JPH08222545A - Surface treating apparatus - Google Patents

Surface treating apparatus

Info

Publication number
JPH08222545A
JPH08222545A JP7023722A JP2372295A JPH08222545A JP H08222545 A JPH08222545 A JP H08222545A JP 7023722 A JP7023722 A JP 7023722A JP 2372295 A JP2372295 A JP 2372295A JP H08222545 A JPH08222545 A JP H08222545A
Authority
JP
Japan
Prior art keywords
sample
plasma
conductor
etching
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7023722A
Other languages
Japanese (ja)
Inventor
Tetsuo Ono
哲郎 小野
Tatsumi Mizutani
巽 水谷
Ryoji Hamazaki
良二 濱崎
Koichi Okamura
浩一 岡村
Satoru Ito
哲 伊東
Saburo Kanai
三郎 金井
Tetsunori Kaji
哲徳 加治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP7023722A priority Critical patent/JPH08222545A/en
Publication of JPH08222545A publication Critical patent/JPH08222545A/en
Pending legal-status Critical Current

Links

Landscapes

  • Plasma Technology (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE: To miniaturize the apparatus and to make the surface treating speed uniform by forming the surface, parallel to and facing to the sample, from a conductor to make the distance between an arbitrary point in the surface of the sample and the conductor constant for forming the paths of an RF current, flowing through the plasma, uniformly on the sample surface when an RF voltage is applied to the sample. CONSTITUTION: A sample 10 is mounted on a sample base 9. An RF power supply 11 with an oscillating frequency of several hundreds to several MHz is connected to the sample base 9. When the RF voltage is applied to the sample, ions in plasma 8 are accelerated to be incident on the sample 10 and etching proceeds by the energy thereof. At that time, an RF current flows through the plasma, and the current is nearly uniform in the sample surface 10 because the upper wall of a conductor 2 is parallel to the sample, so that the etching speed is also made uniform in the surface.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は半導体素子の表面処理装
置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment apparatus for semiconductor elements.

【0002】[0002]

【従来の技術】半導体素子のエッチングとして現在広く
用いられているのは、プラズマを利用する装置である。
この装置のなかでECR(電子サイクロトロン共鳴)方式
と呼ばれている装置がある。この装置では、外部より磁
場を印加した真空容器中でマイクロ波によりプラズマを
発生させる。磁場により電子はサイクロトロン運動を
し、この周波数とマイクロ波の周波数を共鳴させること
で効率良くプラズマを発生させることができる。また磁
場によりプラズマの壁への拡散が抑えられ、高密度のプ
ラズマが発生できる。試料に入射するイオンを加速する
ために試料にはRF(radio frequency )の電圧が印加
される。プラズマとなるガスには例えばエッチングを行
う場合には塩素やフッ素などのハロゲンガスが用いられ
る。エッチングのほかに膜の堆積などにもこの装置は使
われている。
2. Description of the Related Art A plasma-based apparatus is widely used at present for etching semiconductor elements.
Among these devices, there is a device called ECR (electron cyclotron resonance) system. In this device, plasma is generated by microwaves in a vacuum container to which a magnetic field is applied from the outside. Electrons carry out cyclotron motion due to the magnetic field, and by resonating this frequency with the frequency of the microwave, plasma can be efficiently generated. Further, the magnetic field suppresses the diffusion of plasma to the wall, and high density plasma can be generated. An RF (radio frequency) voltage is applied to the sample in order to accelerate the ions incident on the sample. For example, a halogen gas such as chlorine or fluorine is used as the plasma gas when etching is performed. In addition to etching, this device is also used for film deposition.

