JPH08221825A - Magneto-optical recording medium and device - Google Patents

Magneto-optical recording medium and device

Info

Publication number
JPH08221825A
JPH08221825A JP2372695A JP2372695A JPH08221825A JP H08221825 A JPH08221825 A JP H08221825A JP 2372695 A JP2372695 A JP 2372695A JP 2372695 A JP2372695 A JP 2372695A JP H08221825 A JPH08221825 A JP H08221825A
Authority
JP
Japan
Prior art keywords
recording
recording medium
magneto
layer
reproducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2372695A
Other languages
Japanese (ja)
Inventor
Chikao Murase
至生 村瀬
Hiroyuki Awano
博之 粟野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Maxell Holdings Ltd
Original Assignee
Hitachi Ltd
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Hitachi Maxell Ltd filed Critical Hitachi Ltd
Priority to JP2372695A priority Critical patent/JPH08221825A/en
Publication of JPH08221825A publication Critical patent/JPH08221825A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE: To obtain a magneto-optical recording medium having a high recording density with which a high C/N value is obtainable when recording and reproducing light of a prescribed wavelength is used to obtain the sufficient recording density. CONSTITUTION: Glass which is patterned thereon with UV curing resins is used as a substrate. A first dielectric layer consisting of nitride, a reproducing layer consisting of a GdFeCo alloy, a recording layer consisting of a TbFeCo alloy, a second dielectric layer consisting of nitride and a reflection layer consisting of an Al alloy are laminated thereon in this order by a sputtering method. The thicknesses of the respective layers are specified to 40nm, 10nm, 15nm, 15nm, 50nm in order of lamination. This magneto-optical recording medium is so formed that the magnitude of the temp. change Hc/T of the coercive force near the temp. at which the coercive force of the magnetic layer to be recorded with information attains 500Oe attains the value expressed by the equation when the medium is irradiated with a light of <=450 to 650nm wavelength to execute the recording or reproducing.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光磁気記録において高記
録密度を実現するための記録媒体および装置に関するも
のである。その中でも特に、波長450nm以上650
nm以下という現行製品に比べて短波長の光を照射して
記録または再生を行なう反射膜構造の記録媒体およびそ
れを用いる記録再生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a recording medium and a device for realizing a high recording density in magneto-optical recording. Among them, especially wavelengths of 450 nm or more and 650
The present invention relates to a recording medium having a reflective film structure for performing recording or reproduction by irradiating light having a shorter wavelength than that of a current product of nm or less, and a recording / reproducing apparatus using the same.

【0002】ここで反射膜構造とは、磁性膜を基板とは
さみ込む形で配置した反射率の良い非磁性の膜を有する
媒体構造をいう。この反射膜構造では、光の干渉効果を
生かして強い信号強度を得ることができる。再生光は基
板側から入射するので、反射膜による信号強度の増加を
得るためには磁性膜のトータルの厚みを30nm以下と
薄くするのが望ましい。また、この構造においては通
常、磁性膜として記録層と再生層の2層を有し、基板/
第一誘電体層/再生層/記録層/第2誘電体層/反射膜
の順に積層される。
Here, the reflection film structure means a medium structure having a non-magnetic film having a high reflectance, in which a magnetic film is arranged so as to be sandwiched between a substrate and the substrate. With this reflective film structure, it is possible to obtain a strong signal strength by making use of the light interference effect. Since the reproduction light is incident from the substrate side, it is desirable to make the total thickness of the magnetic film as thin as 30 nm or less in order to obtain an increase in signal intensity due to the reflection film. In addition, this structure usually has two layers of a recording layer and a reproducing layer as a magnetic film, and
The first dielectric layer / reproducing layer / recording layer / second dielectric layer / reflection film are laminated in this order.

