JPH08222122A - Field emission type cathode - Google Patents

Field emission type cathode

Info

Publication number
JPH08222122A
JPH08222122A JP5180495A JP5180495A JPH08222122A JP H08222122 A JPH08222122 A JP H08222122A JP 5180495 A JP5180495 A JP 5180495A JP 5180495 A JP5180495 A JP 5180495A JP H08222122 A JPH08222122 A JP H08222122A
Authority
JP
Japan
Prior art keywords
layer
field emission
diamond layer
cathode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5180495A
Other languages
Japanese (ja)
Other versions
JP3483972B2 (en
Inventor
Chikao Kimura
親夫 木村
Hideaki Tamai
秀昭 玉井
Kyoichi Sato
恭一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Original Assignee
New Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd filed Critical New Japan Radio Co Ltd
Priority to JP05180495A priority Critical patent/JP3483972B2/en
Publication of JPH08222122A publication Critical patent/JPH08222122A/en
Application granted granted Critical
Publication of JP3483972B2 publication Critical patent/JP3483972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes
    • H01J2201/30446Field emission cathodes characterised by the emitter material
    • H01J2201/30453Carbon types
    • H01J2201/30457Diamond

Abstract

PURPOSE: To easily manufacture a field emission type cathode in the same manufacturing process as a semiconductor integrated circuit by forming a sandwich structure pinching a diamond layer with a pair of electrodes, and limiting the injection of electrons to the vicinity of an aperture. CONSTITUTION: The surface of a Mo substrate 10 is cleaned, and it is heated at 1500 deg.C in the hydrocarbon atmosphere to form a molybdenum carbide layer 11. An electric insulating layer 12 of SiO2 is formed by sputtering, and a circular portion is removed by etching. A polycrystalline diamond layer 13 is formed by the plasma CVD method, oxygen plasma etching is applied to the center section with a mask having a circular aperture to form an aperture, then a Mo electron implanting electrode 14 is formed on the layer 13 by sputtering. An insulating layer of Al2 O3 and a Mo extracting electrode layer 16 are formed in sequence, and finally it is combined with a fluorescent screen 17 serving as an anode to form a display device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、薄型表示装置などに利
用される電界放出型陰極とその製造方法に関するもので
あり、特に、高性能化と長寿命化とを図った電界放出型
陰極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a field emission type cathode used in a thin display device and the like, and a method for manufacturing the same, and more particularly to a field emission type cathode having high performance and long life. It is a thing.

【0002】[0002]

【従来技術】従来型の表示装置に汎用されている陰極線
管は、電子銃から放射された電子ビームを電磁レンズを
用いて偏向することにより蛍光面上の所望の箇所を照射
して発光させる構成であるから、偏向のための空間が必
要で薄型にできないという欠点がある。この欠点を克服
するため、蛍光面に対向する平面上に画素に対応付けた
多数の電界放出型陰極を配列しておき、各電界放出型陰
極からの電子放射を選択的に行わせることによって蛍光
面上の所望の箇所を発光させる構成の薄型表示装置が開
発されている。
2. Description of the Related Art A cathode ray tube generally used in a conventional display device has a structure in which an electron beam emitted from an electron gun is deflected by using an electromagnetic lens to irradiate a desired portion on a fluorescent screen to emit light. Therefore, there is a drawback that a space for deflection is required and the device cannot be made thin. In order to overcome this drawback, a large number of field emission cathodes associated with pixels are arranged on a plane facing the phosphor screen, and electron emission from each field emission cathode is selectively performed to cause fluorescence. A thin display device has been developed which is configured to emit light at a desired location on the surface.

【0003】上記薄型表示装置で使用される電界放出型
陰極は、図4に示すようなチップエミッタ型と、図5に
示すようなリングエミッタ型とに大別される。図4に示
すチップエミッタ型陰極では、負電圧の給電路を兼ねる
金属基板30上に先鋭な先端部分を有する陰極(エミッ
タ)31が配置され、この陰極31と絶縁層34上に形
成された引出し電極32との間に電圧が印加され、陰極
の先端部分から外部に強電界放出された電子は陽極を兼
ねる蛍光面33に加速されながら飛翔してそこに衝突す
る。
The field emission type cathode used in the thin display device is roughly classified into a tip emitter type as shown in FIG. 4 and a ring emitter type as shown in FIG. In the chip-emitter type cathode shown in FIG. 4, a cathode (emitter) 31 having a sharp tip portion is arranged on a metal substrate 30 which also serves as a negative voltage feeding path, and a lead formed on the cathode 31 and an insulating layer 34. A voltage is applied between the electrode 32 and the electron, which is emitted from the tip portion of the cathode to a strong electric field to the outside, and while flying, the electron flies while being accelerated by the phosphor screen 33 that also serves as the anode and collides there.

