JPH08220217A - Sonar device and oscillation correcting method of received beam azimuth - Google Patents

Sonar device and oscillation correcting method of received beam azimuth

Info

Publication number
JPH08220217A
JPH08220217A JP7028507A JP2850795A JPH08220217A JP H08220217 A JPH08220217 A JP H08220217A JP 7028507 A JP7028507 A JP 7028507A JP 2850795 A JP2850795 A JP 2850795A JP H08220217 A JPH08220217 A JP H08220217A
Authority
JP
Japan
Prior art keywords
azimuth
true
ship
reception beam
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7028507A
Other languages
Japanese (ja)
Inventor
Tatsuo Kikuchi
達夫 菊池
Susumu Tada
進 多田
Mamoru Suzuki
衛 鈴木
Satoshi Kimura
聡 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Steel Works Ltd
NEC Corp
Technical Research and Development Institute of Japan Defence Agency
Original Assignee
Japan Steel Works Ltd
NEC Corp
Technical Research and Development Institute of Japan Defence Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Steel Works Ltd, NEC Corp, Technical Research and Development Institute of Japan Defence Agency filed Critical Japan Steel Works Ltd
Priority to JP7028507A priority Critical patent/JPH08220217A/en
Publication of JPH08220217A publication Critical patent/JPH08220217A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To correct a directional error in a horizontal directional received beam azimuth generated by oscillation of a ship in a received beam azimuth of a sonar device mounted on the ship. CONSTITUTION: A received beam true azimuth calculating circuit 4 calculates a received beam center true azimuth θ'n on the basis of a course Cqo of a ship. An echo sound receiver surface inclined azimuth calculating circuit 5 calculates an inclined true azimuth ϕ' of an echo sound receiver surface on the basis of the course Cqo of the ship, a rolling angle Zo and a pitching angle Eio. An echo sound receiver surface inclination calculating circuit 6 calculates an inclination α of an echo sound receiver surface on the basis of the rolling angle Zo and the pitching angle Eio. A received beam azimuth oscillation correcting circuit 7 corrects a directional error in a horizontal directional received beam generated by oscillation of the ship to respective ones of plural received beam central true azimuths θ'n on the basis of the received beam central true azimuth θ'n, the inclined true azimuth ϕ' of the echo sound receiver surface and the inclination α of the echo sound receiver surface, and calculates a received beam central true azimuth θ"n whose oscillation is corrected.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、船舶に搭載されるソー
ナー装置及びその受信ビーム方位の動揺補正方法に関
し、特にその船の針路、ローリング角及びピッチング角
に対する受信ビーム方位の動揺補正方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sonar device mounted on a ship and a method for compensating the fluctuation of the receiving beam direction thereof, and more particularly to a method of compensating the fluctuation of the receiving beam direction with respect to the course, rolling angle and pitching angle of the ship.

【0002】[0002]

【従来の技術】従来、この種のソーナー装置における受
信ビーム方位の動揺補正方法は、船舶の動揺により生じ
た受信ビームのふ角を0度になる様に制御し、動揺補正
する方法がとられていた。
2. Description of the Related Art Conventionally, as a method for compensating the fluctuation of the receiving beam direction in a sonar device of this type, a method for compensating the fluctuation by controlling the angle of the receiving beam caused by the fluctuation of the ship so as to be 0 degree has been adopted. Was there.

【0003】従来の受信ビーム方位の動揺補正方法を実
現するソーナー装置の一例が、考案の名称「ソーナー送
受波器」の実開昭63−124676号公報に記載され
ている。この公報に記載されたソーナー送受波器は、ス
タビライズドジャイロコンパスにより検出された船舶の
動揺度に基づいて、ソーナー縦方向エレメントの送受信
波の位相を船舶の動揺角度を相殺する方向に制御する位
相制御装置を備えている。すなわち、このソーナー送受
波器では、位相制御装置がスタビライズドジャイロコン
パスにより検出された垂直方向の動揺角度に対して送受
信ビームのビーム中心が水平方向になる様、送受信のビ
ームを形成するように位相を制御する。その結果、船舶
に動揺が生じた場合でも、送受信ビームのビーム中心
は、常にふ角が0度になるように制御できる。
An example of a sonar device which realizes a conventional method for correcting the fluctuation of the receiving beam azimuth is described in Japanese Utility Model Laid-Open No. 63-124676, entitled "Sonar Transducer". The sonar transmitter / receiver described in this publication is based on the motion degree of the ship detected by the stabilized gyrocompass, and controls the phase of the transmitted / received wave of the sonar longitudinal element in a direction to cancel the motion angle of the ship. It is equipped with a control device. In other words, in this sonar transmitter / receiver, the phase controller controls the phase of the transmitting / receiving beam so that the beam center of the transmitting / receiving beam is horizontal with respect to the vertical swaying angle detected by the stabilized gyrocompass. To control. As a result, even if the ship is shaken, the beam center of the transmission / reception beam can be controlled so that the angle of inclination is always 0 degrees.

【0004】[0004]

【発明が解決しようとする課題】この従来のソーナー送
受波器では、船舶に動揺が生じた場合の受信ビームのビ
ーム中心方位について、水平方向の方位のずれ補正を考
慮していない。このため、水平方向の受信ビーム中心方
位が、受波器面が動揺によって傾斜することによりその
傾斜した受波器面の法線ベクトルの水平方向の方位と異
なった場合、従来のソーナー送受波器では、水平方向の
受信ビーム中心方位が見かけの受信ビーム中心方位と実
際の受信ビーム中心方位と異なってしまうという問題が
ある。
This conventional sonar transmitter / receiver does not consider the correction of the horizontal azimuth deviation of the beam center azimuth of the reception beam when the ship is shaken. Therefore, when the horizontal direction of the receiving beam center differs from the horizontal direction of the normal vector of the inclined receiver surface due to the inclination of the receiver surface, the conventional sonar transducer Then, there is a problem that the horizontal receiving beam center direction is different from the apparent receiving beam center direction and the actual receiving beam center direction.