【0003】[0003]

【従来の技術】従来、例えば日本応用磁気学会誌18
巻、189ページから192ページ(1994年)に記
載のように、高記録密度の実現を目指した交換結合2層
膜を用いた反射膜構造光磁気記録媒体の構造が検討され
ている。しかしながら、記録再生に用いる波長は、68
0nmまたは830nmであった。
2. Description of the Related Art Conventionally, for example, the Journal of Japan Applied Magnetics 18
As described in Vol. 189, page 192 to page 192 (1994), a structure of a reflective film structure magneto-optical recording medium using an exchange-coupling two-layer film aiming at realization of high recording density is being studied. However, the wavelength used for recording and reproduction is 68
It was 0 nm or 830 nm.

【0004】良く知られているように、記録媒体上に集
光される記録スポットの直径は照射する光の波長に比例
する。従って、例えば1Gbit/cm2以上の高記録
密度を実現するためには、記録再生光として650nm
以下のより短い波長を用いるのが適当である。ところ
が、このように短い波長で十分な信号強度が得られる反
射膜構造の記録媒体は、今まで知られていなかった。
As is well known, the diameter of the recording spot focused on the recording medium is proportional to the wavelength of the irradiation light. Therefore, for example, in order to realize a high recording density of 1 Gbit / cm 2 or more, the recording / reproducing light is 650 nm.
It is appropriate to use the following shorter wavelengths. However, a recording medium having a reflective film structure capable of obtaining a sufficient signal intensity at such a short wavelength has not been known until now.

【0005】[0005]

【発明が解決しようとする課題】本発明では、十分な記
録密度を得るために波長450nm以上波長650nm
以下の記録再生光を用いた場合に、高いC/N値が得ら
れる光磁気記録媒体およびその装置を提供することを目
的とする。
In the present invention, in order to obtain a sufficient recording density, the wavelength is 450 nm or more and the wavelength is 650 nm.
It is an object of the present invention to provide a magneto-optical recording medium and a device thereof that can obtain a high C / N value when the following recording / reproducing light is used.

【0006】[0006]

【課題を解決するための手段】良く知られているよう
に、光磁気記録ではレーザー光で記録媒体を加熱し、保
磁力が低下した場所に記録する。このとき記録媒体は、
例えば200℃程度にまで加熱され、保磁力は500O
eもしくはそれ以下まで低下する。記録される際の媒体
の保磁力の温度勾配が小さいと、まわりからの影響で記
録ドメインの大きさや形にばらつきが生じ、ノイズが大
きくなる。従って、記録時にはある程度の保磁力Hcの
温度勾配∂Hc/∂Tが必要である。実験から、∂Hc
/∂Tの大きさが10Oe/degより小さいと、記録
によって生じるノイズが大きくなった。また∂Hc/∂
Tの大きさが80Oe/degより大きい場合は、記録
の温度でのHcが大きすぎて磁区がうまく書けないとい
う困難が生じた。このため、|∂Hc/∂T|の値とし
て 10Oe/deg≦|∂Hc/∂T|≦80Oe/de
g とする手段が適当であることが分かった。
As is well known, in magneto-optical recording, a recording medium is heated by a laser beam and recording is performed at a place where the coercive force is lowered. At this time, the recording medium is
For example, it is heated to about 200 ° C and its coercive force is 500O.
e or lower. If the temperature gradient of the coercive force of the medium at the time of recording is small, the size and shape of the recording domain will vary due to the influence from the surroundings, and the noise will increase. Therefore, a certain temperature gradient ∂Hc / ∂T of the coercive force Hc is required during recording. From the experiment, ∂Hc
If the size of / ∂T is smaller than 10 Oe / deg, noise generated by recording becomes large. Also ∂Hc / ∂
When T is larger than 80 Oe / deg, Hc at the recording temperature is too large and the magnetic domain cannot be written well. Therefore, the value of | ∂Hc / ∂T | is 10 Oe / deg ≦ | ∂Hc / ∂T | ≦ 80 Oe / de
It has been found that the means for g is suitable.

【0007】さらに、そのような保磁力の温度特性を実
現するためには、TbFeCoを主成分とする記録層の
組成のうち、テルビウムの組成を25アトミック%以上
にして補償温度を100℃以上に上昇させる必要があっ
た。
Further, in order to realize such a temperature characteristic of coercive force, in the composition of the recording layer containing TbFeCo as a main component, the composition of terbium is set to 25 atomic% or more and the compensation temperature is set to 100 ° C. or more. I had to raise it.

【0008】十分な信号強度を得るためには、反射膜構
造において上記の記録層にGdFeCoを主成分とする
再生層を、記録膜に密着させて基板側に配置し、交換結
合膜とするのが好都合であった。この再生層は、保磁力
が記録層に比べて小さいため、膜厚をあまり大きくする
と、再生層の影響が大きく現われるために磁区が乱れて
ノイズの原因となった。これを防ぐためには、再生層の
膜厚を記録層の膜厚の1.0倍未満とするという手段が
適当であった。ただし、十分な再生信号を得るために
は、膜厚を0.5倍以上とする必要があった。
In order to obtain a sufficient signal strength, a reproducing layer containing GdFeCo as a main component is arranged on the recording layer in the reflective film structure so as to be in close contact with the recording film and arranged on the substrate side to form an exchange coupling film. Was convenient. Since the reproducing layer has a smaller coercive force than the recording layer, if the film thickness is made too large, the effect of the reproducing layer appears to be large and the magnetic domains are disturbed, causing noise. In order to prevent this, a means of making the thickness of the reproducing layer less than 1.0 times the thickness of the recording layer was suitable. However, in order to obtain a sufficient reproduction signal, the film thickness had to be 0.5 times or more.

【0009】窒化物等からなる透明誘電体層を、適当な
厚みで基板に密着させて形成するという手段を用いるこ
とにより、光学的干渉条件をうまく使って信号強度を大
きくすることができた。波長450nm以上650nm
以下の光を用いる場合には、この誘電体膜の厚みを30
nmから60nmの範囲に設定するのが光学的干渉条件
を利用するためには有効であった。これより薄くても厚
くても得られる信号強度は低下した。
By using a means of forming a transparent dielectric layer made of nitride or the like in close contact with the substrate with an appropriate thickness, it was possible to make good use of the optical interference condition to increase the signal strength. Wavelength 450nm or more 650nm
When the following light is used, the thickness of this dielectric film should be 30
Setting in the range of 60 nm to 60 nm was effective for utilizing the optical interference condition. The signal intensity obtained was smaller or thinner than this.

【0010】さらに、集光により発生した熱を迅速に発
散させて小さいドメインを形成するためには、反射層と
して例えばアルミニウム合金からなる層を厚く付けると
いう手段が有効であった。膜厚が40nmより薄いと、
光が通り抜けて反射膜構造としての機能が低下し、ま
た、再生光照射時に熱を逃がす作用も低下する。一方
で、200nm以上の膜厚の反射層を形成するには作製
に時間がかかり、製造コストも増大する。このため、反
射層の膜厚を40nm以上200nm以下とするという
手段が有効であった。このような手段を用いて作製した
ディスクのC/Nは50dBに達し、実用に耐えること
がわかった。このディスクの性能指数((反射率)の平
方根×(カー回転角))を測定したところ、0.42d
egとなった。つまり、性能指数がこの値以上であれ
ば、実用に耐えるディスクを提供できることになる。
Further, in order to quickly dissipate the heat generated by the light collection to form a small domain, it was effective to thicken a layer made of, for example, an aluminum alloy as the reflective layer. If the film thickness is less than 40 nm,
The light passes through and the function as a reflective film structure is lowered, and the effect of releasing heat during reproduction light irradiation is also reduced. On the other hand, it takes time to form a reflective layer having a thickness of 200 nm or more, and the manufacturing cost also increases. Therefore, it is effective to set the thickness of the reflective layer to 40 nm or more and 200 nm or less. It was found that the C / N of the disk manufactured by using such means reached 50 dB, and it was practically usable. The figure of merit (square root of (reflectance) x (Kerr rotation angle)) of this disk was measured and found to be 0.42d.
It became eg. In other words, if the figure of merit is at least this value, it is possible to provide a disk that can be used practically.

【0011】[0011]

【作用】記録時、記録媒体の保磁力は500Oe程度も
しくはそれ以下になる。この温度での保磁力の温度変化
∂Hc/∂Tの大きさを、10Oe/deg以上、80
Oe/deg以下としたことにより、回りからの影響で
記録ドメインの形が変動することが少なくなった。これ
により、記録時のノイズを減少させることができた。
The recording medium has a coercive force of about 500 Oe or less during recording. The change of coercive force with temperature ∂Hc / ∂T is 10 Oe / deg or more, 80
By setting it to Oe / deg or less, the shape of the recording domain is less likely to change due to the influence from the surroundings. As a result, noise during recording could be reduced.

【0012】テルビウムの組成比を25アトミック%以
上にすることにより、上記の保磁力の温度変化を実現す
ることができた。
By changing the composition ratio of terbium to 25 atomic% or more, the above-mentioned temperature change of coercive force could be realized.

【0013】さらに、ガドリニウムを含む再生層を、前
記記録膜に密着して基板側に配置し、その厚みを記録層
の膜厚の0.5倍以上1.0倍未満としたことにより、
ノイズを上昇させずに適度な大きさの記録信号を得るこ
とができた。
Further, a reproducing layer containing gadolinium is arranged on the substrate side so as to be in close contact with the recording film, and the thickness thereof is set to 0.5 times or more and less than 1.0 times the film thickness of the recording layer.
It was possible to obtain a recording signal of an appropriate size without increasing noise.

【0014】さらに、厚みが30nmから60nmの窒
化物からなる透明誘電体層を基板に密着して取り付ける
ことにより、波長450nmから650nmの光を記録
再生光として用いる場合に、性能指数((反射率)の平
方根×(カー回転角))を最大にし、十分な信号レベル
を得ることができた。
Furthermore, when a transparent dielectric layer made of a nitride having a thickness of 30 nm to 60 nm is closely attached to the substrate, when a light having a wavelength of 450 nm to 650 nm is used as the recording / reproducing light, the performance index ((reflectance is It was possible to obtain a sufficient signal level by maximizing the square root of () × (Kerr rotation angle)).

【0015】これに加えて、厚みが40nm以上200
nm以下の合金性の膜を反射層として取り付けることに
より、再生時に加わる熱の分散を良くして、強い光を照
射した場合の記録媒体の温度の上昇を防ぎ、高い信号出
力を得ることができた。
In addition to this, a thickness of 40 nm or more and 200
By attaching an alloy film having a thickness of nm or less as a reflective layer, it is possible to improve the dispersion of heat applied during reproduction, prevent the temperature of the recording medium from rising when irradiated with strong light, and obtain a high signal output. It was

【0016】[0016]

【実施例】以下、本発明の実施例を図を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】〔実施例1〕図1に、本実施例で用いたデ
ィスクの断面形状を示した。ガラス上に紫外線硬化樹脂
でパターニングしたものを基板として用いた。その上
に、窒化物からなる第一誘電体層、GdFeCo合金か
らなる再生層、TbFeCo合金からなる記録層、窒化
物からなる第二誘電体層、アルミニウム合金からなる反
射層の順にスパッタリング法で積層した。各層の厚み
は、積層の順に40nm,10nm,15nm,15n
m,50nmとした。
[Embodiment 1] FIG. 1 shows a sectional shape of a disk used in this embodiment. What was patterned on the glass with an ultraviolet curable resin was used as a substrate. A first dielectric layer made of a nitride, a reproducing layer made of a GdFeCo alloy, a recording layer made of a TbFeCo alloy, a second dielectric layer made of a nitride, and a reflective layer made of an aluminum alloy are stacked thereon in this order by a sputtering method. did. The thickness of each layer is 40 nm, 10 nm, 15 nm, 15 n in the order of lamination.
m and 50 nm.

【0018】このディスクの保磁力の温度変化を測定す
ると、図2のようになった。図中、点線で示したのは、
保磁力が500Oeとなったところでの保磁力の温度変
化∂Hc/∂Tであり、この場合その大きさは、38O
e/degである。また、このディスクの記録膜のテル
ビウム組成は32アトミック%であった。
The change in the coercive force of this disk with temperature was as shown in FIG. In the figure, the dotted line shows
The temperature change of the coercive force when the coercive force reaches 500 Oe is ∂Hc / ∂T. In this case, the magnitude is 38O.
e / deg. The terbium composition of the recording film of this disc was 32 atomic%.

【0019】このディスクに、波長530nmのレーザ
ー光を照射して記録し、ノイズ評価を行なった。その結
果、記録時に生じるノイズはおよそ−67dBであっ
た。この時、キャリアレベルは−17dBと測定された
のでC/Nとして50dBの値が得られた。この時、こ
のディスクの性能指数((反射率)の平方根×(カー回
転角))を測定すると0.42degが得られた。
This disc was irradiated with laser light having a wavelength of 530 nm for recording, and noise was evaluated. As a result, the noise generated during recording was approximately -67 dB. At this time, the carrier level was measured to be -17 dB, so a value of 50 dB was obtained as C / N. At this time, the figure of merit (square root of (reflectance) x (Kerr rotation angle)) of this disk was measured to be 0.42 deg.

【0020】次に、このディスクの記録膜中のテルビウ
ムの分率を変えて記録時ノイズを測定した。その結果を
図3に示す。テルビウム分率が0.25未満になると、
補償温度が室温に近づき、保磁力が500Oeとなった
付近での保磁力の温度変化∂Hc/∂Tの大きさが小さ
くなって、記録時ノイズが上昇することがわかる。
Next, the noise during recording was measured by changing the fraction of terbium in the recording film of this disc. The result is shown in FIG. When the terbium fraction is less than 0.25,
It can be seen that the temperature variation ∂Hc / ∂T of the coercive force in the vicinity of the compensation temperature approaching room temperature and the coercive force of 500 Oe decreases, and the noise during recording increases.

【0021】この変化を、記録時ノイズの|∂Hc/∂
T|依存性として示したのが、図4である。|∂Hc/
∂T|が10Oe/deg以下および|∂Hc/∂T|
が80Oe/deg以上の範囲でノイズの上昇が見られ
る。10Oe/deg以下の領域では、回りからの影響
で記録ドメインの大きさや形にばらつきが生じたためと
考えられる。80Oe/deg以上の領域では、Hcが
大きくなったためにコイルの磁界によって反転しないド
メイン中の領域ができたために、ノイズが上昇したと考
えられる。この結果から、|∂Hc/∂T|を 10Oe/deg≦|∂Hc/∂T|≦80Oe/de
g とすると、記録時ノイズの少ない媒体が得られることが
わかる。
This change is represented by | ∂Hc / ∂ of recording noise.
FIG. 4 shows the T | dependence. | ∂Hc /
∂T | is less than 10 Oe / deg and | ∂Hc / ∂T |
In the range of 80 Oe / deg or more, the noise is increased. It is considered that in the region of 10 Oe / deg or less, the size and shape of the recording domain varied due to the influence from the surroundings. In the region of 80 Oe / deg or more, it is considered that the noise was increased because Hc became large and a region in the domain that was not inverted by the magnetic field of the coil was formed. From this result, | ∂Hc / ∂T | is 10 Oe / deg ≦ | ∂Hc / ∂T | ≦ 80 Oe / de
It can be seen that when g is set, a medium with less noise during recording can be obtained.

【0022】〔実施例2〕実施例1と同じ記録媒体を用
いた。ただし、再生層膜厚を10nmのものだけでなく
0.2nmから20nmまで変化させて7種類のディス
クをスパッタリング法により作製した。記録層の膜厚が
15nmであるので、膜厚比(再生層膜厚/記録層膜
厚)にして0.2から1.3まで変えたことになる。そ
れぞれのディスクについてC/Nを測定したところ、図
5のようになった。膜厚比が0.5以下および1.0以
上のところではC/N比が低下する。膜厚比が0.5以
下では、再生層が十分な役目を果たさないためであると
考えられる。一方、膜厚比が1.0以上では、再生層に
できる磁区の形状が乱れてそれがそのままノイズの増加
につながるためであると考えられる。このため、膜厚比
として0.5倍以上1.0倍未満の領域が適当であるこ
とがわかる。
[Example 2] The same recording medium as in Example 1 was used. However, not only the reproducing layer film thickness of 10 nm but also 7 kinds of disks were prepared by changing the thickness from 0.2 nm to 20 nm by the sputtering method. Since the film thickness of the recording layer is 15 nm, the film thickness ratio (reproducing layer film thickness / recording layer film thickness) is changed from 0.2 to 1.3. When the C / N of each disk was measured, the result was as shown in FIG. When the film thickness ratio is 0.5 or less and 1.0 or more, the C / N ratio decreases. It is considered that when the film thickness ratio is 0.5 or less, the reproducing layer does not play a sufficient role. On the other hand, it is considered that when the film thickness ratio is 1.0 or more, the shape of the magnetic domain formed in the reproducing layer is disturbed, which directly leads to an increase in noise. Therefore, it is understood that a region having a thickness ratio of 0.5 times or more and less than 1.0 times is appropriate.

【0023】〔実施例3〕実施例1と同じ記録媒体を用
いた。ただし、透明誘電体(第一誘電体層)の膜厚を4
0nmのものだけでなく25nmから70nmまで6種
類のものをスパッタリング法により作製した。それぞれ
のディスクについて性能指数((反射率)の平方根×
(カー回転角))を測定した結果を図6に示す。波長4
50nmから650nmの光を照射する場合には膜厚で
30nmから60nmの範囲で高い性能指数が得られる
ことがわかる。これはこの範囲で、本実施例の反射膜構
造ディスクが、光の干渉によって性能指数を大きくする
条件にあることからくると考えられる。
Example 3 The same recording medium as in Example 1 was used. However, the film thickness of the transparent dielectric (first dielectric layer) is 4
Not only 0 nm but also 6 types from 25 nm to 70 nm were produced by the sputtering method. Figure of Merit (square root of (reflectance) ×
(Kerr rotation angle)) is shown in FIG. Wavelength 4
It can be seen that when the light of 50 nm to 650 nm is irradiated, a high figure of merit is obtained in the film thickness range of 30 nm to 60 nm. It is considered that this is because, in this range, the reflective film structure disk of the present example is under the condition that the figure of merit is increased by the interference of light.

【0024】〔実施例4〕次に、実施例1と同様の記録
媒体を作製したが、反射膜厚を30nmから200nm
まで変化させてC/Nを測定した。その結果を図7に示
す。反射膜厚が40nmより薄い場合は、再生光の照射
によって発生した熱がうまく逃げないために、記録媒体
が暖められてカー回転角が減少し、C/Nも減少する。
一方、40nm以上では200nm付近までは、熱をう
まく逃がすことで再生光強度を上げてもカー回転角の減
少が生じずにC/N値を維持できる。200nm以上の
領域では、作製に時間がかかり製造コストも増大する。
このため、反射膜厚としては、40nm以上200nm
以下とするのが適当であることがわかった。
Example 4 Next, a recording medium similar to that of Example 1 was prepared, but the reflection film thickness was 30 nm to 200 nm.
C / N was measured by changing to FIG. 7 shows the result. When the reflective film thickness is less than 40 nm, the heat generated by the irradiation of the reproducing light does not escape well, so the recording medium is warmed, the Kerr rotation angle decreases, and the C / N also decreases.
On the other hand, at 40 nm or more, up to around 200 nm, the C / N value can be maintained without a decrease in the Kerr rotation angle even if the reproducing light intensity is increased by allowing heat to escape. In the region of 200 nm or more, it takes time to manufacture and the manufacturing cost increases.
Therefore, the reflection film thickness is 40 nm or more and 200 nm.
It has been found that the following is appropriate.

【0025】[0025]

【発明の効果】記録温度付近で保磁力Hcが500Oe
程度となったときの保磁力の温度変化∂Hc/∂Tの大
きさを適当な値としたので記録ピットの大きさや形にば
らつきが少なくなり、記録時ノイズが減少した。このよ
うな記録膜は、テルビウムの組成を25アトミック%以
上とした希土類遷移金属合金層とガドリニウムを含む再
生層とを適度な厚みにして交換結合膜として形成した。
さらに、透明誘電体層を適当な厚みで基板に密着して取
付け、それに加えて合金性の厚膜を反射層として取り付
けることにより、高いC/Nの得られる記録媒体を作製
できた。
The coercive force Hc is 500 Oe near the recording temperature.
Since the size of the change in coercive force with temperature ∂Hc / ∂T was set to an appropriate value, variations in the size and shape of the recording pits were reduced, and noise during recording was reduced. Such a recording film was formed as an exchange-coupling film with a rare earth-transition metal alloy layer having a terbium composition of 25 atomic% or more and a reproducing layer containing gadolinium with appropriate thicknesses.
Further, a transparent dielectric layer having a proper thickness was attached in close contact with the substrate, and in addition, an alloy thick film was attached as a reflective layer, whereby a recording medium having a high C / N could be manufactured.

【0026】[0026]

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は反射構造ディスクの断面図。FIG. 1 is a sectional view of a reflective structure disk.

【図2】図2はHcの温度依存性∂Hc/∂Tを示す
図。
FIG. 2 is a diagram showing temperature dependence ∂Hc / ∂T of Hc.

【図3】図3は記録時ノイズのTb分率依存性を示す
図。
FIG. 3 is a diagram showing Tb fraction dependency of recording noise.

【図4】図4は記録時ノイズの|∂Hc/∂T|依存性
を示す図。
FIG. 4 is a diagram showing | ∂Hc / ∂T | dependence of recording noise.

【図5】図5はC/N対再生層膜厚/記録層膜厚を示す
図。
FIG. 5 is a diagram showing C / N vs. reproducing layer film thickness / recording layer film thickness.

【図6】図6は性能指数((反射率)の平方根×(カー
回転角))の透明誘電体(第一窒化物層)膜厚依存性を
示す図。
FIG. 6 is a diagram showing the dependence of a figure of merit (square root of (reflectance) × (Kerr rotation angle)) on the film thickness of a transparent dielectric (first nitride layer).

【図7】図7は記録時ノイズの反射層膜厚依存性を示す
図。
FIG. 7 is a diagram showing the dependency of recording noise on the thickness of a reflective layer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G11B 11/10 586 9296−5D G11B 11/10 586Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI technical display location G11B 11/10 586 9296-5D G11B 11/10 586Z

