JPH08220164A - Estimating method of effect of countermeasure against electromagnetic jamming wave - Google Patents

Estimating method of effect of countermeasure against electromagnetic jamming wave

Info

Publication number
JPH08220164A
JPH08220164A JP3074595A JP3074595A JPH08220164A JP H08220164 A JPH08220164 A JP H08220164A JP 3074595 A JP3074595 A JP 3074595A JP 3074595 A JP3074595 A JP 3074595A JP H08220164 A JPH08220164 A JP H08220164A
Authority
JP
Japan
Prior art keywords
building
electromagnetic interference
effect
electromagnetic
countermeasure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3074595A
Other languages
Japanese (ja)
Inventor
Yuji Maeda
裕二 前田
Yoshiyuki Komatsu
義幸 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP3074595A priority Critical patent/JPH08220164A/en
Publication of JPH08220164A publication Critical patent/JPH08220164A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To improve reproducibility and also to estimate accurately the effect of a countermeasure against a jamming wave which changes sharply according to a place, by using a movable type antenna and others which are provided at a prescribed position outside a building wherein electronic equipment is installed. CONSTITUTION: Electronic equipment 2 for which a countermeasure against an electromagnetic jamming wave is taken is installed inside a building 1. Outside the building 1, there is an area 3 for measuring the effect of the countermeasure against the electromagnetic jamming wave and a movable type measuring antenna 4, a jamming wave measuring device 5 and a computer 6 for processing measured data are provided in this area 3. The electromagnetic jamming wave radiated from the electronic equipment 2 is measured before and after the countermeasure against the electromagnetic jamming wave is taken for the electronic equipment 2. Concretely, the strength of the electromagnetic jamming wave radiated from the electronic equipment 2 before the countermeasure is taken is measured by the antenna 4 on a concentric circle from the center of the building 1 and on a line of a length determined by a frequency and the dimensions of the building 1. Next, the jamming wave radiated after the countermeasure is taken is measured in the same way. By using measured values thus obtained, the effect of the countermeasure against the electromagnetic jamming is computed and estimated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電子装置の設置場所に
おいて行われる電子装置の放射妨害波を低減させる電磁
妨害波対策の効果を、建物外において測定し評価する電
磁妨害波対策効果評価方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electromagnetic interference wave countermeasure effect evaluation method for measuring and evaluating, outside a building, the effect of an electromagnetic wave interference countermeasure for reducing a radiation interference wave of an electronic device which is carried out at a place where an electronic device is installed. It is about.

【0002】[0002]

【従来の技術】近年、電子装置のディジタル化、高速化
や高密度実装化などにより電子装置の放射妨害波は増加
する一方、電磁妨害波に対する耐力(イミュニティ)は
弱くなる傾向にあり、電波に起因する障害が発生しやす
い環境が多くなっている。このため、電子装置に対して
は装置の放射妨害波レベルをVCCI(情報処理装置等
電波障害自主規制協議会)で定める規格値以下にするよ
うに義務づけされている。
2. Description of the Related Art In recent years, radiated interference waves of electronic devices have increased due to digitalization, high speed and high density mounting of electronic devices, but the immunity to electromagnetic interference waves has tended to weaken. The number of environments where the resulting failures are likely to occur is increasing. For this reason, it is obliged for electronic devices to set the radiated emission level of the device to a standard value or lower defined by VCCI (Voluntary Control Council for Interference for Information Processing Devices).

【0003】このような状況の中で現在行われている妨
害波対策法には、主に次のような方法がある。 (1)装置の電子回路等にフィルタやフェライトコア等
を入れて対策を施す基板レベルでの妨害波対策。 (2)装置の筐体に導電性塗料やシールドガスケットを
付加するなどして対策を施し、筐体のシールド効果を上
げる筐体レベルでの妨害波対策。 (3)装置の周囲にシールド壁を設置する建物レベルで
の妨害波対策。
Under these circumstances, the following methods are mainly used as countermeasures against interference waves. (1) Board-level interference wave countermeasures in which a filter or ferrite core is placed in the electronic circuit of the equipment to take countermeasures. (2) Measures such as adding conductive paint or a shield gasket to the device case to improve the case's shielding effect. (3) Countermeasures against interference at the building level by installing shield walls around the equipment.

【0004】これらの妨害波対策は、電波暗室やシール
ドルームなどの実験室レベルで主に行われており、妨害
波の測定方法と評価方法はFCC,CISPRやVCC
Iなどで詳しく規定されている。しかし、実際には装置
の設置場所においてこれらの妨害対策を行う場合も多く
存在する。設置場所や建物外においては、妨害波がどの
ように分布するのか明らかになっておらず、また、妨害
波の測定方法と評価方法も現状では規定されていないた
め、妨害波の測定値は測定者に大きく依存し、評価され
る妨害波対策の効果はほとんど再現性のないものとなっ
ている。
Countermeasures against these interference waves are mainly carried out at the laboratory level such as an anechoic chamber or a shielded room, and the measurement method and evaluation method of the interference waves are FCC, CISPR and VCC.
It is specified in detail in I etc. However, in reality, there are many cases where these interference countermeasures are taken at the installation location of the device. It is not clear how the disturbing waves are distributed in the installation site or outside the building, and the method of measuring and evaluating the disturbing waves is not currently defined. The effectiveness of the measures against interference is highly reproducible and depends largely on the person involved.

