and an electrical noise signal superimposed on a pressure sensor to detect a direct pressure increase due to a failure, An object of the present invention is to provide a failure detection device for gas-insulated electrical equipment that can correctly detect a failure.

【0006】[0006]

【課題を解決するための手段】内部に絶縁性ガスが封入
されたガス絶縁電気機器に、そのガス圧力を検出する圧
力センサを設ける。この圧力センサで検出した圧力瞬時
値から、所定の平均期間の平均値を、その所定の平均期
間を時間移動して逐次求めて、各時刻における圧力移動
平均値を算出する移動平均処理部を設ける。この移動平
均処理部の出力から圧力上昇を検出する圧力上昇検出部
を設ける。この圧力上昇検出部からの出力と予め設定さ
れた監視値とを比較し、その出力が監視値を越えた場合
に故障と判定する判定部を設ける。
A gas-insulated electric device in which an insulating gas is sealed is provided with a pressure sensor for detecting the gas pressure. A moving average processing unit is provided that calculates an average value of a predetermined average period from the instantaneous pressure value detected by this pressure sensor, sequentially calculating the pressure average at each time by sequentially moving the predetermined average period over time. . A pressure rise detection unit for detecting a pressure rise from the output of the moving average processing unit is provided. A determination unit is provided that compares the output from the pressure increase detection unit with a preset monitoring value and determines a failure if the output exceeds the monitoring value.

【0007】[0007]

【作用】本発明は上記の如く構成することにより、圧力
センサで計測した圧力値の移動平均値を求めることにな
り、ガス絶縁電気機器の内壁反射による圧力振動成分
や、圧力センサに重畳する電気的ノイズ信号を除去し、
故障による直流的な圧力上昇分を検出し、故障を正しく
検出することができる。
According to the present invention, with the above-mentioned configuration, the moving average value of the pressure values measured by the pressure sensor is obtained, and the pressure vibration component due to the inner wall reflection of the gas-insulated electrical equipment and the electrical component superimposed on the pressure sensor. The static noise signal,
It is possible to correctly detect the failure by detecting the DC pressure increase due to the failure.

【0008】[0008]

【実施例】本発明の一実施例を図1に示す。なお、本実
施例はガス絶縁開閉装置に適用した場合を示すものであ
り、またガス絶縁開閉装置は通常複数のガス区画で区分
されているが、説明を簡単にするため、ガス絶縁開閉装
置の一つのガス区画に対する実施例について説明する。
図1において、ガス絶縁開閉装置のガス区画1は金属容
器1a内に遮断器などの機器(図示せず)が収納される
とともに、六フッ化硫黄などの絶縁ガス1bが封入され
て形成される。ガス区画1には絶縁ガス1bのガス圧力
を検出する圧力センサ2を設ける。その出力側に圧力セ
ンサ2で検出した圧力瞬時値から、所定の平均期間の平
均値を、その所定の平均期間を時間移動して逐次求め、
各時刻における圧力平均値、すなわち圧力移動平均値を
検出する移動平均処理部3を設ける。移動平均処理部3
の出力から圧力上昇値を検出する圧力上昇検出部4を設
け、その圧力上昇値と予め設定された監視値とを比較
し、その圧力上昇値が監視値を越えた場合にガス区画1
を故障と判定し、その判定結果を出力する判定部5を設
ける。
FIG. 1 shows an embodiment of the present invention. In addition, this embodiment shows a case of applying to a gas-insulated switchgear, and the gas-insulated switchgear is usually divided into a plurality of gas compartments. An example for one gas compartment will be described.
In FIG. 1, a gas compartment 1 of the gas insulated switchgear is formed by accommodating a device such as a circuit breaker (not shown) in a metal container 1a and enclosing an insulating gas 1b such as sulfur hexafluoride. . The gas compartment 1 is provided with a pressure sensor 2 for detecting the gas pressure of the insulating gas 1b. From the instantaneous pressure value detected on the output side by the pressure sensor 2, an average value of a predetermined average period is sequentially obtained by time-shifting the predetermined average period,
A moving average processing unit 3 for detecting the pressure average value at each time, that is, the pressure moving average value is provided. Moving average processing unit 3
Is provided with a pressure increase detection unit 4 for detecting a pressure increase value from the output of the gas section 1 and compares the pressure increase value with a preset monitoring value, and when the pressure increase value exceeds the monitoring value, the gas compartment 1
Is provided as a failure, and a determination unit 5 that outputs the determination result is provided.