【0003】この装置では従来から色々な型が提案され
ていて、例えば日経マイクロデバイス1991年10月
号にその構成が掲載されている。例えば、図2に示す装
置では真空容器は側壁16と上部壁15で形成され、側
壁16の外側に電磁石3が置かれている。上部壁15は
石英などのマイクロ波透過物質でできており、ここから
マイクロ波電源13と導波管14によりマイクロ波が導
入される。また図3に示す装置では、磁石17が真空容
器の上下に置かれて、上部壁15からマイクロ波が導入
される。
Various types of this device have been proposed in the past, and the structure thereof is described in, for example, Nikkei Microdevice October 1991 issue. For example, in the apparatus shown in FIG. 2, the vacuum container is formed by the side wall 16 and the upper wall 15, and the electromagnet 3 is placed outside the side wall 16. The upper wall 15 is made of a microwave transmitting material such as quartz, from which microwaves are introduced by the microwave power source 13 and the waveguide 14. Further, in the apparatus shown in FIG. 3, the magnet 17 is placed above and below the vacuum container, and microwaves are introduced from the upper wall 15.

【0004】[0004]

【発明が解決しようとする課題】近年処理の対象となる
シリコンウエハの径が大きくなってきており、現在では
直径150mmから200mmのものが主流であるが、数年
後には直径400mmのものが登場すると予想されてい
る。これに伴い装置の大型化が問題となってきている。
例えば図2のような真空容器の側壁外側に電磁石を配す
る型では試料直径が400mmになると電磁石の外径は8
00mm以上と巨大になる。これを解消するために図3の
ように真空容器の上下に磁石を配置する型も提案されて
いる。しかし、この型ではエッチ速度などの表面処理速
度がウエハ面内で不均一となることが分かってきた。
In recent years, the diameter of silicon wafers to be processed has been increasing. Currently, the diameters of 150 mm to 200 mm are mainly used, but in a few years, the diameter of 400 mm will appear. Is expected. Along with this, an increase in the size of the device has become a problem.
For example, as shown in FIG. 2, in the case where the electromagnet is arranged on the outer side wall of the vacuum container, the outer diameter of the electromagnet is 8 mm when the sample diameter becomes 400 mm.
It will be huge, over 100 mm. In order to solve this, a mold in which magnets are arranged above and below the vacuum container as shown in FIG. 3 has also been proposed. However, it has been found that in this type, the surface treatment speed such as the etching speed becomes non-uniform within the wafer surface.

【0005】本発明の目的は小型でかつ表面処理速度が
均一な装置を提供することにある。
An object of the present invention is to provide a device which is small and has a uniform surface treatment speed.

【0006】[0006]

【課題を解決するための手段】装置の小型化を図るため
に、電磁石は真空容器の上下に配した。かつ均一化を図
るために試料台と向かい合う容器面を導体で形成した。
これに伴いマイクロ波を容器側壁から導入した。
In order to downsize the apparatus, electromagnets are arranged above and below the vacuum container. In addition, the container surface facing the sample stage was made of a conductor in order to make it uniform.
Along with this, microwaves were introduced from the side wall of the container.

【0007】[0007]

【作用】電磁石を真空容器の上下に配して、その外径を
真空容器の外径とほぼ同じにすれば高さは大きくなるが
床面積は減少し、小型化される。試料と平行に向かい合
う面を導体で形成することにより試料面内の任意の点と
導体との距離が一定となるため、試料にRF電圧を印加
したときのプラズマ中に流れるRF電流の通り道が試料
面上ほぼ均一に形成される。その結果試料に入射するイ
オンのエネルギもほぼ一定となり、エッチ速度の面内均
一性が良くなる。
When the electromagnets are arranged above and below the vacuum container and the outer diameter thereof is substantially the same as the outer diameter of the vacuum container, the height is increased but the floor area is reduced and the size is reduced. By forming the surface facing the sample in parallel with the conductor, the distance between any point on the sample surface and the conductor becomes constant, so the path of the RF current flowing in the plasma when the RF voltage is applied to the sample is the path of the sample. Formed almost uniformly on the surface. As a result, the energy of the ions incident on the sample becomes almost constant, and the in-plane uniformity of the etching rate improves.

【0008】[0008]

【実施例】以下、実施例を図1により説明する。図1
(a)は本発明の横から見た説明図で、図1(b)は図
1(a)中の点線Aでの断面図である。真空容器は石英
あるいはセラッミク等のマイクロ波を透過する物質から
なる側壁1とアルミニウムなどの金属あるいはSi,S
iC等の半導体からなる上部壁2で形成される。上部壁
2はアース電位となっている。真空容器内には上部壁に
設けられた複数個のガス供給管7からガスが供給され
る。例えばこの装置でシリコン酸化膜をエッチングする
場合には、CF4 ,C48,C26,C38,CH
3 ,CH22などのC,H,Fからなるガスが供給さ
れる。
EXAMPLE An example will be described below with reference to FIG. FIG.
1A is an explanatory view of the present invention seen from the side, and FIG. 1B is a sectional view taken along a dotted line A in FIG. 1A. The vacuum container is made of a material such as quartz or ceramics which transmits microwaves and a side wall 1 and a metal such as aluminum or Si, S.
It is formed of an upper wall 2 made of a semiconductor such as iC. The upper wall 2 is at earth potential. Gas is supplied into the vacuum container from a plurality of gas supply pipes 7 provided on the upper wall. For example, when etching a silicon oxide film with this apparatus, CF 4 , C 4 F 8 , C 2 F 6 , C 3 F 8 , CH
A gas composed of C, H, and F such as F 3 and CH 2 F 2 is supplied.

【0009】側壁1の周囲には環状の導波管4が配され
ていてここにマイクロ波電源13と導波管12によりマ
イクロ波が供給される。環状導波管4にはスロット5が
切ってありここからマイクロ波が真空容器内に放出さ
れ、プラズマ8が発生する。スロット5からのマイクロ
波が外部に漏れないように、導波管4には金属製のガー
ド6がついていて側壁1を被っている。コイル状の電磁
石3で磁場を発生させることにより、高密度のプラズマ
が発生する。
An annular waveguide 4 is arranged around the side wall 1, and microwaves are supplied to it by a microwave power source 13 and a waveguide 12. A slot 5 is cut in the annular waveguide 4, from which microwaves are radiated into the vacuum container, and plasma 8 is generated. A metal guard 6 is attached to the waveguide 4 and covers the side wall 1 so that the microwaves from the slot 5 do not leak to the outside. By generating a magnetic field with the coil-shaped electromagnet 3, high-density plasma is generated.

【0010】試料10は試料台9の上に設置される。試
料台9には数百から数MHzの発振周波数のRF電源1
1が接続されている。試料にRF電圧を印加することに
よりプラズマ8中のイオンが加速されて試料10に入射
され、そのエネルギによりエッチングが進行する。この
ときプラズマ8中にRF電流が流れるが、試料と平行に
導体の上部壁2があるために試料10面内ほぼ均一に電
流が流れて、エッチング速度も面内で均一となる。
The sample 10 is set on the sample table 9. The sample table 9 has an RF power source 1 with an oscillation frequency of several hundreds to several MHz.
1 is connected. By applying an RF voltage to the sample, the ions in the plasma 8 are accelerated and are incident on the sample 10, and the energy advances the etching. At this time, an RF current flows in the plasma 8. However, since the upper wall 2 of the conductor is parallel to the sample, the current flows almost uniformly in the surface of the sample 10 and the etching rate becomes uniform in the surface.

【0011】エッチングガスとしてC48を用いて、真
空容器内の圧力を5mTorr,マイクロ波の電力を800
W,RF電源13の電力を300Wとしてシリコン酸化
膜をエッチングした場合、エッチ速度は600nm/mi
n でプラスマイナス3%の均一性が得られた。同じ条件
で図2に示す従来の上部壁が導体でない構成の装置でエ
ッチングすると均一性はプラスマイナス20%と大きく
劣化した。
Using C 4 F 8 as an etching gas, the pressure in the vacuum chamber is 5 mTorr, and the microwave power is 800.
When the silicon oxide film is etched with the power of W and RF power supply 13 set to 300 W, the etching rate is 600 nm / mi.
A uniformity of plus or minus 3% was obtained for n. Under the same conditions, when the conventional apparatus shown in FIG. 2 having a structure in which the upper wall is not a conductor was used for etching, the uniformity was significantly degraded to plus or minus 20%.