【0004】図5のリングエミッタ型陰極では、基板4
0上に形成された絶縁層44上にほぼ円形の内周面を有
する陰極(エミッタ)41が配置され、この陰極41と
絶縁層45上に形成された引出し電極42との間に電圧
が印加され、陰極41の内周面から外部に強電界放出さ
れた電子は陽極を兼ねる蛍光面43に加速されながら飛
翔してそこに衝突する。
In the ring emitter type cathode shown in FIG.
A cathode (emitter) 41 having a substantially circular inner peripheral surface is arranged on an insulating layer 44 formed on the insulating layer 44, and a voltage is applied between the cathode 41 and the extraction electrode 42 formed on the insulating layer 45. Then, the electrons, which are emitted from the inner peripheral surface of the cathode 41 to the outside by a strong electric field, fly while colliding with the fluorescent surface 43 also serving as the anode, and collide there.

【0005】電界放出型陰極から放射される電流の密度
Joは、次式で与えられる。 Jo =1.54×10-6(F2/φ) exp [ ー6.83×107 φ3/2 /F ] A/cm2 ただし、Fは電界強度(volt/cm),φは仕事関数で
ある。電界強度Fは典型的には107 volt/cm にも達す
る。従って、一定の印加電圧のもとでなるべく大きな電
流密度を実現するには、なるべく小さな仕事関数の陰極
材料を選択する必要がある。仕事関数の小さな陰極材料
としては、BaO などのアルカリ土類元素の酸化物やイッ
トリア(Y2O3)などの稀土類元素の酸化物が知られてい
る。
The density Jo of the current radiated from the field emission cathode is given by the following equation. Jo = 1.54 × 10 −6 (F 2 / φ) exp [−6.83 × 10 7 φ 3/2 / F] A / cm 2 where F is the electric field strength (volt / cm) and φ is the work function. The electric field strength F typically reaches 10 7 volt / cm. Therefore, in order to realize as large a current density as possible under a constant applied voltage, it is necessary to select a cathode material having a work function as small as possible. As a cathode material having a small work function, oxides of alkaline earth elements such as BaO and oxides of rare earth elements such as yttria (Y 2 O 3 ) are known.

【0006】ところで、この種の電界放出型陰極では、
陰極と陽極との間に残留しているわずかな量の気体分子
が陽極に向けて高速で走行する電子と衝突して電離さ
れ、大きな質量の陽イオンとなる。この重い陽イオン
は、電子の逆向きの経路に沿って加速されながら陰極に
激しく衝突する。このような大きな衝撃に耐えるため、
陰極の素材としては、上述したような酸化物などは不適
切であり、タングステン(W)やモリブデン(Mo)な
ど稠密で機械的な強度が大きい金属が望ましい。しかし
ながら、WやMoなどの稠密で機械的な強度が大きい金
属は、融点も高く、仕事関数φも3.5 eV程度のかなり大
きな値を持つという問題がある。
By the way, in this type of field emission cathode,
A small amount of gas molecules remaining between the cathode and the anode collide with an electron traveling at a high speed toward the anode and are ionized to form a large-mass cation. The heavy cations hit the cathode violently while being accelerated along the opposite path of the electrons. To withstand such a big shock,
As the material of the cathode, the oxides as described above are not suitable, and a metal such as tungsten (W) or molybdenum (Mo) that is dense and has high mechanical strength is desirable. However, metals such as W and Mo that are dense and have high mechanical strength have a problem that they have a high melting point and a work function φ of about 3.5 eV.

【0007】最近、機械的強度が大きいだけでなくて仕
事関数も小さい理想的な陰極材料として、ダイヤモンド
が着目されている。このダイヤモンドは、 5.5 eV 程度
の大きな禁制帯幅を有する半導体の性質を示し、傾向と
して高抵抗のp型の性質を有する。熱電子放出の難易度
の目安である仕事関数φは、フェルミレベルと伝導帯の
底でのエネルギーレベルの差Efと、伝導帯の底から真空
中のエネルギーレベルまでのエネルギーレベル差として
定義される電子親和力χとの和( Ef +χ )で与えられ
る。
Recently, diamond has been attracting attention as an ideal cathode material having not only high mechanical strength but also low work function. This diamond exhibits a semiconductor property having a large forbidden band width of about 5.5 eV, and tends to have a high resistance p-type property. The work function φ, which is a measure of the difficulty of thermionic emission, is defined as the energy level difference Ef between the Fermi level and the bottom of the conduction band, and the energy level difference from the bottom of the conduction band to the energy level in vacuum. It is given by the sum (Ef + χ) of electron affinity χ.