【0009】次に本発明の動作を説明する。ガス区画1
で故障が発生した場合、絶縁ガス1bは圧力上昇する
が、その圧力上昇の波形には直流的な圧力上昇分と、ガ
ス区画1の内壁反射などによる圧力振動成分が含まれ
る。これを圧力センサ2が検出するため、当然、圧力セ
ンサ2の出力も同様な圧力上昇波形となる。また、故障
が発生していない平常時にも、圧力センサ2の出力には
AC誘導ノイズなど電気的なノイズが重畳し、そのノイ
ズ信号が出力される場合がある。
Next, the operation of the present invention will be described. Gas compartment 1
When a failure occurs in the insulating gas 1b, the pressure of the insulating gas 1b rises, but the waveform of the pressure rise includes a direct pressure increase and a pressure oscillation component due to reflection on the inner wall of the gas section 1. Since this is detected by the pressure sensor 2, the output of the pressure sensor 2 naturally has a similar pressure rise waveform. Further, even during normal times when no failure has occurred, electrical noise such as AC induction noise may be superimposed on the output of the pressure sensor 2, and the noise signal may be output.

【0010】移動平均処理部3はこのような信号となる
圧力センサ2の出力から圧力移動平均値を検出する。す
なわち、移動平均処理部3では、例えば圧力センサ2で
検出した圧力瞬時値をあるサンプリング周期Tsでサン
プルし、そのサンプルした圧力サンプル値から次のよう
にして圧力移動平均値を求める。圧力センサ2で検出し
た圧力瞬時値の所定の平均期間Tの平均値は、平均化母
数N個分の圧力サンプル値を全て加算し、それを平均化
母数Nで割ることにより算出できる。ただし、平均化母
数Nは、所定の平均期間Tをサンプリング周期Tsで割
った値とする。この平均値の算出をサンプリング周期T
sずつ時間移動し、その移動毎に行うことにより、各時
刻における圧力平均値、すなわち圧力移動平均値が求め
られる。当然、サンプリング周期Tsずつ時間移動する
ため、平均値算出対象の圧力サンプル値は逐次更新され
ることになる。
The moving average processing unit 3 detects the pressure moving average value from the output of the pressure sensor 2 which becomes such a signal. That is, in the moving average processing unit 3, for example, the instantaneous pressure value detected by the pressure sensor 2 is sampled at a certain sampling period Ts, and the pressure moving average value is obtained from the sampled pressure sample value as follows. The average value of the instantaneous pressure values detected by the pressure sensor 2 in the predetermined averaging period T can be calculated by adding all the pressure sample values for the N averaging parameters and dividing the sum by the averaging parameter N. However, the averaging parameter N is a value obtained by dividing the predetermined averaging period T by the sampling period Ts. The calculation of this average value is performed in the sampling cycle T
By moving each time by s and performing each movement, the pressure average value at each time, that is, the pressure moving average value is obtained. Naturally, the pressure sample value for which the average value is to be calculated is sequentially updated because the sampling cycle Ts moves by time.