【0012】導波管4の厚さはマイクロ波の周波数が
2.45GHz の場合には薄型のものを用いれば約30
mmとなる。一方、電磁石3の厚さは磁気シールド材も含
めて100mm以上となるので、従来の磁石を側壁側に設
けた型と比較して本構成により直径で約150mmも小型
化できる。
The thickness of the waveguide 4 is about 30 if a thin one is used when the microwave frequency is 2.45 GHz.
mm. On the other hand, since the thickness of the electromagnet 3 including the magnetic shield material is 100 mm or more, the diameter of the electromagnet 3 can be reduced by about 150 mm as compared with the conventional type in which the magnet is provided on the side wall.

【0013】エッチングの場合はプラズマ中でイオン以
外にフッ素等の反応性ラジカルが発生し、イオンと共に
エッチャントになる。ラジカルは真空容器の壁で吸着あ
るいは化学反応をするので、壁の温度制御が重要とな
る。このために上部壁2と側壁1にヒータと冷却管(図
示略)を付けて温度制御ができるようにするとさらに性
能が上がる。例えば、エッチングガスにC48等の堆積
性のガスを用いる場合には、壁の温度を200度程度に
することで壁へのラジカルの吸着量が減り、エッチング
後のクリーニング時間が短縮されるなどの利点が生じ
る。
In the case of etching, reactive radicals such as fluorine are generated in the plasma in addition to the ions, and become an etchant together with the ions. Radicals are adsorbed or chemically reacted on the wall of the vacuum container, so that temperature control of the wall is important. Therefore, if a heater and a cooling pipe (not shown) are attached to the upper wall 2 and the side wall 1 so that the temperature can be controlled, the performance is further improved. For example, when a deposition gas such as C 4 F 8 is used as the etching gas, the amount of radicals adsorbed on the wall is reduced by setting the wall temperature to about 200 ° C., and the cleaning time after etching is shortened. There are advantages such as

【0014】また、壁の影響を少なくするためには壁の
面積を極力小さくすればよい。このために試料台9と上
部壁2の距離を100mm以下にするのが望ましい。また
側壁1と試料台9の距離は50mm以上にするのがよい。
In order to reduce the influence of the wall, the area of the wall should be made as small as possible. Therefore, it is desirable that the distance between the sample table 9 and the upper wall 2 is 100 mm or less. The distance between the side wall 1 and the sample table 9 is preferably 50 mm or more.

【0015】[0015]

【発明の効果】本発明により装置を小型化しかつ処理速
度の面内均一性を上げることができる。
According to the present invention, the apparatus can be downsized and the in-plane uniformity of the processing speed can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のエッチング装置の説明図。FIG. 1 is an explanatory diagram of an etching apparatus according to an embodiment of the present invention.

【図2】従来装置の説明図。FIG. 2 is an explanatory view of a conventional device.

【図3】従来装置の説明図。FIG. 3 is an explanatory diagram of a conventional device.

【符号の説明】[Explanation of symbols]

1…側壁、2…上部壁、3…電磁石、4…環状導波管、
5…スロット、6…ガード、7…ガス供給管、8…プラ
ズマ、9…試料台、10…試料、11…RF電源、12
…導波管、13…マイクロ波電源、14…導波管、15
…導入窓、16…側壁、17…磁石。
1 ... Side wall, 2 ... Upper wall, 3 ... Electromagnet, 4 ... Annular waveguide,
5 ... Slot, 6 ... Guard, 7 ... Gas supply pipe, 8 ... Plasma, 9 ... Sample stage, 10 ... Sample, 11 ... RF power supply, 12
… Waveguide, 13… Microwave power supply, 14… Waveguide, 15
... Introduction window, 16 ... Side wall, 17 ... Magnet.

フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H05H 1/46 9216−2G H05H 1/46 B H01L 21/302 F (72)発明者 岡村 浩一 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内 (72)発明者 伊東 哲 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内 (72)発明者 金井 三郎 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内 (72)発明者 加治 哲徳 山口県下松市大字東豊井794番地 株式会 社日立製作所笠戸工場内Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI Technical indication location H05H 1/46 9216-2G H05H 1/46 B H01L 21/302 F (72) Inventor Koichi Okamura Shimomatsu, Yamaguchi Prefecture Large-scale Higashi-Toyoi 794 Hitachi Ltd. Kasado Plant (72) Inventor Satoshi Ito Shimomatsu, Yamaguchi Prefecture Large-scale Higashi-Toyoi 794 Hitachi Ltd. Kasado Plant (72) Inventor Saburo Kanai Shimomatsu, Yamaguchi Prefecture Large-scale Higashi-Toyoi 794 Hitachi Ltd. Kasado Plant (72) Inventor Tetsunori Kaji Large-scale Higashi-Toyoi 794 Address Hitachi-Kasado Plant

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】内部を真空に排気する装置を備えた容器と
容器内に試料を設置する試料台と容器内にプラズマを発
生させるためのマイクロ波源と電磁石よりなる表面処理
装置において、容器の側面をマイクロ波を透過する部材
とし、試料台と向かい合う真空容器の上部面を導体と
し、試料台面と前記導体部材面の上下にそれぞれ電磁石
を配したことを特徴とする表面処理装置。
1. A side surface of a container in a container equipped with a device for evacuating the interior, a sample stage for installing a sample in the container, a microwave source for generating plasma in the container, and an electromagnet. Is a member that transmits microwaves, the upper surface of the vacuum container facing the sample table is a conductor, and electromagnets are arranged above and below the sample table surface and the conductor member surface, respectively.
JP7023722A 1995-02-13 1995-02-13 Surface treating apparatus Pending JPH08222545A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7023722A JPH08222545A (en) 1995-02-13 1995-02-13 Surface treating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7023722A JPH08222545A (en) 1995-02-13 1995-02-13 Surface treating apparatus

Publications (1)

Publication Number Publication Date
JPH08222545A true JPH08222545A (en) 1996-08-30

Family

ID=12118223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7023722A Pending JPH08222545A (en) 1995-02-13 1995-02-13 Surface treating apparatus

Country Status (1)

Country Link
JP (1) JPH08222545A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100521120B1 (en) * 1998-02-13 2005-10-12 가부시끼가이샤 히다치 세이사꾸쇼 Method for treating surface of semiconductor device and apparatus thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100521120B1 (en) * 1998-02-13 2005-10-12 가부시끼가이샤 히다치 세이사꾸쇼 Method for treating surface of semiconductor device and apparatus thereof

Similar Documents

Publication Publication Date Title
US6887340B2 (en) Etch rate uniformity
US6155200A (en) ECR plasma generator and an ECR system using the generator
US5399830A (en) Plasma treatment apparatus
US5435886A (en) Method of plasma etching
EP0653775A1 (en) Microwave plasma processing apparatus and method
US7604709B2 (en) Plasma processing apparatus
US5783100A (en) Method of high density plasma etching for semiconductor manufacture
JPH06267903A (en) Plasma device
JPH10134995A (en) Plasma processing device and processing method for plasma
JP3447647B2 (en) Sample etching method
US5858162A (en) Plasma processing apparatus
JPH01184922A (en) Plasma processor useful for etching, ashing, film formation and the like
JPH08222545A (en) Surface treating apparatus
US6388624B1 (en) Parallel-planar plasma processing apparatus
JP3172340B2 (en) Plasma processing equipment
JPH05290995A (en) Plasma generator
JPH0717147Y2 (en) Plasma processing device
JP2623827B2 (en) Microwave plasma processing equipment
JP2001077085A (en) Surface treatment method of specimen
JP3314409B2 (en) Plasma generator
JP4059570B2 (en) Plasma etching apparatus, plasma etching method, and plasma generation method
JP2000012294A (en) Plasma treatment device
JPH05144773A (en) Plasma etching apparatus
JP3432720B2 (en) Plasma processing apparatus and plasma processing method
JPH0896990A (en) Plasma treatment device and plasma treatment method