【0008】ダイヤモンドの電子親和力はその結晶面ご
とに異なっており、特に、(111) 面では負の値( NEF: N
egative Electron Afinity )を示すことが Himpel らに
よって報告されている( 1994, TRI SERVICE / NASA CAT
HODE WORKSHIP, CNNFERENCERECORD) 。ダイヤモンドの
場合、Efはやや大きいが、(111) 面に特有の負の値の電
子親和力を考慮すれば、かなり小さな値の仕事関数が期
待できる。また、ダイヤモンドは化学的に安定であるた
め、真空度の劣る汚れた雰囲気の中でも劣化しにくいと
いう利点も有する。
The electron affinity of diamond differs depending on its crystal face, and in particular, a negative value (NEF: N
egative Electron Afinity) has been reported by Himpel et al. (1994, TRI SERVICE / NASA CAT
HODE WORKSHIP, CNNFERENCE RECORD). In the case of diamond, Ef is slightly large, but if we consider the negative electron affinity peculiar to the (111) plane, we can expect a very small work function. Further, since diamond is chemically stable, it has an advantage that it is not easily deteriorated even in a dirty atmosphere where the degree of vacuum is poor.

【0009】[0009]

【発明が解決しようとする課題】上述のようにダイヤモ
ンドを陰極材料に利用することが期待されているが、こ
れを具体的にどのようにして実現するかについては多く
の解決すべき課題が残されている。例えば、図4や図5
に示したチップ型陰極31の先端部分やリング型陰極の
内周面上にダイヤモンドの薄膜を付着させる構造が考え
られる。しかしながら、そのような構造は、薄型表示装
置の電界放出型陰極などのように半導体集積回路の場合
とほぼ同様の製造工程が適用される微細で多数の陰極群
を対象とする製造工程では実現が難しい。
As described above, it is expected that diamond will be used as a cathode material, but there are many problems to be solved regarding how to specifically realize this. Has been done. For example, FIG. 4 and FIG.
A structure in which a diamond thin film is attached to the tip portion of the tip type cathode 31 and the inner peripheral surface of the ring type cathode shown in FIG. However, such a structure cannot be realized in a manufacturing process for a fine and large number of cathode groups to which a manufacturing process similar to that of a semiconductor integrated circuit is applied, such as a field emission type cathode of a thin display device. difficult.

【0010】従って、本発明の目的は、半導体集積回路
の場合とほぼ同様の製造工程が適用される微細で多数の
陰極群を対象とする製造工程においても容易に実現でき
るダイヤモンドを利用した電界放出型陰極を実現するこ
とにある。
Therefore, the object of the present invention is easily realized even in a manufacturing process for a large number of fine cathode groups to which a manufacturing process similar to that of a semiconductor integrated circuit is applied. To realize a mold cathode.

【0011】[0011]

【課題を解決するための手段】本発明の電界放出型陰極
は、開口が形成されたダイヤモンドの層と、このダイヤ
モンドの層を介在させながら上下に配置され前記開口の
近傍においてこのダイヤモンドの層内に電子を注入する
注入用電極対と、上記ダイヤモンドの層の開口の内周面
から外部に電子を引出すための電界をこの開口の内周面
上に発生させる引出し用電極とを備えている。
A field emission type cathode of the present invention comprises a diamond layer having an opening formed therein and a diamond layer disposed vertically above and below the diamond layer in the vicinity of the opening. A pair of injecting electrodes for injecting electrons into, and an extracting electrode for generating an electric field on the inner peripheral surface of the opening for extracting electrons from the inner peripheral surface of the opening of the diamond layer to the outside.

【0012】[0012]

【作用】ダイヤモンドの層を上下から挟むサンドイッチ
構造の電極対の一方からダイヤモンドの層内に電子が注
入される。ダイヤモンドの層は高抵抗のp型を呈する傾
向があるため、開口からあまり離れた箇所で電子を注入
してしまうと、注入された電子が開口に達するまでに正
孔と再結合して消滅してしまったり、大きな直列抵抗が
挿入されたりするという不都合がある。そこで、開口ま
で拡散長以内の近傍からのみ選択的に電子が注入され
る。
Function: Electrons are injected into the diamond layer from one of the sandwiched electrode pairs sandwiching the diamond layer from above and below. Since the diamond layer tends to have a high resistance p-type, if electrons are injected at a place far away from the opening, the injected electrons recombine with holes and disappear before reaching the opening. However, there is a disadvantage that a large series resistance is inserted. Therefore, electrons are selectively injected to the opening only from the vicinity within the diffusion length.

【0013】このように、ダイヤモンドの層を電極対で
挟むサンドイッチ構造を採用すると共に電子の注入を開
口の近傍に限定する構造を採用することにより、半導体
集積回路の場合と同様の各種の成膜手法やフォトリソグ
ラフィーの手法を組合せによって本発明の構造の電界放
出型陰極を容易に製造できる。以下、本発明を実施例と
共に更に詳細に説明する。
As described above, by adopting the sandwich structure in which the diamond layer is sandwiched between the electrode pairs and the structure in which the injection of electrons is limited to the vicinity of the opening, various film formations similar to those in the case of the semiconductor integrated circuit are performed. The field emission cathode having the structure of the present invention can be easily manufactured by combining the methods and the photolithography methods. Hereinafter, the present invention will be described in more detail with reference to Examples.