【0011】これを図2を用いて詳細に説明する。図2
に圧力センサ2の出力、それをサンプリング周期Tsで
サンプルした圧力サンプル値P(i)、その圧力サンプ
ル値P(i)から求めた圧力移動平均値PM(i)を示
す。ただし、i=………,−3,−2,−1,0,1,
2,3,………である。図2において、時刻t(0)に
おける圧力移動平均値PM(0)は、時刻t(0)の圧
力サンプル値P(0)から過去の時刻t(−N+1)に
おける圧力サンプル値P(−N+1)までの平均化母数
N個分の圧力サンプル値を全て加算し、それを平均化母
数Nで割って求める。次にt(0)からサンプリング周
期Ts後の時刻t(1)における圧力移動平均値PM
(1)は、時刻t(1)の圧力サンプル値P(1)から
過去の時刻t(−N+2)における圧力サンプル値P
(−N+2)までの平均化母数N個分の圧力サンプル値
を全て加算し、それを平均化母数Nで割って求める。以
下、同様に、サンプリング周期Tsずつ時間移動し、各
時刻における圧力移動平均値PM(i)を求める。すな
わち、各時刻t(i)における圧力移動平均値PM
(i)は、PM(i)=(1/N)・{P(i)+P
(i−1)+P(i−2)+………+P(i−N+
1)}となる。
This will be described in detail with reference to FIG. Figure 2
Shows the output of the pressure sensor 2, the pressure sample value P (i) obtained by sampling the pressure sensor 2 at the sampling period Ts, and the pressure moving average value PM (i) obtained from the pressure sample value P (i). However, i = ........., -3, -2, -1, 0, 1,
2, 3, ......... In FIG. 2, the pressure moving average value PM (0) at time t (0) is the pressure sample value P (-N + 1) at time t (-N + 1) in the past from the pressure sample value P (0) at time t (0). ) Is added to all the pressure sample values for N averaged parameters and divided by the averaged parameter N. Next, the pressure moving average value PM at time t (1) after the sampling period Ts from t (0)
(1) is the pressure sample value P at time t (-N + 2) in the past from the pressure sample value P (1) at time t (1).
All the pressure sample values for N averaged parameters up to (−N + 2) are added, and the values are divided by the averaged parameter N to obtain the value. Similarly, the pressure moving average value PM (i) at each time is obtained by moving the sampling period Ts by time. That is, the pressure moving average value PM at each time t (i)
(I) is PM (i) = (1 / N) · {P (i) + P
(I-1) + P (i-2) + ......... + P (i-N +
1)}.

【0012】このようにして圧力移動平均値PM(i)
を求めることにより、ガス区画1の内壁反射などによる
圧力振動成分である交流分は正と負の信号が打ち消され
て減衰するが、直流的な圧力上昇は、打ち消されないた
め、減衰されずに出力されることになる。すなわち、移
動平均処理部3がローパスフィルタの役割を果たし、こ
れにより、圧力センサ2の出力に含まれる交流的なノイ
ズを除去し、直流的な圧力上昇を抽出することになる。
なお、除去する周波数成分は、平均値算出の所定の平均
期間T、すなわち平均化母数Nで決まるため、これを適
切な値に設定することで、圧力振動成分やAC誘導によ
るノイズなどが除去できる。これについては、以下に説
明する。
In this way, the pressure moving average value PM (i)
As a result, the positive and negative signals of the AC component, which is a pressure oscillation component due to the reflection of the inner wall of the gas section 1 and the like, are canceled and attenuated, but the DC pressure rise is not canceled and is not attenuated. Will be output. That is, the moving average processing unit 3 plays a role of a low-pass filter, whereby the AC noise included in the output of the pressure sensor 2 is removed and the DC pressure rise is extracted.
The frequency component to be removed is determined by a predetermined averaging period T for calculating the average value, that is, the averaging parameter N. Therefore, by setting this to an appropriate value, the pressure oscillation component and noise due to AC induction are removed. it can. This will be described below.