【0005】それ故に本発明の課題は、船舶の動揺によ
って生じる水平方向の受信ビーム方位の方向誤差を補正
できるソーナー装置及び受信ビーム方位の動揺補正方法
を提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a sonar device and a method for compensating the fluctuation of the received beam azimuth, which can correct the direction error of the reception beam azimuth in the horizontal direction caused by the motion of the ship.

【0006】[0006]

【課題を解決するための手段】上述した問題点を解決す
るために本発明によるソーナー装置は、船舶に搭載さ
れ、複数の受波器から構成された円筒型受波器アレイを
有するソーナー装置において、船の針路Cqo、ローリン
グ角Zo 、及びピッチング角Eioを入力し、船舶の動揺
に対して受信ビーム方位の動揺を補正する動揺補正装置
を有し、この動揺補正装置は、船の針路Cqoと水平方向
の受信ビーム中心方位θn とから基準方位に対する水平
方向の受信ビーム中心真方位θ´n を算出する受信ビー
ム中心真方位算出回路と、船の針路Cqo、ローリング角
o 及びピッチング角Eioから基準方位に対する円筒型
受波器アレイの受波器面の傾斜真方位φ´を算出する受
波器面傾斜方位算出回路と、ローリング角Zo とピッチ
ング角Eioとから水平面からの受波器面の傾斜角度αを
算出する受波器面傾斜角度算出回路と、受信ビーム中心
真方位θ´n 、受波器面の傾斜真方位φ´及び受波器面
の傾斜角度αから船舶の動揺に対して動揺補正された水
平方向の受信ビーム中心真方位θ”n を算出する受信ビ
ーム方位動揺補正回路とを含むことを特徴とする。
In order to solve the above-mentioned problems, a sonar device according to the present invention is a sonar device which is mounted on a ship and has a cylindrical wave receiver array composed of a plurality of wave receivers. , The course C qo of the ship, the rolling angle Z o , and the pitching angle E io are input, and a shake compensating device for compensating the fluctuation of the receiving beam bearing with respect to the motion of the ship is provided. course C qo and horizontal reception beam central azimuth theta n and the reception beam center true azimuth calculating circuit for calculating a reception beam center true bearing [theta] & apos n horizontal direction with respect to the reference azimuth from ship heading C qo, rolling angle Z a receiver plane tilt azimuth calculation circuit that calculates the tilt true azimuth φ ′ of the receiver surface of the cylindrical receiver array from the o and the pitching angle E io with respect to the reference azimuth, and the rolling angle Z o and the pitching angle E io . From horizontal A wave receiver surface inclination angle calculating circuit for calculating an inclination angle α of the receivers face of al, the reception beam center true bearing [theta] & apos n, the inclination angle of the inclined true bearing φ'and receivers surface of the receivers face and a receive beam azimuth sway correction circuit that calculates a horizontal receive beam center true azimuth θ ″ n that is sway-corrected with respect to the sway of the ship from α.

【0007】また、本発明による受信ビーム方位の動揺
補正方法は、船舶に搭載され、複数の受波器から構成さ
れた円筒型受波器アレイを有するソーナー装置におい
て、船の針路Cqo、ローリング角Zo 、及びピッチング
角Eioを入力し、船舶の動揺に対して受信ビーム方位の
動揺を補正する方法であって、船の針路Cqoと水平方向
の受信ビーム中心方位θn とから基準方位に対する水平
方向の受信ビーム中心真方位θ´n を算出し、ローリン
グ角Zo とピッチング角Eioとから円筒型受波器アレイ
の受波器面の傾斜方位φを算出して、この受波器面の傾
斜方位φと船の針路Cqoとから基準方位に対する受波器
面の傾斜真方位φ´を算出し、ローリング角Zo とピッ
チング角Eioとから水平面からの受波器面の傾斜角度α
を算出し、受信ビーム中心真方位θ´n 、受波器面の傾
斜真方位φ´、及び受波器面の傾斜角度αから船舶の動
揺に対して動揺補正された水平方向の受信ビーム中心真
方位θ”n を算出するステップを含む。
Further, the method for correcting the fluctuation of the receiving beam direction according to the present invention is a sonar device mounted on a ship and having a cylindrical receiver array composed of a plurality of receivers, in which the course C qo of the ship and rolling A method of inputting an angle Z o and a pitching angle E io to correct the fluctuation of the reception beam direction with respect to the fluctuation of the ship, which is a reference from the course C qo of the ship and the reception beam center direction θ n in the horizontal direction. The true azimuth θ ′ n of the reception beam center in the horizontal direction with respect to the azimuth is calculated, and the inclination azimuth φ of the wave-receiving surface of the cylindrical wave-receiver array is calculated from the rolling angle Z o and the pitching angle E io. The inclination true azimuth φ ′ of the wave receiver surface with respect to the reference azimuth is calculated from the inclination direction φ of the wave surface and the course C qo of the ship, and the wave reception surface from the horizontal plane is calculated from the rolling angle Z o and the pitching angle E io. Inclination angle α
Calculating a reception beam center true bearing [theta] & apos n, inclined true bearing φ'of receivers plane, and the horizontal direction of the reception beam center from the inclination angle α of the receivers face is upset corrected for upset of the ship The step of calculating the true orientation θ ″ n is included.

【0008】[0008]

【実施例】次に、本発明について図面を参照して詳細に
説明する。
The present invention will be described in detail with reference to the drawings.

【0009】図1を参照して、本発明の一実施例による
ソーナー装置は、円筒型受波器アレイ1と、受信ビーム
形成回路2と、スタビライズドジャイロコンパス3と、
受信ビーム真方位算出回路4と、受波器面傾斜方位算出
回路5と、受波器面傾斜角度算出回路6と、受信ビーム
方位動揺補正回路7と、受信ビーム方位付与回路8とを
有している。
Referring to FIG. 1, a sonar apparatus according to an embodiment of the present invention comprises a cylindrical wave receiver array 1, a receiving beam forming circuit 2, a stabilized gyro compass 3, and
It has a reception beam true azimuth calculation circuit 4, a receiver plane tilt azimuth calculation circuit 5, a receiver plane tilt angle calculation circuit 6, a reception beam azimuth fluctuation correction circuit 7, and a reception beam azimuth imparting circuit 8. ing.