【0014】[0014]

【実施例】図1は、本発明の電界放出型陰極を含む薄型
表示装置の一つのセルの構成を示す断面図であり、10
はモリブデン(Mo)の基板、11は炭化モリブデンの
層、12,15は電気絶縁層、13は多結晶ダイヤモン
ドの層、14は電子注入用電極、16は電子引出し用電
極、17は陽極を兼ねる蛍光面、18,19は直流バイ
アス電源、2 0 は信号源である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is a sectional view showing the structure of one cell of a thin display device including a field emission type cathode of the present invention.
Is a molybdenum (Mo) substrate, 11 is a molybdenum carbide layer, 12 and 15 are electrically insulating layers, 13 is a polycrystalline diamond layer, 14 is an electron injection electrode, 16 is an electron extraction electrode, and 17 also serves as an anode. Fluorescent screens, 18 and 19 are DC bias power supplies, and 20 is a signal source.

【0015】多結晶ダイヤモンドの層13は、前述のよ
うに、広い禁制帯幅を有しp型高抵抗の半導体として機
能する。この多結晶ダイヤモンドの層13に接触する炭
化モリブデンの層11は、金属モリブデンよりも高抵抗
の導電体として機能する。従って、ダイヤモンドの層1
3と炭化モリブデンの層11との界面はショットキーバ
リアダイオードとして機能する。ダイヤモンドの層13
と電子注入用電極14との間にはオーム性接触が形成さ
れている。この結果、Mo基板10と、同じくMoを素
材とする電子注入用電極層14との間に後者が正極とな
る極性の直流電源18を接続することにより、Moの基
板10から炭化モリブデンの層11を通してダイヤモン
ドの層13内に電子を注入することができる。
As described above, the layer 13 of polycrystalline diamond has a wide band gap and functions as a p-type high resistance semiconductor. The layer 11 of molybdenum carbide that is in contact with the layer 13 of polycrystalline diamond functions as a conductor having a higher resistance than that of metallic molybdenum. Therefore, diamond layer 1
The interface between 3 and the layer 11 of molybdenum carbide functions as a Schottky barrier diode. Diamond layer 13
An ohmic contact is formed between the electron injection electrode 14 and the electron injection electrode 14. As a result, the Mo substrate 10 and the molybdenum carbide layer 11 are connected between the Mo substrate 10 and the electron injecting electrode layer 14 also made of Mo by connecting a DC power source 18 having a polarity in which the latter is a positive electrode. Electrons can be injected into the diamond layer 13 through.

【0016】炭化モリブデンの層11を通して多結晶ダ
イヤモンドの層13内に注入された電子は、少数キャリ
アとして多結晶ダイヤモンドの層13内を反対側の電子
注入用電極14に向けて走行する。この電子の注入は、
絶縁層12の介在により多結晶ダイヤモンドの層13の
ほぼ円形の内周部分の近傍のみで行われる。また、ダイ
ヤモンドの層13と引出し用電極16との間には信号源
20から供給される正極性の電圧が印加されている。こ
のため、多結晶ダイヤモンドの層13内に注入された電
子の多くはほぼ円形の内周面に到達し、この内周面に形
成されたダイヤモンド結晶のうちより小さな仕事関数を
有する(111)面を有するダイヤモンド結晶の表面か
ら外部に電界放出され、図示するような軌道をたどって
蛍光面17に衝突する。ここで、電子が放出される外部
は、一般に10-6Pa程度の真空度の真空状態に保たれ
る。
The electrons injected into the polycrystalline diamond layer 13 through the molybdenum carbide layer 11 travel as minority carriers in the polycrystalline diamond layer 13 toward the electron injection electrode 14 on the opposite side. This electron injection is
Due to the interposition of the insulating layer 12, it is performed only in the vicinity of the substantially circular inner peripheral portion of the polycrystalline diamond layer 13. A positive voltage supplied from the signal source 20 is applied between the diamond layer 13 and the extraction electrode 16. Therefore, most of the electrons injected into the layer 13 of polycrystalline diamond reach the inner surface of the substantially circular surface, and the (111) plane having the smaller work function among the diamond crystals formed on this inner surface. The field emission from the surface of the diamond crystal having a is followed by a trajectory as shown in the figure to collide with the phosphor screen 17. Here, the outside from which electrons are emitted is generally kept in a vacuum state having a vacuum degree of about 10 −6 Pa.