【0005】[0005]

【発明が解決しようとする課題】本発明は上記の事情に
鑑みてなされたもので、装置の設置場所である建物の周
辺において、電磁妨害波対策の効果を測定し評価するこ
とにより、再現性があると同時に場所によって大きく変
動する妨害波対策効果をより正確に評価する電磁妨害波
対策効果評価方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned circumstances, and the reproducibility is measured by measuring and evaluating the effect of electromagnetic interference measures in the vicinity of the building where the device is installed. At the same time, it is an object of the present invention to provide an electromagnetic interference wave countermeasure effect evaluation method that more accurately evaluates an interference wave countermeasure effect that varies greatly depending on the location.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に本発明は、電子装置の設置場所である建物内でフェラ
イトコア、シールド筐体あるいはシールド壁等を用いて
電子装置に施される電磁妨害波対策の効果を建物外にお
いて測定し評価する電磁妨害波対策効果評価方法におい
て、建物外の所定の位置と高さに設置される移動式の測
定アンテナと、前記測定アンテナで受信した電磁波のレ
ベルを検出する検出手段と、測定結果を記憶するメモリ
と、測定結果に基づき所定の処理をするCPUと、処理
結果を出力する出力装置から構成され、電子装置から放
射される電磁波の強さを、電磁妨害波対策前と電磁妨害
波対策後に、建物外の所定の場所を始点に、建物の中心
からの同心円上における測定する周波数と電子装置の設
置場所である建物の大きさから求められる長さのライン
上で前記移動式測定アンテナで測定し、その測定結果を
前記メモリに記憶し、前記メモリに記憶した電磁妨害波
対策前と電磁妨害波対策後の前記ライン上の各測定位置
における電磁波の3方向の偏波成分の高さ方向の最大値
を用いて、前記ライン上における3方向のそれぞれの偏
波成分に対する電磁妨害波対策効果と3方向成分を合成
した電磁妨害波対策効果を求め、その結果を前記出力装
置から出力することを特徴とする。
To achieve the above object, the present invention provides an electromagnetic wave applied to an electronic device by using a ferrite core, a shield housing, a shield wall, or the like in a building where the electronic device is installed. In an electromagnetic interference countermeasure effectiveness evaluation method for measuring and evaluating the effect of the interference countermeasure outside the building, a mobile measuring antenna installed at a predetermined position and height outside the building, and an electromagnetic wave received by the measuring antenna It is composed of detection means for detecting the level, a memory for storing the measurement result, a CPU for performing a predetermined processing based on the measurement result, and an output device for outputting the processing result. , Before and after measures against electromagnetic interference, starting from a predetermined place outside the building, measuring frequency on a concentric circle from the center of the building and the place where the electronic device is installed Measured by the mobile measuring antenna on a line of a length obtained from the size, the measurement result is stored in the memory, and the line before and after the electromagnetic interference wave countermeasure stored in the memory is measured. Using the maximum values in the height direction of the polarization components in the three directions of the electromagnetic wave at the respective measurement positions of, the electromagnetic interference wave countermeasure effect for the respective polarization components in the three directions on the line and the electromagnetic wave combining the three-direction components An interfering wave countermeasure effect is obtained, and the result is output from the output device.

【0007】[0007]

【作用】上記手段により本発明によれば、まず、設置場
所である建物外の所定の場所を始点に、建物の中心から
の同心円上において、周波数と建物の大きさから決定さ
れる長さのライン上で妨害波対策を行う前の電子装置か
ら放射される電磁妨害波の強さを移動式の測定アンテナ
で測定する。次に電磁妨害波対策を行った後の電子装置
から放射される電磁妨害波を同様の同心円上で測定す
る。そして、これらの測定値を用いて同心円上の各位置
における電磁妨害波対策効果を計算し、ライン上の電磁
妨害波対策効果を評価することを最も主要な特徴とす
る。
According to the present invention by the above means, first of all, in a concentric circle from the center of the building, starting from a predetermined location outside the building, which is the installation location, of a length determined from the frequency and the size of the building. The strength of the electromagnetic interference wave radiated from the electronic device before taking measures against the interference wave on the line is measured by a mobile measuring antenna. Next, the electromagnetic interference wave radiated from the electronic device after taking measures against the electromagnetic interference wave is measured on the same concentric circle. The most important feature is that the electromagnetic interference wave countermeasure effect at each position on the concentric circle is calculated using these measured values, and the electromagnetic interference wave countermeasure effect on the line is evaluated.

【0008】従来の技術では妨害波対策効果を測定する
位置やその評価方法が明確になっていなかったため妨害
波対策効果が測定者に大きく依存し再現性のある評価が
困難であったが、本発明は設置場所である建物外の所定
の距離の場所を始点に、建物の中心から引いた同心円上
において、周波数と建物の大きさから決定される長さの
範囲で妨害波対策効果を評価することにより、再現性が
あると同時に場所によって大きく変動する妨害波対策効
果をより正確に評価することができる。
In the prior art, since the position for measuring the interference wave countermeasure effect and its evaluation method have not been clarified, the interference wave countermeasure effect largely depends on the measurer and it is difficult to perform reproducible evaluation. The invention evaluates the anti-jamming effect in a range of a length determined from the frequency and the size of the building on a concentric circle drawn from the center of the building, starting from a place with a predetermined distance outside the building, which is the installation location. As a result, it is possible to more accurately evaluate the interfering wave countermeasure effect that is reproducible and that varies greatly depending on the location.