【0013】ある交流の周波数をf0 、その交流の周期
T0 (=1/f0 )を自然数n倍した期間をT(=T0
×n)とし、その交流の瞬時値をT期間積分して、その
積分値を期間Tで割った値、すなわち平均期間Tの平均
値は、正の半周期の積分値と負の半周期の積分値とが打
ち消して、零になる。したがって、ある交流の周期T0
を自然数n倍したものが、平均期間Tと等しい場合、す
なわち、T=T0 ×nの場合には、その交流の平均期間
Tの平均値は零になる。ここで、T=T0 ×nを変形す
ると、(1/T0 )=n・(1/T)となり、f0 =1
/T0 より、f0 =n・(1/T)となる。これから、
平均期間Tの逆数から求められる周波数(1/T)を自
然数n倍した周波数の交流の場合には、その交流の平均
期間Tの平均値を求めると零となり、除去される。
The frequency of a certain alternating current is f0, and the period T0 (= 1 / f0) of the alternating current is multiplied by a natural number n.
Xn), the instantaneous value of the alternating current is integrated for T period, and the integrated value is divided by the period T, that is, the average value of the average period T is the integral value of the positive half cycle and the negative half cycle. The integral value cancels out and becomes zero. Therefore, a certain alternating current cycle T0
When a natural number n times is equal to the average period T, that is, T = T0 × n, the average value of the average period T of the alternating current becomes zero. Here, when T = T0 × n is transformed, (1 / T0) = n (1 / T), and f0 = 1
From / T0, f0 = n. (1 / T). from now on,
In the case of an alternating current having a frequency obtained by multiplying the frequency (1 / T) obtained from the reciprocal of the average period T by a natural number n, the average value of the average period T of the alternating current becomes zero and is eliminated.

【0014】また、平均期間Tで決まる周波数(1/
T)以上で、かつその周波数(1/T)の自然数n倍と
ならない周波数f’の交流の平均期間Tの平均値は次の
ようになる。それは、平均期間Tの間で、正の半周期の
積分値と負の半周期の積分値とが打ち消されずに残った
積分値を平均期間Tで割ることになる。その積分値が打
ち消されなかった期間TA は、平均期間Tをその交流の
周期T’(=1/f’)で除した値の小数点以下を切り
捨てた整数を周期T’に乗じ、その値を平均期間Tから
差し引いたものとなる。したがって、平均期間Tの平均
値は、期間TA における交流の瞬時値を積分し、その積
分値を平均期間Tで割った値となる。ここで、打ち消さ
れなかった積分値が極大となる周波数は、積分値が打ち
消されなかった期間TA と周期T’の1/2の期間とが
一致する周波数である。これは、例えば、(1/T)の
周波数の1.5倍、2.5倍、3.5倍となる周波数で
ある。そのような周波数となる交流の平均期間Tの平均
値は、その周波数の交流の瞬時値をその交流の半周期
(T’/2)の期間積分し、その積分値を平均期間Tで
割った値となる。
Further, the frequency determined by the averaging period T (1 /
The average value of the average period T of the alternating current of the frequency f ′ equal to or higher than T) and not a natural number n times the frequency (1 / T) is as follows. That is, during the averaging period T, the integral value of the positive half-cycle and the integral value of the negative half-cycle that are not cancelled and are divided by the averaging period T. For the period TA in which the integrated value is not canceled, the period T'is multiplied by an integer obtained by dividing the average period T by the AC period T '(= 1 / f') and rounding down the decimal point. The average period T is subtracted. Therefore, the average value of the average period T is a value obtained by integrating the instantaneous value of the alternating current in the period TA and dividing the integrated value by the average period T. Here, the frequency at which the integral value that is not canceled is the maximum is the frequency at which the period TA where the integral value is not canceled and the half period of the cycle T ′ match. This is, for example, a frequency that is 1.5 times, 2.5 times, or 3.5 times the (1 / T) frequency. The average value of the average period T of the alternating current having such a frequency is obtained by integrating the instantaneous value of the alternating current of the frequency for a half cycle (T ′ / 2) of the alternating current and dividing the integrated value by the average period T. It becomes a value.