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】波長450nm以上650nm以下の光を
照射して記録または再生を行なう場合に、情報を記録す
る磁性層の保磁力が500Oeとなる温度付近での保磁
力の温度変化∂Hc/∂Tの大きさが 10Oe/deg≦|∂Hc/∂T|≦80Oe/de
g となることを特徴とする光磁気記録媒体。
1. A temperature change of coercive force ∂Hc / ∂ near a temperature at which the coercive force of a magnetic layer for recording information is 500 Oe when recording or reproducing is performed by irradiating light having a wavelength of 450 nm or more and 650 nm or less. The size of T is 10 Oe / deg ≦ | ∂Hc / ∂T | ≦ 80 Oe / de
A magneto-optical recording medium having g.
【請求項2】テルビウムの組成が25アトミック%以上
の希土類遷移金属合金層を有する記録媒体を用いること
を特徴とする請求項1記載の光磁気記録媒体。
2. The magneto-optical recording medium according to claim 1, wherein a recording medium having a rare earth-transition metal alloy layer having a composition of terbium of 25 atomic% or more is used.
【請求項3】ガドリニウムを含む再生層と呼ばれる層を
有し、かつ、前記記録膜に再生層が密着して基板側に配
置され、その膜厚が記録層の膜厚の0.5倍以上1.0
倍未満であることを特徴とする請求項2記載の光磁気記
録媒体。
3. A reproducing layer containing gadolinium is provided, and the reproducing layer is arranged in close contact with the recording film and is arranged on the substrate side, and the film thickness thereof is 0.5 times or more the film thickness of the recording layer. 1.0
3. The magneto-optical recording medium according to claim 2, which is less than double.
【請求項4】厚みが30nm以上60nm以下の透明誘
電体層を基板に密着して取付けたことを特徴とする請求
項1記載の光磁気記録媒体。
4. A magneto-optical recording medium according to claim 1, wherein a transparent dielectric layer having a thickness of 30 nm or more and 60 nm or less is closely attached to the substrate.
【請求項5】厚みが40nm以上200nm以下の合金
性の膜を反射層として有することを特徴とする請求項1
記載の光磁気記録媒体。
5. An alloy film having a thickness of 40 nm or more and 200 nm or less is provided as a reflective layer.
A magneto-optical recording medium according to claim 1.
【請求項6】基板面から測定した((反射率)の平方根
×(カー回転角))の値が、0.42deg以上である
ことを特徴とする請求項1から5までのいずれかに記載
の光磁気記録媒体。
6. The value of (square root of (reflectance) × (Kerr rotation angle)) measured from the substrate surface is 0.42 deg or more, according to any one of claims 1 to 5. Magneto-optical recording medium.
【請求項7】請求項1から6に記載の記録媒体を用いる
記録再生装置。
7. A recording / reproducing apparatus using the recording medium according to claim 1.
JP2372695A 1995-02-13 1995-02-13 Magneto-optical recording medium and device Withdrawn JPH08221825A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2372695A JPH08221825A (en) 1995-02-13 1995-02-13 Magneto-optical recording medium and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2372695A JPH08221825A (en) 1995-02-13 1995-02-13 Magneto-optical recording medium and device

Publications (1)

Publication Number Publication Date
JPH08221825A true JPH08221825A (en) 1996-08-30

Family

ID=12118329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2372695A Withdrawn JPH08221825A (en) 1995-02-13 1995-02-13 Magneto-optical recording medium and device

Country Status (1)

Country Link
JP (1) JPH08221825A (en)

Similar Documents

Publication Publication Date Title
JP2812817B2 (en) Magneto-optical recording medium
JP2986622B2 (en) Magneto-optical memory device and its recording / reproducing method
JPH05159387A (en) Magneto-optical disk
EP0782135B1 (en) Magneto-optical recording medium and method for reproducing therefrom
US6200673B1 (en) Magneto-optical recording medium
EP1050877A1 (en) Opto-magnetic recording medium and its manufacturing method, and opto-magnetic information recording/reproducing device
JPH0512731A (en) Magneto-optical recording medium
JPH08221825A (en) Magneto-optical recording medium and device
JP3172708B2 (en) Recording and playback device
JP3214513B2 (en) Magneto-optical recording medium
JP2817505B2 (en) Single-plate optical disk for magneto-optical recording and its recording / reproducing method
JP3381960B2 (en) Magneto-optical recording medium
JPH11126384A (en) Magneto-optical record medium and its recording and reproducing method
JPH0380448A (en) Magneto-optical recording medium
JPH03105742A (en) Magneto-optical recording medium
JPH03119540A (en) Magneto-optical recording medium
JPH06131717A (en) Magneto-optical recording medium
JPH07320319A (en) Magneto-optical recording medium
JPS6370947A (en) Magneto-optical recording medium
JPH0660458A (en) Single plate optical disk and recording and reproducing method for the same
JPH06103623A (en) Magneto-optical disk
JPH05109134A (en) Magnetooptical disk and magnetooptical recording and reproducing system
JPH0341644A (en) Magneto-optical recoding medium
JPH04179104A (en) Structure of magneto-optical recording film
JPH0490153A (en) Magneto-optical disk

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20020507