【0017】図示のように、多結晶ダイヤモンドの層1
3の内周面は、ほぼ垂直形状を呈している。このため、
ダイヤモンド層13の上端部分に角部が形成され、この
先端部分に電界が集中してここからの電子放出が促進さ
れる。なお、直流バイアス電源18が供給するバイアス
電圧の大きさを変更することにより、多結晶ダイヤモン
ドの層13内に注入する電子の密度を変更し、その結果
電界放出させる電子の量を制御し、表示スポットの輝度
を制御することもできる。また、本実施例ではダイヤモ
ンド層の内周面の形状が垂直状態である場合を例示した
が、他の形状、例えば逆漏斗形状であっても同様の動作
が行われることは言うまでもない。
As shown, a layer 1 of polycrystalline diamond.
The inner peripheral surface of 3 has a substantially vertical shape. For this reason,
A corner portion is formed at the upper end portion of the diamond layer 13, and an electric field is concentrated at this tip portion to promote electron emission from the corner portion. By changing the magnitude of the bias voltage supplied from the DC bias power source 18, the density of electrons injected into the polycrystalline diamond layer 13 is changed, and as a result, the amount of electrons to be field-emitted is controlled and displayed. It is also possible to control the brightness of the spot. Further, in this embodiment, the case where the shape of the inner peripheral surface of the diamond layer is vertical is illustrated, but it goes without saying that the same operation is performed even if the shape is another shape, for example, an inverted funnel shape.

【0018】また、Moの基板10と多結晶ダイヤモン
ドの層13との間には炭化モリブデンの層11が形成さ
れているが、これは次のような理由による。すなわち、
Moなどの高融点金属の基板10と多結晶ダイヤモンド
の層13とが直接接触している界面を後続の処理のため
に高温に保つと、ダイヤモンドの層13内から高融点金
属の基板10内に炭素原子が侵入して両者の界面に炭化
金属が形成される。この炭化に伴い、ダイヤモンドの層
13内で組成の変化が生じ、特性が劣化するおそれがあ
る。上述のような界面での炭化の進行に伴う炭素原子の
移動を防止するため、Moの基板10とダイヤモンドの
層13との界面に予め炭素によって飽和させた炭化モリ
ブデンの層を介在させている。
A molybdenum carbide layer 11 is formed between the Mo substrate 10 and the polycrystalline diamond layer 13 for the following reason. That is,
If the interface between the substrate 10 made of a refractory metal such as Mo and the layer 13 of polycrystalline diamond is kept at a high temperature for the subsequent processing, the diamond layer 13 is transformed into the substrate 10 made of a refractory metal. Carbon atoms penetrate to form metal carbide at the interface between the two. Due to this carbonization, the composition of the diamond layer 13 may change and the characteristics may deteriorate. In order to prevent the carbon atoms from moving along with the progress of carbonization at the interface as described above, a layer of molybdenum carbide previously saturated with carbon is interposed at the interface between the Mo substrate 10 and the diamond layer 13.

【0019】図2は、本発明の他の実施例の電界放出型
陰極の構造を、陽極を兼ねる蛍光面と共に示す断面図で
ある。この実施例と図1に示した実施例との相違点は、
以下の点である。第1に、図1の実施例中の炭化モリブ
デンの層11を低抵抗のn型炭化珪素(SiC)の層で
置き換えた点。第2に、電極層14’の幅を狭めること
によりSiCの層11’からダイヤモンドの層13内に
注入された電子の走行距離を短くした点にある。
FIG. 2 is a sectional view showing the structure of a field emission type cathode according to another embodiment of the present invention together with a phosphor screen which also serves as an anode. The difference between this embodiment and the embodiment shown in FIG. 1 is that
The points are as follows. First, the molybdenum carbide layer 11 in the embodiment of FIG. 1 was replaced with a low resistance n-type silicon carbide (SiC) layer. Secondly, by narrowing the width of the electrode layer 14 ', the traveling distance of electrons injected from the SiC layer 11' into the diamond layer 13 is shortened.

【0020】以上の2点以外については図1の実施例の
場合と同一である。この実施例では、SiCの層11’
と多結晶ダイヤモンドの層13との界面にヘテロpn接
合が形成され、これを通してSiCの層11’から多結
晶ダイヤモンドの層13中に電子が注入される。なお、
電極層14’は、図1に示す実施例と同様幅を狭めない
構造とすることも可能である。また、図1に示す実施例
についてMoの電極層14の幅を狭める構造としてもよ
い。
Except for the above two points, it is the same as the case of the embodiment of FIG. In this example, the SiC layer 11 '
A hetero pn junction is formed at the interface between the diamond diamond layer 13 and the polycrystalline diamond layer 13, and electrons are injected from the SiC layer 11 ′ into the polycrystalline diamond layer 13 through the hetero pn junction. In addition,
The electrode layer 14 'may have a structure in which the width is not narrowed like the embodiment shown in FIG. Further, in the embodiment shown in FIG. 1, the width of the Mo electrode layer 14 may be narrowed.