【0009】[0009]

【実施例】以下、図面を参照して本発明の実施例を詳細
に説明する。図1は本発明の一実施例における建物外に
おける上面からみた測定系を示す図である。同図におい
て、建物1内には電磁妨害波対策を施す電子装置2が設
置してある。建物1外には電磁妨害波対策の効果を測定
する領域3があり、この領域3内に移動式の測定アンテ
ナ4とテストレシーバ等の妨害波測定装置5と測定デー
タを処理するコンピュータ6が設置される。なお、図示
していないがコンピュータ6は後述する演算とデータ処
理を行うCPU、結果を記憶するメモリ、結果を表示す
るディスプレーなどを含むものである。
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram showing a measurement system as seen from the upper side outside a building in one embodiment of the present invention. In the figure, an electronic device 2 that provides countermeasures against electromagnetic interference is installed in a building 1. Outside the building 1, there is an area 3 for measuring the effect of measures against electromagnetic interference, and in this area 3 a mobile measuring antenna 4, an interference measuring device 5 such as a test receiver 5 and a computer 6 for processing measurement data are installed. To be done. Although not shown, the computer 6 includes a CPU for performing calculations and data processing described later, a memory for storing the result, a display for displaying the result, and the like.

【0010】次に、電子装置2から放射される電磁妨害
波を、電子装置2に電磁妨害波対策を施す前と施した後
に測定する方法を図2を用いて説明する。図2には、建
物1の中心点7から引いた同心円8と放射状の線9を電
磁妨害波対策効果を測定する領域3上に示している。こ
こで、測定する周波数をf(MHz)とすると、波長λ
は300/f(m)となる。このとき、建物1の壁面上
の水平方向の長さ10が1波長となる場合の建物の中心
から引いた放射状の線の角度11をθ°とする。後述す
るように、電磁妨害波の対策効果は、周波数と建物の大
きさから求められる角度11の間隔で建物の中心点7か
ら放射状に分布し、さらに建物1から遠ざかっても放射
状の線上の対策効果はほとんど変化しない。したがっ
て、例えば建物1から任意の距離の同心円8上において
放射状の線の角度11と同じになる測定ライン12上で
電磁妨害波を測定する。ただし、このとき移動式の測定
アンテナ4は、図3に示すように測定ライン12上の水
平方向のある位置13に固定させて可能な限り低い位置
から可能な限り高い位置まで移動させて測定する。ま
た、水平方向の固定位置13は測定ライン12上におい
て最低でも四分の一波長間隔以下に設定する。移動式の
測定アンテナ4の方向は図4に示すように方向14,1
5,16の三方向に向けそれぞれの偏波成分を測定す
る。
Next, a method of measuring the electromagnetic interference wave radiated from the electronic device 2 before and after the electromagnetic interference wave countermeasure is applied to the electronic device 2 will be described with reference to FIG. In FIG. 2, a concentric circle 8 and a radial line 9 drawn from the center point 7 of the building 1 are shown on the region 3 where the electromagnetic interference countermeasure effect is measured. Here, if the frequency to be measured is f (MHz), the wavelength λ
Is 300 / f (m). At this time, the angle 11 of the radial line drawn from the center of the building when the horizontal length 10 on the wall surface of the building 1 is one wavelength is θ °. As will be described later, the electromagnetic interference wave countermeasure effect is distributed radially from the center point 7 of the building at an interval of an angle 11 obtained from the frequency and the size of the building, and even if the distance from the building 1 is further increased, a countermeasure on a radial line is obtained. The effect hardly changes. Therefore, for example, the electromagnetic interference wave is measured on the measurement line 12 having the same angle 11 as the radial line on the concentric circle 8 at an arbitrary distance from the building 1. However, at this time, the movable measuring antenna 4 is fixed at a horizontal position 13 on the measurement line 12 as shown in FIG. 3, and is moved from the lowest position to the highest position for measurement. . The fixed position 13 in the horizontal direction is set on the measurement line 12 at least at a quarter wavelength interval or less. The direction of the mobile measuring antenna 4 is, as shown in FIG.
The respective polarization components are measured in the three directions of 5 and 16.

【0011】これらの測定値はコンピュータ6に蓄積さ
れる。コンピュータ6上では、各測定位置13における
各偏波成分の高さ方向の最大の電界強度を求める。ここ
で各偏波成分の高さ方向の最大の電界強度を求めるの
は、CISPR,FCC,VCCI等で規定された電波
暗室における電磁妨害波の評価方法と同じ原理であり、
また測定結果の再現性を保つためでもある。ここで、あ
る測定位置Pにおいて求めた値を、電磁妨害波対策を施
す前はそれぞれEx i ,Ey i ,Ez i 、電磁妨害波対
策を施した後はEx t ,Ey t ,Ez t とする。このと
き、P点における電磁妨害波対策効果は、各偏波成分に
対する値
These measured values are stored in the computer 6. On the computer 6, the maximum electric field strength in the height direction of each polarization component at each measurement position 13 is obtained. Here, obtaining the maximum electric field strength in the height direction of each polarization component is the same principle as the electromagnetic interference wave evaluation method in an anechoic chamber specified by CISPR, FCC, VCCI, etc.
It is also for maintaining reproducibility of measurement results. Here, the value obtained at a certain measurement position P, respectively E x i before being subjected to electromagnetic interference countermeasure, E y i, E z i , after applying the electromagnetic interference countermeasure E x t, E y t , E z t . At this time, the electromagnetic interference wave countermeasure effect at point P is the value for each polarization component.

【0012】[0012]

【数1】 で評価できる。また、電磁妨害波対策効果は、この同心
円の測定ライン12上においてその方向における最大値
と最小値をとるので、この測定ライン12上における電
磁妨害波対策の効果を評価する。
[Equation 1] Can be evaluated with. Further, since the electromagnetic interference wave countermeasure effect has the maximum value and the minimum value in the direction on the concentric measurement line 12, the electromagnetic interference wave countermeasure effect on the measurement line 12 is evaluated.

【0013】上記の電磁妨害波対策効果評価方法を実際
に適用した結果を以下に示す。図5に建物17の構造を
示す。電磁妨害波対策は通信装置18の通信線部にフェ
ライトコアを挿入して行った。建物17周辺図を図6に
示す。40mのライン19は実際に通信装置18から放
射される電磁妨害波を測定したラインである。また、こ
こでは実測値の他にモーメント法を用いて建物17周辺
の電磁界分布を推定した領域20も同時に示す。モーメ
ント法を用いた推定では、建物17を鉄骨構造を模擬す
るワイヤーグリッドモデルで近似し、区分正弦波を展開
関数とするガラーキン法を用いて行った。
The results of actual application of the above-mentioned electromagnetic interference wave countermeasure effect evaluation method are shown below. FIG. 5 shows the structure of the building 17. As a countermeasure against electromagnetic interference, a ferrite core was inserted into the communication line portion of the communication device 18. FIG. 6 shows a view around the building 17. The 40 m line 19 is a line in which the electromagnetic interference wave actually radiated from the communication device 18 is measured. In addition to the measured values, the region 20 in which the electromagnetic field distribution around the building 17 is estimated using the method of moments is also shown here. In the estimation using the method of moments, the building 17 was approximated by a wire grid model simulating a steel frame structure, and the Galerkin method using a piecewise sine wave as an expansion function was used.

【0014】周波数が90MHzのときのライン19に
おける電磁妨害波対策効果を図7に示す。電磁妨害波対
策効果は式(4)より算出した。同図には移動式の測定
アンテナ4の高さを2mと4mに固定した場合の値と、
1mから4mの間の高さ方向の最大値を用いて計算した
値を合わせて示している。同図より、移動式の測定アン
テナ4の高さを固定するとハイトパターンによって高さ
方向において値が大きく変動するが、高さ方向の最大値
で評価すると過剰なあるいは過小な評価をすることがな
いことがわかる。また、測定値と計算値は場所によって
は20dB程度の偏差が生じているが、高さ方向の最大
値を用いて評価すると最大偏差約5dB以内で一致して
おり、計算によってある程度電磁妨害波対策効果が推定
できることがわかる。
FIG. 7 shows the effect of countermeasures against electromagnetic interference waves in the line 19 when the frequency is 90 MHz. The electromagnetic interference wave countermeasure effect was calculated from equation (4). The figure shows the values when the height of the mobile measuring antenna 4 is fixed to 2 m and 4 m,
The values calculated using the maximum value in the height direction between 1 m and 4 m are also shown. As shown in the figure, when the height of the movable measuring antenna 4 is fixed, the value greatly varies in the height direction due to the height pattern, but if the maximum value in the height direction is evaluated, neither excessive nor underestimation will occur. I understand. In addition, the measured value and the calculated value have a deviation of about 20 dB depending on the location, but when evaluated using the maximum value in the height direction, the maximum deviation is within about 5 dB. It can be seen that the effect can be estimated.

【0015】建物17の周辺領域20の電磁妨害波対策
効果の分布をモーメント法を用いて計算した結果を図8
に示す。同図(a)は周波数90MHzの場合であり、
同図(b)は周波数170MHzの場合である。また
(a),(b)ともに高さ方向の最大値を用いて式
(4)より電磁妨害波対策効果を計算した。両図には建
物17の中心から10m間隔の同心円と、10°間隔の
放射状の線も合わせて示している。前述のように電磁妨
害波対策効果はどちらの周波数の場合も建物17の中心
から引いた放射状の線に沿って分布していることがわか
る。また、建物17から放射線状の線に沿って離れる
と、電磁妨害波対策効果の低いところでは数dB変化す
るが、高い電磁妨害波対策効果となるところはほとんど
変化しないことがわかる。したがって、建物17からど
の程度はなれた場所で電磁妨害波対策効果をすればよい
かということはほとんど考慮する必要がなく、測定が可
能である任意の場所で測定すればよいということにな
る。
FIG. 8 shows the result of calculation of the distribution of the electromagnetic wave interference countermeasure effect in the peripheral area 20 of the building 17 using the method of moments.
Shown in The figure (a) is the case of a frequency of 90 MHz,
The figure (b) is in the case of a frequency of 170 MHz. In addition, the electromagnetic interference wave countermeasure effect was calculated from Equation (4) using the maximum values in the height direction in both (a) and (b). In both figures, concentric circles at intervals of 10 m from the center of the building 17 and radial lines at intervals of 10 ° are also shown. As described above, it can be seen that the electromagnetic interference wave countermeasure effect is distributed along the radial line drawn from the center of the building 17 for both frequencies. It is also understood that when the building 17 is separated from the building 17 along the radial line, it changes by several dB in a place where the electromagnetic interference wave countermeasure effect is low, but hardly changes in a place where the electromagnetic interference wave countermeasure effect is high. Therefore, it is almost unnecessary to consider how far away from the building 17 the electromagnetic interference wave countermeasure effect should be, and it is sufficient to measure at any place where measurement is possible.