【0015】一方、平均期間Tの平均値を求める前のそ
の周波数の交流の大きさは、その交流の半周期(T’/
2)の期間の瞬時値を積分し、その積分値を半周期
(T’/2)の期間で割った平均値となる。ここで、
f’>(1/T)で、f’=(1/T’)であるため、
T’<Tとなり、前者の平均期間Tの平均値は、後者の
平均期間Tの平均値を求める前の交流の平均値より小さ
くなり、減衰することになる。
On the other hand, the magnitude of the alternating current of the frequency before obtaining the average value of the average period T is the half cycle of the alternating current (T '/
It is an average value obtained by integrating the instantaneous value in the period 2) and dividing the integrated value by the period of a half cycle (T '/ 2). here,
Since f '> (1 / T) and f' = (1 / T '),
T '<T, and the average value of the former average period T becomes smaller than the average value of the alternating current before obtaining the average value of the latter average period T, and is attenuated.

【0016】以上から、ある信号の平均期間Tの平均値
を求めることにより、その信号に含まれる平均期間Tの
逆数である周波数(1/T)の自然数倍の周波数成分は
零となり、また、それ以外の周波数成分も減衰すること
になる。例えば、ガス区画1の内壁反射による圧力振動
成分の最低周波数が10Hz、圧力センサ2に重畳する
AC誘導ノイズを50Hzまたは60Hzとすると、除
去する周波数成分は10Hz以上となる。したがって、
平均値算出の所定の平均期間Tを100msとすると、
その逆数である10Hz以上の周波数成分を減衰させ、
また10Hzの自然数倍の周波数成分は零となり、50
Hz,60HzのAC誘導ノイズ成分は除去される。こ
のため、平均値算出の所定の平均期間Tは100msに
すればよい。また、平均化母数Nは、サンプリング周期
Tsを1msとすれば、平均期間Tをサンプリング周期
Tsで割って求められ、それは100となる。
From the above, by obtaining the average value of the average period T of a certain signal, the frequency component of the natural number times the frequency (1 / T) which is the reciprocal of the average period T included in the signal becomes zero, and , Other frequency components will also be attenuated. For example, if the lowest frequency of the pressure vibration component due to the inner wall reflection of the gas compartment 1 is 10 Hz and the AC induction noise superimposed on the pressure sensor 2 is 50 Hz or 60 Hz, the frequency component to be removed is 10 Hz or more. Therefore,
If the predetermined average period T for calculating the average value is 100 ms,
Attenuate the reciprocal frequency component of 10Hz or more,
Also, the frequency component that is a natural multiple of 10 Hz becomes zero, and 50
AC induced noise components of Hz and 60 Hz are removed. Therefore, the predetermined average period T for calculating the average value may be set to 100 ms. Further, the averaging parameter N is calculated by dividing the average period T by the sampling period Ts when the sampling period Ts is 1 ms, which is 100.

【0017】したがって、ガス区画1で故障が発生した
場合、圧力上昇検出部4は、圧力振動成分や圧力センサ
2に重畳する電気的ノイズが除去された移動平均処理部
3からの出力を用いて、圧力変化を検出するため、圧力
上昇が負になることはなく、故障による直流的な圧力上
昇分のみを正しく検出する。判定部5は、その圧力上昇
値が予め設定された監視値を越えたときに、ガス区画1
を故障と判定し、その結果を出力する。このため、圧力
振動成分や電気的ノイズにより、故障を誤不検出するこ
となく、正しく故障を検出することができる。
Therefore, when a failure occurs in the gas compartment 1, the pressure rise detection unit 4 uses the output from the moving average processing unit 3 from which the pressure vibration component and the electrical noise superimposed on the pressure sensor 2 are removed. Since the pressure change is detected, the pressure rise does not become negative, and only the DC pressure rise due to the failure is correctly detected. When the pressure rise value exceeds a preset monitoring value, the determination unit 5 determines that the gas compartment 1
Is determined to be a failure, and the result is output. Therefore, the failure can be correctly detected without falsely detecting the failure due to the pressure vibration component or the electrical noise.

【0018】故障が発生していない平常時は、ガス区画
1において圧力上昇しないため、圧力センサ2の出力は
封入圧力値となり、移動平均処理部3ではその直流的な
圧力値、すなわち変化しない圧力値を抽出するのみであ
る。したがって、圧力上昇検出部4では圧力上昇を検出
せず、判定部5においては、圧力上昇値が監視値以下で
あり、ガス区画1を故障と判定しない。また、平常時に
おいて、圧力センサ2の出力に電気的なノイズが重畳し
た場合でも、移動平均処理部3でそれらのノイズを除去
するため、圧力上昇検出部4ではノイズによる圧力上昇
が検出されない。したがって、判定部5はガス区画1を
誤って故障と判定しない。
During normal times when no failure occurs, the pressure in the gas compartment 1 does not rise, so the output of the pressure sensor 2 becomes the enclosed pressure value, and the moving average processing unit 3 produces a DC pressure value, that is, a pressure that does not change. It only extracts the value. Therefore, the pressure increase detection unit 4 does not detect the pressure increase, and the determination unit 5 does not determine that the gas section 1 is in failure because the pressure increase value is less than or equal to the monitoring value. Further, even when electrical noise is superimposed on the output of the pressure sensor 2 in normal times, since the moving average processing unit 3 removes the noise, the pressure rise detection unit 4 does not detect the pressure rise due to the noise. Therefore, the determination unit 5 does not erroneously determine the gas section 1 as a failure.

【0019】上記実施例は、ガス絶縁開閉装置の一つの
ガス区画について説明したが、他のガス区画の場合も同
様に、適用することができる。また、ガス絶縁開閉装置
に限らず、ガス絶縁変圧器などのガス絶縁電気機器にも
適用することができる。
Although the above embodiment has been described with respect to one gas compartment of the gas insulated switchgear, it can be similarly applied to other gas compartments. Further, the invention is not limited to the gas-insulated switchgear, and can be applied to gas-insulated electrical equipment such as a gas-insulated transformer.

【0020】[0020]

【発明の効果】以上の通り、本発明により、ガス絶縁電
気機器の内壁反射による圧力振動成分や、圧力センサに
重畳する電気的ノイズ信号などのノイズを除去し、故障
による直流的な圧力上昇分のみが検出でき、圧力振動成
分や電気的ノイズなどにより、誤検出あるいは誤不検出
せず、故障のみを検出し、正しく故障を検出することが
できる。
As described above, according to the present invention, the pressure oscillation component due to the reflection of the inner wall of the gas-insulated electric equipment and the noise such as the electric noise signal superimposed on the pressure sensor are removed, and the DC pressure increase due to the failure is removed. Only the failure can be detected, and the failure can be correctly detected by detecting only the failure without erroneous detection or erroneous detection due to the pressure vibration component or electrical noise.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す図である。FIG. 1 is a diagram showing an embodiment of the present invention.

【図2】本発明の動作を説明するための図である。FIG. 2 is a diagram for explaining the operation of the present invention.

【符号の説明】[Explanation of symbols]

1 ガス区画 2 圧力センサ 3 移動平均処理部 4 圧力上昇検出部 5 判定部 1 Gas Section 2 Pressure Sensor 3 Moving Average Processing Section 4 Pressure Rise Detection Section 5 Judgment Section

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 内部に絶縁性ガスが封入されたガス絶縁
電気機器に設けられ、そのガス圧力を検出する圧力セン
サと、 この圧力センサで検出した圧力瞬時値から、所定の平均
期間の平均値を、その所定の平均期間を時間移動して逐
次求めて、各時刻における圧力移動平均値を算出する移
動平均処理部と、 この移動平均処理部の出力から圧力上昇を検出する圧力
上昇検出部と、 この圧力上昇検出部からの出力と予め設定された監視値
とを比較し、その出力が監視値を越えた場合に故障と判
定する判定部と、 を備えたことを特徴とするガス絶縁電気機器の故障検出
装置。
1. A pressure sensor which is provided in a gas-insulated electric device in which an insulating gas is sealed and which detects the gas pressure, and an average value of a predetermined average period from instantaneous pressure values detected by the pressure sensor. A moving average processing unit that sequentially obtains a predetermined moving average for a predetermined average period and calculates a pressure moving average value at each time, and a pressure increase detection unit that detects a pressure increase from the output of the moving average processing unit. A gas-insulated electrical device, comprising: a determination unit that compares the output from the pressure increase detection unit with a preset monitoring value, and determines a failure if the output exceeds the monitoring value. Equipment failure detection device.
JP7046671A 1995-02-13 1995-02-13 Fault detection device for gas-insulated apparatus Pending JPH08223721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7046671A JPH08223721A (en) 1995-02-13 1995-02-13 Fault detection device for gas-insulated apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7046671A JPH08223721A (en) 1995-02-13 1995-02-13 Fault detection device for gas-insulated apparatus

Publications (1)

Publication Number Publication Date
JPH08223721A true JPH08223721A (en) 1996-08-30

Family

ID=12753834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7046671A Pending JPH08223721A (en) 1995-02-13 1995-02-13 Fault detection device for gas-insulated apparatus

Country Status (1)

Country Link
JP (1) JPH08223721A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345233A (en) * 2014-10-22 2015-02-11 国家电网公司 On-line monitoring terminal and detection method for fault detection of power distribution transformer
US10830808B2 (en) 2016-01-25 2020-11-10 Ge Aviation Systems Limited Circuit and method for detecting arc faults

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104345233A (en) * 2014-10-22 2015-02-11 国家电网公司 On-line monitoring terminal and detection method for fault detection of power distribution transformer
US10830808B2 (en) 2016-01-25 2020-11-10 Ge Aviation Systems Limited Circuit and method for detecting arc faults

Similar Documents

Publication Publication Date Title
CA2879095C (en) Direct current arc fault detector and circuit interrupter, and method of detecting an arc in a direct current power circuit
US10177553B2 (en) Power switching control apparatus and switching control method therefor
US6185482B1 (en) System and method for rms overcurrent backup function
CN107367677B (en) Method and device for identifying arc faults in an ungrounded power supply system
US10338122B2 (en) Method and device for detecting a fault in an electrical network
JPS6258213B2 (en)
JPH08223721A (en) Fault detection device for gas-insulated apparatus
US20110204727A1 (en) Over-voltage suppression apparatus
JP6929724B2 (en) Open phase detection device, open phase detection system, and open phase detection method
JP3172987B2 (en) Gas circuit breaker failure detection device
CA2824435C (en) Power switching control device and closing control method thereof
JP2007014052A (en) Digital protective relay
JP3286876B2 (en) Accident point detector for gas insulated electrical equipment
CN110676813A (en) Power supply unit and method for determining Rogowski current measurement direct current component on power supply unit
JPH04194762A (en) Device for monitoring partial discharge of electric apparatus
JPH07167908A (en) Partial discharge detection system
JP2763236B2 (en) Circuit breaker opening control device
JP2533186B2 (en) Excitation current judgment method
JPH09168226A (en) Protective relay
JPH04276562A (en) Differential-voltage operating method for ac voltage
JPH0280977A (en) Use limit detection system of zinc oxide type lightning arrester
KR100244738B1 (en) Monitoring apparatus of circuit breaker for gis
JPH06230067A (en) Insulation diagnosing device
JP4580819B2 (en) Method and apparatus for detecting discharge gap voltage of carbon dioxide laser oscillator
JPH08235975A (en) Failure detecting device of gas blast circuit-breaker