【0021】次に、図1に示した実施例の電界放出型陰
極の製造方法の一例を図3を参照しながら説明する。ま
ず、図3(A)に示すように、Mo基板10を反応炉中
に収容し、Arガスの雰囲気中で 500W程度の高周波電
力を用いてスパッタエッチングを行うことにより表面の
清浄化処理を行う。続いて、CH4 やC6 6 などの炭
化水素の雰囲気中でMo基板10を 1500 o C 程度に加
熱する。これにより、炭化水素の熱分解によって生成さ
せた炭素を基板10の表面のMoと反応させ、Mo基板
10の表面に厚さ十分の数μmから数μmの範囲の炭化
モリブデンの層11を形成する(図3(B))。
Next, an example of a method for manufacturing the field emission cathode of the embodiment shown in FIG. 1 will be described with reference to FIG. First, as shown in FIG. 3 (A), the Mo substrate 10 is housed in a reaction furnace, and the surface is cleaned by performing sputter etching using high frequency power of about 500 W in an Ar gas atmosphere. . Then, the Mo substrate 10 is heated to about 1500 ° C. in an atmosphere of hydrocarbon such as CH 4 or C 6 H 6 . As a result, carbon generated by thermal decomposition of hydrocarbon reacts with Mo on the surface of the substrate 10 to form a molybdenum carbide layer 11 having a thickness of several μm to several μm on the surface of the Mo substrate 10. (FIG. 3 (B)).

【0022】次に、Al2 3 やSiO2 などを素材と
する厚み数μmの電気絶縁層12を炭化モリブデンの層
11上にスパッタリングによって形成したのち、直径数
μmから数十μm程度の円形の部分をエッチングによっ
て除去する(図3(C))。その後、エピタキシャル成
長法やプラズマCVD法により、厚み数μmの多結晶ダ
イヤモンドの層13を炭化モリブデンの層11上と絶縁
層12上に形成する(図3(D))。このダイヤモンド
の層13は、既に炭素原子で飽和済みの炭化モリブデン
の層11上に形成されるため、新たな炭素原子が炭化モ
リブデン層11及びMo基板10内に侵入しない。
Next, an electrically insulating layer 12 having a thickness of several μm and made of Al 2 O 3 or SiO 2 is formed on the molybdenum carbide layer 11 by sputtering, and then a circular shape having a diameter of several μm to several tens of μm. Is removed by etching (FIG. 3C). After that, a polycrystalline diamond layer 13 having a thickness of several μm is formed on the molybdenum carbide layer 11 and the insulating layer 12 by the epitaxial growth method or the plasma CVD method (FIG. 3D). Since the diamond layer 13 is formed on the molybdenum carbide layer 11 already saturated with carbon atoms, new carbon atoms do not enter the molybdenum carbide layer 11 and the Mo substrate 10.

【0023】多結晶ダイヤモンドの層13を中央部分に
円形の開口を有するマスク膜で覆ったのち、酸素プラズ
マエッチングを行うことにより、多結晶ダイヤモンドの
層13中にほぼ円形の内周面を有する開口を形成し、さ
らに、この多結晶ダイヤモンドの層13上にスパッタリ
ングによってMoの電子注入用電極14を形成する(図
3(E)。ダイヤモンドの層13は多結晶から成りしか
も上記プラズマエッチングは異方性のため、垂直形状の
内周面を有する開口が形成される。この開口の内周面に
は、(111) 面を含む結晶面が露出する。
After covering the layer 13 of polycrystalline diamond with a mask film having a circular opening in the center, oxygen plasma etching is performed to form an opening having a substantially circular inner peripheral surface in the layer 13 of polycrystalline diamond. Then, a Mo electron injection electrode 14 is formed on the polycrystalline diamond layer 13 by sputtering (FIG. 3E). The diamond layer 13 is made of polycrystalline and the plasma etching is anisotropic. Due to the property, an opening having a vertical inner peripheral surface is formed, and a crystal plane including the (111) plane is exposed on the inner peripheral surface of this opening.

【0024】続いて、電子注入用電極層14上に、Al
2 3 などの絶縁層15、Moの引出し電極層16を順
次形成する(図3(F))。最後に、図1に示すよう
に、陽極を兼ねた蛍光面17と組み合わせることにより
表示装置を形成する。
Then, on the electron injection electrode layer 14, Al
An insulating layer 15 such as 2 O 3 and a Mo extraction electrode layer 16 are sequentially formed (FIG. 3 (F)). Finally, as shown in FIG. 1, a display device is formed by combining it with a fluorescent screen 17 that also serves as an anode.

【0025】以上、本発明を二つの実施例のみによって
説明したが、これらの実施例に対して種々の変形が可能
であることは明らかである。例えば、ダイヤモンドの層
や電極対の層は、図1に示したように隣接の開口まで連
続して延長されていてもよいし、隣接の開口の手前で一
旦分離されていてもよい。
Although the present invention has been described above with reference to only two embodiments, it is obvious that various modifications can be made to these embodiments. For example, the diamond layer and the electrode pair layer may be continuously extended to the adjacent openings as shown in FIG. 1, or may be once separated before the adjacent openings.