【0016】図9には建物17の中心21から引いた放
射状の線を示している。同図において、l1 の長さは
3.3mであり、90MHzのときの1波長に相当す
る。また、l2 の長さは170MHzのときの1波長に
相当する1.8mである。l1 に対応する放射状の線の
角度はθ1 =32°であり、l2 に相当する角度はθ2
=16°である。図8よりわかるように、周波数90M
Hzの場合には、電磁妨害波分布は建物17の壁面にお
いて約1波長となる角度とほぼ同じ約30°間隔で分布
しており、また周波数170MHzの場合も同様に建物
17の壁面上において約1波長となる約18°間隔で分
布している。波長に対して十分遠方から建物全体を見た
場合、建物は小さな放射源と考えられ、妨害波は建物の
中心から放射されると考えることができる。このとき放
射源の指向性の妨害波の分布を決定するのであるが、水
平方向の妨害波の放射に最も寄与するのは建物の梁であ
り、この梁においては約1波長間隔で妨害波源から誘導
された電流が分布しており、この誘導電流から妨害波が
再放射される。建物の梁上の誘導電流を1波長間隔で並
んだ放射源と考えると、建物の中心から建物外へこの1
波長の長さの放射源の延長上を観測すればある程度の分
布がわかると考えられる。
FIG. 9 shows a radial line drawn from the center 21 of the building 17. In the figure, the length of l 1 is 3.3 m, which corresponds to one wavelength at 90 MHz. The length of l 2 is 1.8 m, which corresponds to one wavelength at 170 MHz. The angle of the radial line corresponding to l 1 is θ 1 = 32 °, and the angle corresponding to l 2 is θ 2
= 16 °. As can be seen from FIG. 8, frequency 90M
In the case of Hz, the electromagnetic interference wave distribution is distributed on the wall surface of the building 17 at intervals of about 30 °, which is almost the same as the angle of about 1 wavelength, and in the case of a frequency of 170 MHz, the electromagnetic interference wave distribution is also about the same on the wall surface of the building 17. It is distributed at intervals of about 18 °, which is one wavelength. When the whole building is viewed from a sufficient distance from the wavelength, it can be considered that the building is a small radiation source and the disturbance wave is emitted from the center of the building. At this time, the distribution of directional interfering waves of the radiation source is determined. It is the building beams that most contribute to the horizontal emission of the interfering waves. The induced current is distributed, and the disturbance wave is re-radiated from this induced current. Considering the induced current on the beam of a building as a radiation source arranged at intervals of one wavelength, this 1
It is considered that the distribution can be understood to some extent by observing the extension of the radiation source of the wavelength length.

【0017】他の形状の建物に対しても上記のことが成
立するか確認するため、図10に示す小さな建物22に
ついても電磁妨害波対策効果を計算した。ただしこの場
合の電磁妨害波対策効果は、放射源23をx=1.25
m,y=4.75m,z=1.5mの位置に設置した場
合のシールド壁24のシールド効果とした。図11に電
磁妨害波対策の効果を計算した領域25を示す。図12
(a)には周波数90MHzの場合の電磁妨害波対策効
果分布を示し、同図(b)には周波数170MHzの場
合の電磁妨害波対策効果分布を示している。また両図に
は建物22の中心から引いた10m間隔の同心円と10
°間隔の放射状の線を示した。同図より、前述の建物1
7の場合と同様に電磁妨害波対策効果は放射状に分布し
ており、建物22から離れても放射状の線上の電磁妨害
波対策効果はほとんど変化しないことがわかる。また、
電磁妨害波対策効果の分布の間隔は、90MHzの場合
は約70°であり、170MHzの場合は約40°であ
ることがわかる。
In order to confirm whether the above is true for buildings of other shapes, the electromagnetic interference countermeasure effect was calculated for the small building 22 shown in FIG. However, the electromagnetic interference wave countermeasure effect in this case is that the radiation source 23 is set to x = 1.25.
The shield effect of the shield wall 24 when installed at the positions of m, y = 4.75 m and z = 1.5 m was used. FIG. 11 shows a region 25 where the effect of countermeasures against electromagnetic interference is calculated. 12
(A) shows the electromagnetic interference wave countermeasure effect distribution when the frequency is 90 MHz, and (b) shows the electromagnetic interference wave countermeasure effect distribution when the frequency is 170 MHz. Also, in both figures, concentric circles with 10 m intervals drawn from the center of the building 22 and 10
° radial lines were shown. From the figure, the building 1
As in the case of No. 7, the electromagnetic interference wave countermeasure effect is distributed radially, and it can be seen that the electromagnetic interference wave countermeasure effect on the radial line hardly changes even if it is separated from the building 22. Also,
It can be seen that the distribution interval of the electromagnetic interference countermeasure effect is about 70 ° at 90 MHz and about 40 ° at 170 MHz.

【0018】図13に図9と同様に建物22と建物の中
心26から引いた放射状の線を示した。同図においてl
1 の長さは周波数90MHzのときの1波長に相当する
3.3mであり、l2 の長さは周波数170MHzのと
きの1波長に相当する1.8mである。l1 に相当する
放射状の線の角度θ1 は68°であり、l2 に相当する
角度θ2 は38°であり、これらは図12(a),
(b)に示した電磁妨害波対策効果の分布の角度と良く
一致している。したがって、どのような建物において
も、電磁妨害波対策効果は、建物の中心から引いた放射
状の線の建物の壁面における水平方向の間隔が1波長と
なるときの放射状の線の角度の間隔で分布するというこ
とができる。
Similar to FIG. 9, FIG. 13 shows a radial line drawn from the building 22 and the center 26 of the building. In the figure, l
The length of 1 is 3.3m corresponding to one wavelength when the frequency 90 MHz, the length of l 2 is 1.8m corresponding to one wavelength when the frequency 170 MHz. radial angle theta 1 of the line corresponding to the l 1 is 68 °, the angle theta 2 which corresponds to l 2 is 38 °, they FIG. 12 (a), the
It is in good agreement with the distribution angle of the electromagnetic interference wave countermeasure effect shown in (b). Therefore, in any building, the electromagnetic interference countermeasure effect is distributed at the angular intervals of the radial lines when the horizontal line spacing of the radial lines drawn from the center of the building is one wavelength. It can be said that