【0010】円筒型受波器アレイ1は複数の受波器(図
示せず)から構成されており、それらの各々は受信信号
Rを出力する。受信ビーム形成回路2は円筒型受波器ア
レイ1を構成する複数の受波器から受信信号Rを受け
る。受信ビーム形成回路2は受信信号Rに対して整相処
理等を行い、水平方向の複数の方位に受信ビーム信号B
を形成する。
The cylindrical wave receiver array 1 comprises a plurality of wave receivers (not shown), each of which outputs a reception signal R. The reception beam forming circuit 2 receives a reception signal R from a plurality of wave receivers forming the cylindrical wave receiver array 1. The reception beam forming circuit 2 performs phasing processing or the like on the reception signal R, and receives the reception beam signal B in a plurality of horizontal directions.
To form.

【0011】スタビライズドジャイロコンパス3は、船
の針路Cqoとローリング角Zo とピッチング角Eioとを
検出して、それらを出力する。受信ビーム真方位算出回
路4は、後述するように、スタビライズドジャイロコン
パス3から入力した船の針路Cqoに基づいて、受信ビー
ム形成回路2により形成される複数の受信ビーム信号B
の水平方向の方位から、基準方位(本実施例では、真
北)を基準とした受信ビーム中心真方位θ´n を算出す
る。ここで、受信ビーム信号Bの水平方向の方位は、円
筒型受波器アレイ1を設計した段階で予め分かってお
り、受信ビーム真方位算出回路4のメモリ(図示せず)
内に記憶されている。受波器面傾斜方位算出回路5は、
後述するように、スタビライズドジャイロコンパス3か
ら入力した船の針路Cqo、ローリング角Zo 、及びピッ
チング角Eioに基づいて、円筒型受波器アレイ1の受波
器面が船舶の動揺によって生じる水平面からの傾斜に対
して、その傾斜した平面の法線ベクトルを水平面上に投
影したときの基準方位を基準とした受波器面の傾斜真方
位φ´を算出する。受波器面傾斜角度算出回路6は、後
述するように、スタビライズドジャイロコンパス3から
入力したローリング角Zo とピッチング角Eioとに基づ
いて、円筒型受波器アレイ1の受波器面が船舶の動揺に
よって生じる水平面からの受波器面の傾斜角度αを算出
する。
The stabilized gyro compass 3 detects the course C qo of the ship, the rolling angle Z o and the pitching angle E io and outputs them. As will be described later, the reception beam true azimuth calculation circuit 4 receives a plurality of reception beam signals B formed by the reception beam forming circuit 2 based on the course C qo of the ship input from the stabilized gyro compass 3.
From the horizontal azimuth, the reception beam center true azimuth θ ′ n with reference to the reference azimuth (true north in this embodiment) is calculated. Here, the horizontal direction of the reception beam signal B is known in advance when the cylindrical receiver array 1 is designed, and is stored in the memory (not shown) of the reception beam true direction calculation circuit 4.
It is stored in. The receiver surface tilt azimuth calculation circuit 5
As will be described later, based on the course C qo , rolling angle Z o , and pitching angle E io of the ship input from the stabilized gyrocompass 3, the wave-receiving surface of the cylindrical wave-receiver array 1 is moved by the motion of the ship. With respect to the resulting inclination from the horizontal plane, the inclination true azimuth φ ′ of the receiver surface is calculated with reference to the reference azimuth when the normal vector of the inclined plane is projected on the horizontal plane. As will be described later, the wave-receiver surface tilt angle calculation circuit 6 calculates the wave-receiver surface of the cylindrical wave-receiver array 1 based on the rolling angle Z o and the pitching angle E io input from the stabilized gyro compass 3. Calculates the inclination angle α of the receiver surface from the horizontal plane caused by the motion of the ship.

【0012】受信ビーム方位動揺補正回路7は、後述す
るように、受信ビーム中心真方位θ´n 、受波器面の傾
斜真方位φ´、及び受波器面の傾斜角度αに基づいて、
複数の受信ビーム中心真方位θ´n の各々に対して、船
舶の動揺により生じる水平方向の受信ビームの方位誤差
を補正し、動揺補正された受信ビーム中心真方位θ”n
を算出する。
As will be described later, the reception beam azimuth fluctuation correction circuit 7 is based on the reception beam center true azimuth θ ′ n , the inclination true azimuth φ ′ of the wave receiver surface, and the inclination angle α of the wave reception surface.
For each of the plurality of reception beam center true azimuths θ ′ n , the azimuth error of the horizontal reception beam caused by the motion of the ship is corrected, and the shake-corrected reception beam center true azimuth θ ″ n is corrected.
To calculate.

【0013】受信ビーム真方位算出回路4、受波器面傾
斜方位算出回路5、受波器面傾斜角度算出回路6、及び
受信ビーム方位動揺補正回路7の組み合わせは、船舶の
動揺に対して受信ビーム方位の動揺を補正する動揺補正
装置を構成する。
The combination of the receive beam true azimuth calculation circuit 4, the receiver plane tilt azimuth calculation circuit 5, the receiver plane tilt angle calculation circuit 6, and the receive beam azimuth fluctuation correction circuit 7 is used for receiving the sway of a ship. A shake compensator for compensating the fluctuation of the beam direction is constructed.

【0014】受信ビーム方位付与回路8は、受信ビーム
形成回路2から得られた複数の水平方向の方位に整相さ
れた各方位ごとの受信ビーム信号Bに対し、受信ビーム
方位動揺補正回路7から得られた動揺補正された受信ビ
ーム中心真方位θ”n を付与する。
The receive beam azimuth imparting circuit 8 receives the receive beam signal B for each azimuth obtained from the receive beam forming circuit 2 and is phased into a plurality of horizontal azimuths. The obtained shake-corrected received beam center true azimuth θ ″ n is given.

【0015】次に、図1と図2及び図3を参照して、本
実施例の動作について詳細に説明する。
Next, the operation of this embodiment will be described in detail with reference to FIGS. 1, 2 and 3.