【0026】また、製造方法についても、多結晶ダイヤ
モンド層13を形成したのち、酸素プラズマエッチング
を行うことなく、電子注入用電極層14、絶縁層15及
び引き出し電極層16を順次形成し、続いて他のマスク
材を形成して引き出し電極層16、絶縁層15、電子注
入用電極層14及び多結晶ダイヤモンド層13という具
合に各層を順次エッチングする方法を採用することもで
きる。
Also in the manufacturing method, after the polycrystalline diamond layer 13 is formed, the electron injection electrode layer 14, the insulating layer 15 and the extraction electrode layer 16 are sequentially formed without performing oxygen plasma etching, and subsequently, It is also possible to adopt a method of forming another mask material and sequentially etching the respective layers such as the extraction electrode layer 16, the insulating layer 15, the electron injection electrode layer 14 and the polycrystalline diamond layer 13.

【0027】[0027]

【発明の効果】以上詳細に説明したように、本発明の電
界放出型陰極は、ダイヤモンドの層を上下から電極対で
挟むサンドイッチ構造を採用すると共に電子の注入を開
口の近傍に限定する構成であるから、半導体集積回路の
場合と同様の各種の成膜手法やフォトリソグラフィーの
手法を組合せることによって本発明の構造の電界放出型
陰極を容易に製造できる。
As described in detail above, the field emission cathode of the present invention has a sandwich structure in which a diamond layer is sandwiched between electrode pairs from above and below, and the electron injection is limited to the vicinity of the opening. Therefore, the field emission cathode having the structure of the present invention can be easily manufactured by combining various film forming methods and photolithography methods similar to those in the case of the semiconductor integrated circuit.

【0028】また、本発明の好適な実施例によれば、注
入電極対のうちの電子注入側は炭化モリブデンやSiC
のような金属の炭化物から構成されるので、界面の炭化
に伴うダイヤモンドの層内の組成の変化が生じないとい
う利点がある。
According to a preferred embodiment of the present invention, the electron injection side of the injection electrode pair is molybdenum carbide or SiC.
Since it is composed of such a metal carbide as described above, there is an advantage that the composition of the diamond layer does not change due to the interfacial carbonization.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の電界放出型陰極の構成を示
す断面図である。
FIG. 1 is a cross-sectional view showing the structure of a field emission cathode according to an embodiment of the present invention.

【図2】本発明の他の実施例の電界放出型陰極の構成を
示す断面図である。
FIG. 2 is a sectional view showing the structure of a field emission cathode according to another embodiment of the present invention.

【図3】図1の電界放出型陰極の製造方法を説明するた
めの断面図である。
FIG. 3 is a cross-sectional view for explaining the method of manufacturing the field emission cathode of FIG.

【図4】従来技術のチップ型エミッタの構成を示す断面
図である。
FIG. 4 is a sectional view showing the structure of a conventional chip-type emitter.

【図5】従来技術のリング型エミッタの構成を示す断面
図である。
FIG. 5 is a sectional view showing the structure of a conventional ring-type emitter.

【符号の説明】[Explanation of symbols]

10 Moの基板 11 炭化モリブデンの層 12,15 電気絶縁層 13 多結晶ダイヤモンドの層 14 電子注入用電極 16 電子引出し用電極 17 陽極を兼ねた蛍光面 10 Mo Substrate 11 Molybdenum Carbide Layer 12,15 Electrical Insulation Layer 13 Polycrystalline Diamond Layer 14 Electron Injection Electrode 16 Electron Extraction Electrode 17 Phosphor Screen that Also Works as Anode

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】開口が形成されたダイヤモンドの層と、 このダイヤモンドの層を介在させながら上下に配置され
前記開口の近傍においてこのダイヤモンドの層内に電子
を注入する注入用電極対と、 前記ダイヤモンドの層の前記開口の内周面から真空中に
電子を引出すための電界をこの開口の内周面上に発生さ
せる引出し用電極とを備えたことを特徴とする電界放出
型陰極。
1. A diamond layer in which an opening is formed, an injection electrode pair which is arranged above and below with the diamond layer interposed and injects electrons into the diamond layer in the vicinity of the opening, and the diamond. Field emission cathode for generating an electric field on the inner peripheral surface of the opening from the inner peripheral surface of the opening of the layer for extracting electrons into the vacuum.
【請求項2】 請求項1において、 前記注入用電極対のうち少なくとも前記ダイヤモンド層
内に電子を注入する電極は、前記ダイヤモンド層の前記
開口の内周面の近傍にのみ形成されたことを特徴とする
電界放出型電極。
2. The electrode according to claim 1, wherein at least the electrode of the injection electrode pair that injects electrons into the diamond layer is formed only near the inner peripheral surface of the opening of the diamond layer. And a field emission electrode.
【請求項3】 請求項1及び2のそれぞれにおいて、 前記注入用電極対のうち少なくとも前記ダイヤモンドの
層内に電子を注入する電極は、金属の炭化物から成るこ
とを特徴とする電界放出型陰極。
3. The field emission cathode according to claim 1, wherein at least an electrode of the injection electrode pair for injecting electrons into the diamond layer is made of a metal carbide.
【請求項4】 請求項1乃至3のそれぞれにおいて、 前記注入用電極対の少なくとも一方の電極は低抵抗のn
型SiCから成ることを特徴とする電界放出型陰極。
4. The method according to claim 1, wherein at least one electrode of the injection electrode pair has a low resistance n.
A field emission cathode, characterized in that it is made of type SiC.
JP05180495A 1995-02-16 1995-02-16 Field emission cathode Expired - Fee Related JP3483972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05180495A JP3483972B2 (en) 1995-02-16 1995-02-16 Field emission cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05180495A JP3483972B2 (en) 1995-02-16 1995-02-16 Field emission cathode