【0019】結局、図14に示すように建物27外部に
おいて電磁妨害波対策効果を測定する場合には、建物2
7の中心28から任意の距離r(m)離れた位置におい
て、建物27の中心28から引いた放射状の線の間隔が
測定する領域方向の壁面上において測定周波数の1波長
となる角度をθとすると、d=2rtanθ(m)程度
の長さの同心円上のライン上で電磁妨害波を測定し、こ
のライン上の電磁妨害波対策効果の分布を評価すればよ
いということがわかる。このライン上にはその方向にお
ける電磁妨害波対策効果の最大値と最小値が含まれてい
るので、電磁妨害波対策の性能を把握することができ
る。
After all, as shown in FIG. 14, when measuring the electromagnetic interference countermeasure effect outside the building 27, the building 2
The angle at which the distance between the radial lines drawn from the center 28 of the building 27 is one wavelength of the measurement frequency on the wall surface in the area to be measured at a position distant from the center 28 of the body 7 by an arbitrary distance r (m) is θ. Then, it is understood that the electromagnetic interference wave should be measured on a line on a concentric circle having a length of about d = 2 rtan θ (m), and the distribution of the electromagnetic interference wave countermeasure effect on this line should be evaluated. Since the maximum value and the minimum value of the electromagnetic interference wave countermeasure effect in that direction are included on this line, the performance of the electromagnetic interference wave countermeasure can be grasped.

【0020】以上のように、まず、設置場所である建物
外の所定の場所を始点に、建物の中心からの同心円上に
おいて、周波数と建物の大きさから決定される長さのラ
イン上で妨害波対策を行う前の電子装置から放射される
電磁妨害波の強さを移動式の測定アンテナで測定する。
次に電磁妨害波対策を行った後の電子装置から放射され
る電磁妨害波を同様の同心円上で測定する。そして、こ
れらの測定値を用いて同心円上の各位置における電磁妨
害波対策効果を計算し、ライン上の電磁妨害波対策効果
を評価する。
[0020] As described above, first, at a predetermined location outside the building, which is the installation location, on a concentric circle from the center of the building, a line having a length determined by the frequency and the size of the building is disturbed. The strength of the electromagnetic interference wave radiated from the electronic device before the countermeasure against the wave is measured by the mobile measuring antenna.
Next, the electromagnetic interference wave radiated from the electronic device after taking measures against the electromagnetic interference wave is measured on the same concentric circle. Then, the electromagnetic interference wave countermeasure effect at each position on the concentric circle is calculated using these measured values, and the electromagnetic interference wave countermeasure effect on the line is evaluated.

【0021】従来の技術では妨害波対策効果を測定する
位置やその評価方法が明確になっていなかったため妨害
波対策効果が測定者に大きく依存し再現性のある評価が
困難であったが、本発明は設置場所である建物外の所定
の距離の場所を始点に、建物の中心から引いた同心円上
において、周波数と建物の大きさから決定される長さの
範囲で妨害波対策効果を評価することにより、再現性が
あると同時に場所によって大きく変動する妨害波対策効
果をより正確に評価することができる。
In the prior art, since the position for measuring the interference wave countermeasure effect and its evaluation method have not been clarified, the interference wave countermeasure effect greatly depends on the measurer and it is difficult to perform reproducible evaluation. The invention evaluates the anti-jamming effect in a range of a length determined from the frequency and the size of the building on a concentric circle drawn from the center of the building, starting from a place with a predetermined distance outside the building, which is the installation location. As a result, it is possible to more accurately evaluate the interfering wave countermeasure effect that is reproducible and that varies greatly depending on the location.

【0022】[0022]

【発明の効果】以上説明したように、本発明の電磁妨害
波対策効果評価方法によれば、周波数と建物の大きさか
ら電磁妨害波対策効果の分布の間隔を求め、この間隔内
における電磁妨害波対策効果を評価すれば、再現性があ
ると同時に場所によって大きく変動する妨害波対策効果
をより正確に評価することができる。
As described above, according to the electromagnetic interference wave countermeasure effect evaluation method of the present invention, the interval of distribution of the electromagnetic interference wave countermeasure effect is obtained from the frequency and the size of the building, and the electromagnetic interference within this interval is obtained. If the wave countermeasure effect is evaluated, it is possible to more accurately evaluate the disturbing wave countermeasure effect, which is reproducible and varies greatly depending on the location.

【0023】したがって、本発明を用いて様々な電磁妨
害波対策の効果を評価することにより、電磁妨害波の分
布をも考慮した電磁妨害波対策を施すことができるほ
か、対策効果が測定者に依存しない妨害対策を実行する
ことができる。
Therefore, by evaluating the effects of various measures against electromagnetic interference using the present invention, it is possible to take measures against electromagnetic interference taking the distribution of electromagnetic interference into consideration, and the effect of measures against the measurer. Independent anti-jamming measures can be implemented.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における建物とその外部にお
ける電磁妨害波対策の測定系の上面図を示している。
FIG. 1 is a top view of a building and a measurement system for preventing electromagnetic interference in the outside thereof according to an embodiment of the present invention.

【図2】本発明の一実施例における建物と建物の中心か
ら引いた同心円と放射状の線を示している。
FIG. 2 shows a building and a concentric circle and a radial line drawn from the center of the building in one embodiment of the present invention.

【図3】本発明の一実施例における建物の中心から引い
た同心円上における測定位置の略図を示している。
FIG. 3 shows a schematic diagram of measurement positions on a concentric circle drawn from the center of a building in one embodiment of the present invention.

【図4】本発明の一実施例における移動式の測定アンテ
ナの設置方向を示している。
FIG. 4 illustrates an installation direction of a mobile measurement antenna according to an embodiment of the present invention.

【図5】本発明の一実施例における建物の形状と通信装
置を示している。
FIG. 5 illustrates a building shape and a communication device according to an embodiment of the present invention.

【図6】本発明の一実施例における建物と電磁妨害波対
策効果の測定ラインと推定領域を示している。
FIG. 6 shows a measurement line and an estimated area of a building and an electromagnetic interference countermeasure effect in one embodiment of the present invention.

【図7】本発明の一実施例における電磁妨害波対策効果
の測定結果と推定結果を示している。
FIG. 7 shows a measurement result and an estimation result of an electromagnetic interference wave countermeasure effect in one embodiment of the present invention.

【図8】本発明の一実施例における電磁妨害波対策効果
分布の推定結果を示している。
FIG. 8 shows the estimation result of the electromagnetic interference wave countermeasure effect distribution in one embodiment of the present invention.

【図9】本発明の一実施例における建物と建物の中心か
ら引いた放射状の線を示している。
FIG. 9 illustrates a building and a radial line drawn from the center of the building in one embodiment of the present invention.

【図10】本発明の一実施例における建物の形状と電磁
妨害波源とシールド壁を示している。
FIG. 10 shows a shape of a building, an electromagnetic interference wave source, and a shield wall in one embodiment of the present invention.

【図11】本発明の一実施例における建物と電磁妨害波
対策効果推定領域を示している。
FIG. 11 shows a building and an electromagnetic interference wave countermeasure effect estimation region in one embodiment of the present invention.

【図12】本発明の一実施例における電磁妨害波対策効
果分布の推定結果を示している。
FIG. 12 shows the estimation result of the electromagnetic interference wave countermeasure effect distribution in one example of the present invention.

【図13】本発明の一実施例における建物と建物の中心
から引いた放射状の線を示している。
FIG. 13 shows a building and a radial line drawn from the center of the building in one embodiment of the present invention.

【図14】本発明の一実施例における建物の中心からr
(m)離れた位置での電磁妨害波測定ラインを示してい
る。
FIG. 14 is a view from the center of a building in one embodiment of the present invention;
(M) shows an electromagnetic interference wave measurement line at a distant position.

【符号の説明】[Explanation of symbols]

1…建物 2…電子装置 3…測定領域 4…移動式の測定アンテナ 5…妨害波測定装置 6…コンピュータ 7…建物の中心点 8…建物の中心からの同心円 9…建物の中心から引いた放射状の線 10…建物の壁面の水平方向に1波長の長さ 11…建物の壁面において水平方向1波長の長さに相当
する放射状の線の角度 12…建物から任意の距離はなれた位置における電磁妨
害波対策効果の測定ライン 13…移動式の測定アンテナの設置位置 14…移動式の測定アンテナの偏波面の方向 15…移動式の測定アンテナの偏波面の方向 16…移動式の測定アンテナの偏波面の方向 17…建物 18…通信装置 19…電磁妨害波対策効果の測定ライン 20…電磁妨害波対策効果の推定領域 21…建物の中心 22…建物 23…電磁妨害波源 24…シールド壁 25…電磁妨害波対策効果の推定領域 26…建物の中心 27…建物 28…建物の中心
DESCRIPTION OF SYMBOLS 1 ... Building 2 ... Electronic device 3 ... Measuring area 4 ... Mobile measuring antenna 5 ... Interference measuring device 6 ... Computer 7 ... Center point of building 8 ... Concentric circle from center of building 9 ... Radial drawn from center of building Line 10 ... Length of one wavelength in the horizontal direction on the wall of the building 11 ... Angle of radial line corresponding to the length of one wavelength in the horizontal direction on the wall of the building 12 ... Electromagnetic interference at a position away from the building by an arbitrary distance Measurement line for wave countermeasure effect 13 ... Installation position of mobile measurement antenna 14 ... Direction of polarization plane of mobile measurement antenna 15 ... Direction of polarization plane of mobile measurement antenna 16 ... Polarization plane of mobile measurement antenna Direction 17 ... Building 18 ... Communication device 19 ... Electromagnetic interference measure effect measurement line 20 ... Electromagnetic interference measure effect estimation area 21 ... Building center 22 ... Building 23 ... Electromagnetic interference source 24 ... Rudo wall 25 ... of the estimated area 26 ... Building electromagnetic interference suppressing effect around 27 ... building 28 ... center of the building

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電子装置の設置場所である建物内でフェ
ライトコア、シールド筐体あるいはシールド壁等を用い
て電子装置に施される電磁妨害波対策の効果を建物外に
おいて測定し評価する電磁妨害波対策効果評価方法にお
いて、 建物外の所定の位置と高さに設置される移動式の測定ア
ンテナと、前記測定アンテナで受信した電磁波のレベル
を検出する検出手段と、測定結果を記憶するメモリと、
測定結果に基づき所定の処理をするCPUと、処理結果
を出力する出力装置から構成され、 電子装置から放射される電磁波の強さを、電磁妨害波対
策前と電磁妨害波対策後に、建物外の所定の場所を始点
に、建物の中心からの同心円上における測定する周波数
と電子装置の設置場所である建物の大きさから求められ
る長さのライン上で前記移動式測定アンテナで測定し、
その測定結果を前記メモリに記憶し、 前記メモリに記憶した電磁妨害波対策前と電磁妨害波対
策後の前記ライン上の各測定位置における電磁波の3方
向の偏波成分の高さ方向の最大値を用いて、前記ライン
上における3方向のそれぞれの偏波成分に対する電磁妨
害波対策効果と3方向成分を合成した電磁妨害波対策効
果を求め、その結果を前記出力装置から出力することを
特徴とする電磁妨害波対策効果評価方法。
1. An electromagnetic interference for measuring and evaluating the effect of an electromagnetic interference wave countermeasure applied to an electronic device by using a ferrite core, a shield housing, a shield wall, or the like inside the building where the electronic device is installed, outside the building. In the wave countermeasure effect evaluation method, a mobile measurement antenna installed at a predetermined position and height outside a building, a detection unit that detects the level of an electromagnetic wave received by the measurement antenna, and a memory that stores the measurement result. ,
It is composed of a CPU that performs predetermined processing based on the measurement result and an output device that outputs the processing result. The strength of the electromagnetic wave radiated from the electronic device is measured outside the building before and after the electromagnetic interference wave countermeasures. Starting from a predetermined location, measured with the mobile measurement antenna on a line of a length obtained from the size of the building where the frequency is measured and the installation location of the electronic device on a concentric circle from the center of the building,
The measurement results are stored in the memory, and the maximum values in the height direction of the polarization components in the three directions of the electromagnetic waves at the respective measurement positions on the line before and after the electromagnetic interference measures stored in the memory are stored. Is used to obtain the electromagnetic interference wave countermeasure effect for each polarization component in the three directions on the line and the electromagnetic interference wave countermeasure effect obtained by combining the three-direction components, and the result is output from the output device. Electromagnetic interference countermeasure effectiveness evaluation method.
JP3074595A 1995-02-20 1995-02-20 Estimating method of effect of countermeasure against electromagnetic jamming wave Pending JPH08220164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3074595A JPH08220164A (en) 1995-02-20 1995-02-20 Estimating method of effect of countermeasure against electromagnetic jamming wave

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3074595A JPH08220164A (en) 1995-02-20 1995-02-20 Estimating method of effect of countermeasure against electromagnetic jamming wave

Publications (1)

Publication Number Publication Date
JPH08220164A true JPH08220164A (en) 1996-08-30

Family

ID=12312224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3074595A Pending JPH08220164A (en) 1995-02-20 1995-02-20 Estimating method of effect of countermeasure against electromagnetic jamming wave

Country Status (1)

Country Link
JP (1) JPH08220164A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264372A (en) * 2000-03-17 2001-09-26 Mitsubishi Electric Corp Radiation noise measured data display method, radiation noise measuring measuring system and program storage medium for radiation noise measurement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001264372A (en) * 2000-03-17 2001-09-26 Mitsubishi Electric Corp Radiation noise measured data display method, radiation noise measuring measuring system and program storage medium for radiation noise measurement

Similar Documents

Publication Publication Date Title
JP5249294B2 (en) Electromagnetic field distribution measuring apparatus and computer-readable recording medium
Corona et al. Use of a reverberating enclosure for measurements of radiated power in the microwave range
US9335359B2 (en) Far electromagnetic field estimation method and apparatus, and near electromagnetic field measurement apparatus
KR100574226B1 (en) Method for measuring the electromagnetic radiation pattern and gain of a radiator using a TEM waveguide
CN107064846A (en) The sensitivity detection method and device of live testing apparatus for local discharge
Dudczyk et al. Applying the radiated emission to the specific emitter identification
CN114707458A (en) Sensor deployment method suitable for monitoring partial discharge of switch cabinet
Primiani et al. Field penetration through a wire mesh screen excited by a reverberation chamber field: FDTD analysis and experiments
JPH08220164A (en) Estimating method of effect of countermeasure against electromagnetic jamming wave
CN111624425A (en) System and method for measuring shielding efficiency of electromagnetic pulse signal
Núñez et al. Multichannel acquisition system and denoising for the detection and location of partial discharges using acoustic emissions
Pignari et al. Statistical characterization of multiconductor transmission lines illuminated by a random plane-wave field
JPH06249899A (en) Estimating method of electromagnetic field distribution
JPH10185973A (en) Method and device for measuring electromagnetic interference of circuit substrate
JP3341952B2 (en) Radiation Emission Leak Location Detection Method
KR100443551B1 (en) System of emi measurement using data obtained at free space
JPH0643197A (en) Distribution estimating apparatus
Shvets et al. Evaluating parameters of conductivity profile of the lower ionosphere by tweek-atmospherics
JPH05333072A (en) Method for estimating radiated interference wave distribution
Adhyapak Evaluation of Site Validation Methods for EMC Chamber from 18 GHz to 40 GHz
JP4030155B2 (en) EXTERNAL NOISE REMOVING DEVICE AND RADIATION MEASURING DEVICE HAVING THE EXTERNAL NOISE REMOVING DEVICE
JP2001066336A (en) Reflected wave measuring instrument for radiated electromagnetic wave
Manara et al. Electromagnetic penetration and coupling to wires through apertures of arbitrary shape
Heidemann et al. Using TEM waveguides according to the new IEC 61000-4-20
RU2210789C2 (en) Procedure measuring effective scattering surface of objects