【0016】受信ビーム形成回路2では、円筒型受波器
アレイ1を構成する複数の受波器から入力された受信信
号Rが、船首方位θb を基準として、円筒型受波器アレ
イ1の中心のまわりに定められる水平面上の受信ビーム
中心方位θn (n=1,2,…,m)をビームの中心方
位として受信ビーム信号Bを形成するように整相等の処
理を行う。
In the reception beam forming circuit 2, the reception signals R input from the plurality of wave receivers constituting the cylindrical wave receiver array 1 are output from the cylindrical wave receiver array 1 with reference to the bow direction θ b . Processing such as phasing is performed so that the reception beam signal B is formed with the reception beam center direction θ n (n = 1, 2, ..., M) on the horizontal plane defined around the center as the beam center direction.

【0017】受信ビーム真方位算出回路4では、後述す
るように、スタビライズドジャイロコンパス3から入力
した船の針路Cqoに基づき、受信ビーム中心方位θn
対して真北θdnを基準とした受信ビーム中心真方位θ´
n (n=1,2,…,m)を算出する。
As will be described later, the reception beam true azimuth calculation circuit 4 uses the true north θ dn as a reference with respect to the reception beam center azimuth θ n , based on the course C qo of the ship input from the stabilized gyro compass 3. Receive beam center true direction θ '
Calculate n (n = 1, 2, ..., M).

【0018】受波器面傾斜方位算出回路5では、後述す
るように、スタビライズドジャイロコンパス3より入力
した船の針路Cqoとローリング角Zo とピッチング角E
ioとに基づいて、円筒型受波器アレイ1の受波器面が船
舶の動揺によって傾斜した場合、その傾斜した受波面の
平面の法線ベクトルの船首方位θb を基準とした水平成
分の方位を受波面の傾斜方位φとして求め、次に真北θ
dnを基準とした受波器面の傾斜真方位φ´を算出する。
In the receiver surface inclination azimuth calculation circuit 5, as will be described later, the course C qo of the ship, the rolling angle Z o and the pitching angle E input from the stabilized gyrocompass 3.
Based on io , when the wave-receiving surface of the cylindrical wave-receiving array 1 is tilted due to the motion of the ship, the horizontal component of the normal vector of the plane of the tilted wave-receiving surface with reference to the bow direction θ b The azimuth is calculated as the inclination azimuth φ of the receiving surface, and then the true north θ
Calculate the true azimuth φ'of the receiver surface with dn as the reference.

【0019】受波器面傾斜角度算出回路6では、後述す
るように、スタビライズドジャイロコンパス3より入力
されたローリング角Zo 及びピッチング角Eioに基づい
て、円筒型受波器アレイ1の受波器面が船舶の動揺によ
り傾斜した場合、その傾斜した受波器面の平面と水平面
h のなす角(鋭角)として、受波器面の傾斜角度αを
算出する。
As will be described later, the receiver surface tilt angle calculation circuit 6 receives the cylindrical receiver array 1 based on the rolling angle Z o and the pitching angle E io input from the stabilized gyrocompass 3. When the wavefront is inclined due to the motion of the ship, the inclination angle α of the wavefront is calculated as the angle (acute angle) formed by the inclined plane of the wavefront and the horizontal plane P h .

【0020】受信ビーム方位動揺補正回路7では、後述
するように、受信ビーム真方位算出回路4より入力され
る受信ビーム中心真方位θ´n と、受波器面傾斜方位算
出回路5より入力される受波器面の傾斜真方位φ´と、
受波器面傾斜角度算出回路6より入力される受波器面の
傾斜角度αとに基づいて、動揺補正された受信ビーム中
心真方位θ”n (n=1,2,…,m)を算出する。
[0020] The receiving beam azimuth upset correction circuit 7, as described below, a reception beam center true bearing [theta] & apos n inputted from the reception beam true azimuth calculating circuit 4 is input from the receiving transducer surface inclination azimuth calculating circuit 5 The true azimuth φ ′ of the receiver surface
Based on the inclination angle α of the wave-receiving surface input from the wave-receiving surface inclination angle calculation circuit 6, the shake-corrected reception beam center true direction θ ″ n (n = 1, 2, ..., M) is calculated. calculate.

【0021】受信ビーム方位動揺補正回路7の作用につ
いて図3を参照して詳細に説明する。受波器面の傾斜角
度が0度のときに受波器面を真上から見た平面Pに対
し、受波器面の傾斜角度がα度のときに受波器面を真上
から見た平面Pαは、楕円形となる。受波器面の角度が
0度のときの受信ビーム中心真方位θ´n に対して、受
波器面の傾斜角度がα度のときの受信ビームの中心方位
は、受信ビーム中心真方位θ´n と受波器面の傾斜角度
が0度のときの受波器面を真上から見た平面Pの円周
上の交点Iから受波器面の傾斜回転軸Aに下ろした
垂線と受波器面の傾斜角度がα度のときの受波器面を真
上から見た平面Pαの交点Iαと、円筒型受波器アレイ
1の中心を結んだ方位となる。すなわち、この方位が、
動揺補正された受信ビーム中心真方位θ”n となる。
The operation of the receive beam azimuth fluctuation correction circuit 7 will be described in detail with reference to FIG. When the inclination angle of the wave-receiving surface is 0 degree, the plane P 0 viewed from directly above the wave-receiving surface is compared with the plane P 0 when the inclination angle of the wave-receiving surface is α degrees. The plane P α seen is an ellipse. For the received beam center true bearing [theta] & apos n when the angle of the receivers surface of 0 degree, the center orientation of the receive beam when the inclination angle of the receivers surface α of the received beam center true bearing θ ′ N and the wave-receiver surface are tilted at an angle of 0 degrees, the wave-receiver surface is lowered from the intersection point I 0 on the circumference of the plane P 0 viewed from directly above to the tilt-rotation axis A r of the wave-receiver surface. When the inclination angle between the vertical line and the wave receiver surface is α degrees, the azimuth connects the intersection point I α of the plane P α when the wave receiver surface is viewed from directly above and the center of the cylindrical wave receiver array 1. . That is, this azimuth is
The sway-corrected receive beam center true azimuth is θ ″ n .

【0022】受信ビーム方位付与回路8では、受信ビー
ム形成回路2から入力された複数の水平方向の方位に整
相された各方位ごとの受信ビーム信号bに対し、受信ビ
ーム方位動揺補正回路7から入力された動揺補正された
受信ビーム中心真方位θ”nを付与する。
In the receive beam azimuth imparting circuit 8, the receive beam azimuth fluctuation compensating circuit 7 responds to the receive beam signal b input from the receive beam forming circuit 2 for each azimuth phased into a plurality of horizontal azimuths. The input shake-corrected received beam center true direction θ ″ n is given.

【0023】図4を参照して、本実施例によるソーナー
装置の動揺補正装置9の動作について説明する。ここ
で、図5に示すとおり、船首方向(方位)をx軸(+
側)、同一平面上でx軸と直交するy軸及び原点から鉛
直方向をz軸とおく。
The operation of the motion compensation device 9 of the sonar device according to the present embodiment will be described with reference to FIG. Here, as shown in FIG. 5, the bow direction (azimuth) is the x-axis (+
Side), the y-axis orthogonal to the x-axis on the same plane, and the vertical direction from the origin are set as the z-axis.

【0024】動揺補正装置9は、スタビライズドジャイ
ロコンパス3から船の針路Cqo(0〜360度)と、ロ
ーリングZo (z軸に対しy軸負側を+、y軸正側を−
とする)及びピッチング角Eio(x軸に対しz軸正側を
+、z軸負側を−とする)を入力する(ステップS
1)。動揺補正装置9は、船の針路Cqoと受信ビーム中
心方位θn とから、下記の数式9で表される第1の算出
式に従って、受信ビーム中心真方位θ´n を算出する
(ステップS2)。
The motion compensating device 9 includes the course C qo (0 to 360 degrees) of the ship from the stabilized gyro compass 3 and the rolling Z o (+ on the negative side of the y axis with respect to the z axis and − on the positive side of the y axis).
And a pitching angle E io (+ on the positive side of the z axis with respect to the x axis and − on the negative side of the z axis) are input (step S).
1). Upset correcting unit 9, the ship heading C qo and the reception beam central azimuth theta n, in accordance with the first calculation formula is expressed by Equation 9 below, calculates a reception beam center true bearing [theta] & apos n (step S2 ).

【0025】[0025]

【数9】 動揺補正装置9は、ローリングZo とピッチング角Eio
とから、下記の数式10で表される第2の算出式に従っ
て、受波器面の傾斜方位φを算出する(ステップS
3)。
[Equation 9] The motion compensator 9 has a rolling Z o and a pitching angle E io.
From the above, the inclination azimuth φ of the wave-receiving surface is calculated according to the second calculation formula represented by the following mathematical formula 10 (step S
3).

【0026】[0026]

【数10】 動揺補正装置9は、受波器面の平面の法線ベクトルがx
−y平面上のどの象限にあるかの場合分けを行い(ステ
ップS4〜S6)、それぞれの場合における受波器面の
傾斜真方位φ´を算出する(ステップS7〜S10)。
詳細に述べると、ステップS4でcosZo ・sinE
io>0の判定を行い、YESならステップS5へ、NO
ならステップS6へ移る。ステップS5でsinZo
0の判定を行い、YESならステップS7へ、NOなら
ステップS8へ移る。同様に、ステップS6でsinZ
o >0の判定を行い、YESならステップS9へ、NO
ならステップS10へ移る。ステップS7〜S10にお
いては、受波器面の傾斜真方位φ´を受波器面の傾斜方
位φと船の針路Cqoとから算出する。すなわち、ステッ
プS7ではφ´=Cqo−|φ|として、ステップS8で
はφ´=Cqo+|φ|として、ステップS9ではφ´=
qo+180−|φ|として、ステップS10ではφ´
=Cqo+180+|φ|として、受波器面の傾斜真方位
φ´を算出する。
[Equation 10] The wobbling correction device 9 determines that the normal vector of the plane of the receiver surface is x.
The quadrant on the -y plane is divided into cases (steps S4 to S6), and the inclination true azimuth φ'of the receiver surface in each case is calculated (steps S7 to S10).
More specifically, in step S4, cosZ o · sinE
It is determined that io > 0, and if YES, to step S5, NO.
If so, move to step S6. In step S5, sinZ o >
If 0 is determined, the process proceeds to step S7 if YES and to step S8 if NO. Similarly, in step S6, sinZ
o > 0 is judged, and if YES, to step S9, NO.
Then, the process proceeds to step S10. In steps S7 to S10, the inclination true azimuth φ ′ of the wave receiver surface is calculated from the inclination azimuth φ of the wave receiver surface and the course C qo of the ship. That is, φ ′ = C qo − | φ | in step S7, φ ′ = C qo + | φ | in step S8, and φ ′ == in step S9.
C qo + 180− | φ |, and φ ′ in step S10.
= C qo +180+ | φ |, the inclination true direction φ ′ of the receiver surface is calculated.

【0027】動揺補正装置9は、ローリングZo とピッ
チング角Eioとから、下記の数式11で表される第3の
算出式に従って、受波器面の傾斜角度αを算出する(ス
テップS11)。
The motion compensator 9 calculates the inclination angle α of the wave receiver surface from the rolling Z o and the pitching angle E io according to the third calculation formula expressed by the following formula 11 (step S11). .

【0028】[0028]

【数11】 動揺補正装置9は、受信ビーム中心真方位θ´n と受波
器面の傾斜角度αと受波器面の傾斜真方位φ´とから、
下記の数式12で表される第4の算出式に従って、動揺
補正された受信ビーム中心真方位θ”n を算出する(ス
テップS12)。
[Equation 11] The motion compensator 9 uses the received beam center true azimuth θ ′ n , the wave receiver surface tilt angle α, and the wave receiver surface tilt true direction φ ′.
The shake-corrected reception beam center true azimuth θ ″ n is calculated according to the fourth calculation formula represented by the following formula 12 (step S12).

【0029】[0029]

【数12】 最後に、動揺補正装置9は、動揺補正された受信ビーム
中心真方位θ”n を出力する(ステップS13)。
(Equation 12) Finally, the motion compensator 9 outputs the motion-corrected received beam center true direction θ ″ n (step S13).

【0030】従って、船舶の動揺が生じた場合、動揺補
正された受信ビーム中心真方位θ”n を使用して水平方
向に生じる受信ビームの方位誤差を補正できる。
Therefore, when the ship is shaken, the shake-corrected receive beam center true direction θ ″ n can be used to correct the receive beam direction error that occurs in the horizontal direction.

【0031】本発明は上述した実施例に限定されず、本
発明の要旨を逸脱しない範囲内で種々の変更が可能であ
るのは勿論である。
The present invention is not limited to the above-mentioned embodiments, and it goes without saying that various modifications can be made without departing from the gist of the present invention.

【0032】[0032]

【発明の効果】以上説明したように、本発明は、船に搭
載され、円筒型受波器アレイを有するソーナー装置にお
いて、船の針路、ローリング角及びピッチング角を入力
し、船の針路と水平方向の受信ビーム中心方位から基準
方位(例えば、真北)に対する水平方向の受信ビーム中
心真方位を算出する手段と、船の針路、ローリング角及
びピッチング角から基準方位に対する円筒型受波器アレ
イの受波器面の傾斜真方位を算出する手段と、ローリン
グ角とピッチング角とから水平面からの受波器面の傾斜
角度を算出する手段と、受信ビーム中心真方位、受波器
面の傾斜真方位及び受波器面の傾斜角度から船の動揺に
対して動揺補正された水平方向の受信ビーム中心真方位
を算出する手段とを備えているため、船舶の動揺が生じ
た場合の水平方向に生じる受信ビームの方位誤差を補正
できるという効果を有する。
As described above, according to the present invention, in a sonar device mounted on a ship and having a cylindrical receiver array, the course, rolling angle and pitching angle of the ship are input and the course of the ship is horizontal. Means for calculating a horizontal receive beam center true azimuth with respect to a reference azimuth (for example, true north) from a directional receive beam center azimuth, and a cylindrical receiver array for the reference azimuth from a ship course, rolling angle, and pitching angle. A means for calculating the inclination true direction of the wave-receiving surface, a means for calculating the inclination angle of the wave-receiving surface from the horizontal plane from the rolling angle and the pitching angle, a true direction of the receiving beam center, and an inclination true of the wave-receiving surface. The horizontal direction when the ship is shaken because it has means for calculating the true direction of the received beam center in the horizontal direction, which is shake-corrected from the bearing and the inclination angle of the receiver surface. It has the effect of correcting the direction error of the resulting receive beam.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例によるソーナー装置を示すブ
ロック図である。
FIG. 1 is a block diagram showing a sonar device according to an embodiment of the present invention.

【図2】図1に示した受信ビーム形成回路の作用を説明
するための模式図である。
FIG. 2 is a schematic diagram for explaining the operation of the receive beam forming circuit shown in FIG.

【図3】図1に示した受信ビーム方位動揺補正回路の作
用を説明するための模式図である。
FIG. 3 is a schematic diagram for explaining the operation of the receive beam azimuth fluctuation correction circuit shown in FIG.

【図4】図1に示した動揺補正装置の動作を説明するた
めのフローチャートである。
FIG. 4 is a flowchart for explaining the operation of the motion compensation device shown in FIG.

【図5】図4に示す計算式を説明するための図である。FIG. 5 is a diagram for explaining the calculation formula shown in FIG.

【符号の説明】[Explanation of symbols]

1 円筒型受波器アレイ 2 受信ビーム形成回路 3 スタビライズドジャイロコンパス 4 受信ビーム真方位算出回路 5 受波器面傾斜方位算出回路 6 受波器面傾斜角度算出回路 7 受信ビーム方位動揺補正回路 8 受信ビーム方位付与回路 9 動揺補正装置 1 Cylindrical receiver array 2 Received beam forming circuit 3 Stabilized gyro compass 4 Received beam true azimuth calculation circuit 5 Receiver plane tilt azimuth calculation circuit 6 Receiver plane tilt angle calculation circuit 7 Received beam azimuth correction circuit 8 Received beam azimuth imparting circuit 9 Motion correction device

───────────────────────────────────────────────────── フロントページの続き (72)発明者 鈴木 衛 神奈川県横須賀市久里浜2−8−11 (72)発明者 木村 聡 東京都港区芝五丁目7番1号 日本電気株 式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Mamoru Suzuki 2-8-11 Kurihama, Yokosuka City, Kanagawa Prefecture (72) Inventor Satoshi Kimura 5-7-1, Shiba, Minato-ku, Tokyo NEC Corporation

Claims (14)

【特許請求の範囲】[Claims] 【請求項1】 船舶に搭載され、複数の受波器から構成
された円筒型受波器アレイを有するソーナー装置におい
て、船の針路(Cqo)、ローリング角(Zo)、及びピ
ッチング角(Eio)を入力し、前記船舶の動揺に対して
受信ビーム方位の動揺を補正する動揺補正装置を有し、
該動揺補正装置は、 前記船の針路(Cqo)と水平方向の受信ビーム中心方位
(θn )とから基準方位に対する水平方向の受信ビーム
中心真方位(θ´n )を算出する受信ビーム中心真方位
算出回路(4)と、 前記船の針路(Cqo)、前記ローリング角(Zo )及び
前記ピッチング角(Eio)から前記基準方位に対する前
記円筒型受波器アレイの前記受波器面の傾斜真方位(φ
´)を算出する受波器面傾斜方位算出回路(5)と、 前記ローリング角(Zo )と前記ピッチング角(Eio
とから水平面からの前記受波器面の傾斜角度(α)を算
出する受波器面傾斜角度算出回路(6)と、 前記受信ビーム中心真方位(θ´n )、前記受波器面の
傾斜真方位(φ´)及び前記受波器面の傾斜角度(α)
から前記船舶の動揺に対して動揺補正された水平方向の
受信ビーム中心真方位(θ”n )を算出する受信ビーム
方位動揺補正回路(7)とを含むことを特徴とするソー
ナー装置。
1. A sonar device mounted on a ship and having a cylindrical receiver array composed of a plurality of receivers, comprising: a ship course (C qo ), a rolling angle (Z o ), and a pitching angle ( E io ) is input, and a shake compensator for correcting the fluctuation of the reception beam azimuth with respect to the fluctuation of the ship is provided,
The upset correction device, receiving the beam center for calculating the ship course (C qo) and horizontal direction of the reception beam central azimuth (theta n) horizontally with respect to a reference orientation from the reception beam center true bearing ([theta] & apos n) A true azimuth calculation circuit (4), the receiver of the cylindrical receiver array for the reference azimuth from the course (C qo ), the rolling angle (Z o ) and the pitching angle (E io ) of the ship. Inclination of surface True azimuth (φ
′), A receiver surface tilt azimuth calculation circuit (5), the rolling angle (Z o ) and the pitching angle (E io )
And a receiver surface inclination angle calculation circuit (6) for calculating the inclination angle (α) of the receiver surface from the horizontal plane, the reception beam center true azimuth (θ ′ n ), and the receiver surface Inclination true direction (φ ') and inclination angle (α) of the wave receiver surface
And a receiving beam azimuth sway correction circuit (7) for calculating a true receiving beam center true azimuth (θ ″ n ) in which the sway is corrected for the sway of the ship.
【請求項2】 前記船の針路(Cqo)、前記ローリング
角(Zo )及び前記ピッチング角(Eio)をスタビライ
ズドジャイロコンパス(3)から入力する、請求項1記
載のソーナー装置。
2. The sonar device according to claim 1, wherein the course (C qo ), the rolling angle (Z o ) and the pitching angle (E io ) of the ship are input from a stabilized gyro compass (3).
【請求項3】 前記基準方位が真北である、請求項1記
載のソーナー装置。
3. The sonar device according to claim 1, wherein the reference azimuth is true north.
【請求項4】 前記円筒型受波器アレイ(1)で受信さ
れた受信信号(R)を、前記水平方向の受信ビーム中心
方位(θn )をビームの中心方位とした受信ビーム信号
(B)に形成する受信ビーム形成回路(2)と、 前記受信ビーム信号(B)に対して、前記動揺補正され
た水平方向の受信ビーム中心真方位(θ”n )を付与す
る受信ビーム方位付与回路(8)とを備えた、請求項1
記載のソーナー装置。
4. A reception beam signal (B) having the reception signal (R) received by the cylindrical receiver array (1) with the horizontal reception beam center direction (θ n ) as the beam center direction. ), And a reception beam azimuth imparting circuit for imparting the shake-corrected horizontal reception beam center true azimuth (θ ″ n ) to the reception beam signal (B). Claim 1 provided with (8).
The sonar device described.
【請求項5】 前記受信ビーム中心真方位算出回路
(4)は前記受信ビーム中心真方位(θ´n )を下記の
数式1に従って算出する 【数1】 請求項1記載のソーナー装置。
5. The reception beam center true azimuth calculation circuit (4) calculates the reception beam center true azimuth (θ ′ n ) according to the following mathematical formula 1. The sonar device according to claim 1.
【請求項6】 前記受波器面傾斜方位算出回路(5)は
前記ローリング角(Zo )及び前記ピッチング角
(Eio)とから受波器面の傾斜方位(φ)を下記の数式
2に従って算出し、 【数2】 それから前記受波器面の傾斜方位(φ)と前記船の針路
(Cqo)とから前記基準方位を基準とした前記受波器面
の傾斜真方位(φ´)を算出する請求項1記載のソーナ
ー装置。
6. The receiver surface inclination azimuth calculation circuit (5) calculates the inclination azimuth (φ) of the receiver surface from the rolling angle (Z o ) and the pitching angle (E io ) by the following mathematical formula 2. Calculated according to 2. A tilt true azimuth (φ ′) of the wave receiver surface with reference to the reference azimuth is calculated from the tilt azimuth (φ) of the wave receiver surface and the course (C qo ) of the ship. Sonar device.
【請求項7】 前記受波器面傾斜角度算出回路(6)は
前記受波器面の傾斜角度(α)を下記の数式3に従って
算出する 【数3】 請求項1記載のソーナー装置。
7. The wave-receiving surface tilt angle calculation circuit (6) calculates the wave-receiving surface tilt angle (α) according to the following mathematical formula 3. The sonar device according to claim 1.
【請求項8】 前記受信ビーム方位動揺補正回路(7)
は前記動揺補正された水平方向の受信ビーム中心真方位
(θ”n )を下記の数式4に従って算出する 【数4】 請求項1記載のソーナー装置。
8. The reception beam azimuth fluctuation correction circuit (7)
Calculates the shake-corrected horizontal reception beam center true azimuth (θ ″ n ) according to Equation 4 below. The sonar device according to claim 1.
【請求項9】 船舶に搭載され、複数の受波器から構成
された円筒型受波器アレイ(1)を有するソーナー装置
において、船の針路(Cqo)、ローリング角(Zo )、
及びピッチング角(Eio)を入力し、前記船舶の動揺に
対して受信ビーム方位の動揺を補正する方法であって、 前記船の針路(Cqo)と水平方向の受信ビーム中心方位
(θn )とから第1の算出式に従って基準方位に対する
水平方向の受信ビーム中心真方位(θ´n )を算出し、 前記ローリング角(Zo )と前記ピッチング角(Eio
とから第2の算出式に従って前記円筒型受波器アレイ
(1)の受波器面の傾斜方位(φ)を算出して、該受波
器面の傾斜方位(φ)と前記船の針路(Cqo)とから前
記基準方位に対する前記受波器面の傾斜真方位(φ´)
を算出し、 前記ローリング角(Zo )とピッチング角(Eio)とか
ら第3の算出式に従って水平面からの前記受波器面の傾
斜角度αを算出し、 前記受信ビーム中心真方位(θ´n )、前記受波器面の
傾斜真方位(φ´)、及び前記受波器面の傾斜角度
(α)から前記船舶の動揺に対して動揺補正された水平
方向の受信ビーム中心真方位(θ”n )を算出するステ
ップを含む受信ビーム方位の動揺補正方法。
9. A sonar device mounted on a ship and having a cylindrical wave receiver array (1) composed of a plurality of wave receivers, comprising: a ship course (C qo ), a rolling angle (Z o ),
And a pitching angle (E io ) are input to correct the fluctuation of the receiving beam direction with respect to the fluctuation of the ship, which is the course (C qo ) of the ship and the horizontal receiving beam center direction (θ n ) And a horizontal reception beam center true azimuth (θ ′ n ) with respect to the reference azimuth according to the first calculation formula, and the rolling angle (Z o ) and the pitching angle (E io ) are calculated.
And the inclination direction (φ) of the wave-receiving surface of the cylindrical wave-receiver array (1) is calculated according to the second calculation formula, and the inclination direction (φ) of the wave-receiving surface and the course of the ship are calculated. (C qo ) and the inclination true direction (φ ′) of the receiver surface with respect to the reference direction
Then, the tilt angle α of the wave receiver surface from the horizontal plane is calculated from the rolling angle (Z o ) and the pitching angle (E io ) according to a third calculation formula. ′ N ), the inclination true azimuth of the wave receiver surface (φ ′), and the true reception beam center true azimuth in the horizontal direction which is shake-corrected from the inclination of the wave receiver surface (α) with respect to the sway of the ship. A fluctuation correction method of a reception beam azimuth including a step of calculating (θ ″ n ).
【請求項10】 前記基準方位が真北である請求項9記
載の受信ビーム方位の動揺補正方法。
10. The fluctuation correction method for the reception beam azimuth according to claim 9, wherein the reference azimuth is true north.
【請求項11】 前記第1の算出式が下記の数式5で表
わされる 【数5】 請求項9記載の受信ビーム方位の動揺補正方法。
11. The first calculation formula is represented by the following formula 5: The method for correcting the fluctuation of the reception beam azimuth according to claim 9.
【請求項12】 前記第2の算出式が下記の数式6で表
わされる 【数6】 請求項9記載の受信ビーム方位の動揺補正方法。
12. The second calculation formula is represented by the following formula 6. The method for correcting the fluctuation of the reception beam azimuth according to claim 9.
【請求項13】 前記第3の算出式が下記の数式7で表
わされる 【数7】 請求項9記載の受信ビーム方位の動揺補正方法。
13. The third calculation formula is expressed by the following formula 7. The method for correcting the fluctuation of the reception beam azimuth according to claim 9.
【請求項14】 前記第4の算出式が下記の数式8で表
わされる 【数8】 請求項9記載の受信ビーム方位の動揺補正方法。
14. The fourth calculation formula is represented by the following formula 8. The method for correcting the fluctuation of the reception beam azimuth according to claim 9.
JP7028507A 1995-02-16 1995-02-16 Sonar device and oscillation correcting method of received beam azimuth Pending JPH08220217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7028507A JPH08220217A (en) 1995-02-16 1995-02-16 Sonar device and oscillation correcting method of received beam azimuth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7028507A JPH08220217A (en) 1995-02-16 1995-02-16 Sonar device and oscillation correcting method of received beam azimuth

Publications (1)

Publication Number Publication Date
JPH08220217A true JPH08220217A (en) 1996-08-30

Family

ID=12250603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7028507A Pending JPH08220217A (en) 1995-02-16 1995-02-16 Sonar device and oscillation correcting method of received beam azimuth

Country Status (1)

Country Link
JP (1) JPH08220217A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347550A (en) * 2003-05-26 2004-12-09 Ihi Marine United Inc Wind condition investigation method of floating body type, and device
WO2008135108A1 (en) 2007-04-27 2008-11-13 Atlas Elektronik Gmbh Method for taking bearings of sound-emitting targets, and bearing system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133582U (en) * 1984-07-30 1986-02-28 株式会社 ノボル電機製作所 Insect-proof horn speaker
JPS623738U (en) * 1985-06-21 1987-01-10

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6133582U (en) * 1984-07-30 1986-02-28 株式会社 ノボル電機製作所 Insect-proof horn speaker
JPS623738U (en) * 1985-06-21 1987-01-10

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004347550A (en) * 2003-05-26 2004-12-09 Ihi Marine United Inc Wind condition investigation method of floating body type, and device
JP4636783B2 (en) * 2003-05-26 2011-02-23 株式会社アイ・エイチ・アイ マリンユナイテッド Floating wind survey method and apparatus
WO2008135108A1 (en) 2007-04-27 2008-11-13 Atlas Elektronik Gmbh Method for taking bearings of sound-emitting targets, and bearing system

Similar Documents

Publication Publication Date Title
CN112255615B (en) Radar moving platform electron beam stabilization and compensation system
US5349531A (en) Navigation apparatus using a global positioning system
WO2008132141A1 (en) Device and method for controlling a satellite tracking antenna
GB2445106A (en) Phased array antenna beam steering control using inertial sensors
CN112821029B (en) Shipborne satellite antenna seat and shipborne satellite antenna tracking system
JP2002158525A (en) Antenna controller for satellite tracking
JP2002523005A (en) Antenna device
CN107492717B (en) Inertial navigation course correction method for communication-in-moving antenna cosine scanning
JPH08220217A (en) Sonar device and oscillation correcting method of received beam azimuth
JP3044357B2 (en) Gyro device
JP2007303865A (en) Satellite tracking antenna apparatus
JP3155875B2 (en) Electron beam scanning antenna device
US3430238A (en) Apparatus for providing an accurate vertical reference in a doppler-inertial navigation system
JP2003004846A (en) Ship speed measuring instrument
JPH05196475A (en) Jolting-angle detector
JP2008098853A (en) Lens antenna apparatus for satellite broadcasting and communication
JPS58108478A (en) Pedestal control system of automatic tracking antenna to be carried on oscillating body
JPH028768A (en) Radar apparatus
JP3393025B2 (en) Three-axis controller for directional antenna
JPH07249918A (en) Antenna directing device
CN113504535A (en) High-precision wave beam stabilizing method for arbitrary change of ship attitude
JP3157976B2 (en) Mobile antenna mount
JP2002214340A (en) Underwater acoustic equipment with oscillation correction apparatus
JPH06201818A (en) Beam stabilizer device
JPH07249919A (en) Antenna directing device

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980325