Publications (2)

Publication Number Publication Date
JPH08222122A true JPH08222122A (en) 1996-08-30
JP3483972B2 JP3483972B2 (en) 2004-01-06

Family

ID=12897120

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05180495A Expired - Fee Related JP3483972B2 (en) 1995-02-16 1995-02-16 Field emission cathode

Country Status (1)

Country Link
JP (1) JP3483972B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999035667A1 (en) * 1998-01-09 1999-07-15 E.I. Du Pont De Nemours And Company Plasma treatment for producing electron emitters
KR100285156B1 (en) * 1997-12-31 2001-05-02 김덕중 Method for fabricating of fluorescent film in field emission display
JP2001266736A (en) * 2000-03-24 2001-09-28 Japan Fine Ceramics Center Electron emission element
KR100591345B1 (en) * 1998-02-17 2006-06-19 소니 가부시끼 가이샤 Electron Emission Device and Production Method Of the Same
US7372197B2 (en) 2004-02-20 2008-05-13 Samsung Electronics Co., Ltd. Field emission device and field emission display including dual cathode electrodes

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100285156B1 (en) * 1997-12-31 2001-05-02 김덕중 Method for fabricating of fluorescent film in field emission display
WO1999035667A1 (en) * 1998-01-09 1999-07-15 E.I. Du Pont De Nemours And Company Plasma treatment for producing electron emitters
US6319367B1 (en) * 1998-01-09 2001-11-20 E.I. Dupont De Nemours And Co. Plasma treatment for producing electron emitters
KR100591345B1 (en) * 1998-02-17 2006-06-19 소니 가부시끼 가이샤 Electron Emission Device and Production Method Of the Same
JP2001266736A (en) * 2000-03-24 2001-09-28 Japan Fine Ceramics Center Electron emission element
US7372197B2 (en) 2004-02-20 2008-05-13 Samsung Electronics Co., Ltd. Field emission device and field emission display including dual cathode electrodes

Also Published As

Publication number Publication date
JP3483972B2 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
JP3734530B2 (en) Planar cold cathode electron emitter and field emission device
US6629869B1 (en) Method of making flat panel displays having diamond thin film cathode
EP1115135B1 (en) Method for fabricating triode-structure carbon nanotube field emitter array
US5663608A (en) Field emission display devices, and field emisssion electron beam source and isolation structure components therefor
US3374386A (en) Field emission cathode having tungsten miller indices 100 plane coated with zirconium, hafnium or magnesium on oxygen binder
US20080287030A1 (en) Method of fabricating carbide and nitride nano electron emitters
KR19990036142A (en) Field Electron Emitting Materials and Devices
JP3483972B2 (en) Field emission cathode
JPH0512988A (en) Semiconductor electron emitting element
JPH09199001A (en) Electron discharging device
US6577058B2 (en) Injection cold emitter with negative electron affinity based on wide-gap semiconductor structure with controlling base
US10720298B2 (en) Vacuum electron tube with planar cathode based on nanotubes or nanowires
US20060192494A1 (en) In-situ sealed carbon nanotube vacuum device
US6836066B1 (en) Triode field emission display using carbon nanobtubes
JPH08321256A (en) Electron emitting cathode, electron emitting element using it, flat display, thermoelectric cooling device, and manufacture of electron emitting cathod
KR20020064651A (en) Thin-film electron source, display and device
US3916227A (en) Piezoelectric igniter with a magnetic striking mechanism
JPS62229731A (en) Semiconductor device for electron beam generation
Bespalov et al. Development and investigation of a field emission medium for autocathodes of mobile power microwave devices
US6144145A (en) High performance field emitter and method of producing the same
JP3502883B2 (en) Cold electron-emitting device and method of manufacturing the same
JPH05159696A (en) Electric field emission type electron element
JP2000260300A (en) Electron emission element and its manufacture
JP3465890B2 (en) Electron emitting element and flat display using the same
JP3595821B2 (en) Cold electron-emitting device and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees