JPH08220124A - Ultrasonic current velocity measuring apparatus - Google Patents

Ultrasonic current velocity measuring apparatus

Info

Publication number
JPH08220124A
JPH08220124A JP3042395A JP3042395A JPH08220124A JP H08220124 A JPH08220124 A JP H08220124A JP 3042395 A JP3042395 A JP 3042395A JP 3042395 A JP3042395 A JP 3042395A JP H08220124 A JPH08220124 A JP H08220124A
Authority
JP
Japan
Prior art keywords
signal
fourier transform
dimensional
signals
measuring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3042395A
Other languages
Japanese (ja)
Other versions
JP3483970B2 (en
Inventor
Yukiko Ogura
有希子 小椋
Kageyoshi Katakura
景義 片倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP3042395A priority Critical patent/JP3483970B2/en
Publication of JPH08220124A publication Critical patent/JPH08220124A/en
Application granted granted Critical
Publication of JP3483970B2 publication Critical patent/JP3483970B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

PURPOSE: To measure the three-dimensional current velocity distribution of a reflector having different velocity distribution utilizing elements arranged two-dimensionally and continuously. CONSTITUTION: Elements Q are arranged two-dimensionally at intervals Δx and Δy, respectively, in the directions (m) and (n). A part of the element Q is driven through a drive source to transmit repetitive ultrasonic pulse wave to the front of the element, Q. The ultrasonic wave is reflected at point P and a reflection signal is received by elements q (m, n) located at positions (m), (n) in the element Q. The receiving signals are passed through an A/D converter to produce discrete signals which are subjected to differentiation through a filter in order to remove the reflection signal from a stationary object before being subjected to Fourier transform and linear processing. Consequently, the velocity component in the three-dimensional direction of a reflector is determined and thereby the velocity distribution is derived. In other words, among the velocity components of the reflector, the velocity components in the radial direction on a polar coordinates and two perpendicular zenith angle directions (m), (n) in a plane parallel with the element Q are measured.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本装置は超音波ビームと直交する
方向に運動する物体の速度を三次元的に計測する流速計
測装置に関する。
BACKGROUND OF THE INVENTION The present invention relates to a flow velocity measuring device for three-dimensionally measuring the velocity of an object moving in a direction orthogonal to an ultrasonic beam.

【0002】[0002]

【従来の技術】流体の速度成分のうち、超音波ビームの
軸方向だけでなく、ビーム軸と直交する方向の成分を計
測する方法としていくつかの方法が提案されている。
2. Description of the Related Art Several methods have been proposed as a method for measuring not only the axial direction of an ultrasonic beam, but also the direction component orthogonal to the beam axis of the velocity component of a fluid.

【0003】ウィルソン(L. S. Wilson)らは連続的に
取得した一連の二次元画像を時間軸に沿って並べ、ビー
ム軸に垂直な面およびビームに対して直交する方向に垂
直な面へのスペックルの投影の傾きから各方向の流速を
求める方法を提案している(ウルトラソニック・イメー
ジング 15,pp.286〜303,1993年,Ultrasonic Imagin
g 15,pp286〜303,1993)。
LS Wilson et al. Arrange a series of continuously acquired two-dimensional images along the time axis, and speckle the plane perpendicular to the beam axis and the plane perpendicular to the beam. We have proposed a method to obtain the flow velocity in each direction from the inclination of the projection (Ultrasonic Imaging 15, pp.286-303, 1993, Ultrasonic Imagin
g 15, pp286-303, 1993).

【0004】トラヘイ(G. E. Trahey)らは連続的に取
得した画像の中でターゲットとした領域の周辺で相関係
数を計算し、その相関係数が最大となる位置から、ター
ゲットの移動速度方向および大きさを求める方法を提案
している(アイイーイーイー・トランザクション・オン
・バイオメディカル・エンジニアリング vol. BME-3
4,No.12,pp.965〜967,1987年,IEEE Transactions o
n Biomedical Engineering,vol.BME-34,No.12,pp.96
5〜967,1987)。
GE Trahey et al. Calculate a correlation coefficient around the target area in continuously acquired images, and determine the moving speed direction of the target and the position from the position where the correlation coefficient is maximum. We are proposing a method for finding size (IEEE Transaction on Biomedical Engineering vol. BME-3
4, No.12, pp.965-967, 1987, IEEE Transactions o
n Biomedical Engineering, vol.BME-34, No.12, pp.96
5-967, 1987).

【0005】ボーンフォウス(O. Bonnefous)らはビー
ム軸と直交する方向に関して信号の相関関数を計算し、
その最大値を得る時刻からビーム軸と直交する方向の速
度成分を求める方法を提案している(ウルトラソニック
ス・シンポジウム,pp.795〜799,1988年,Ultrasonics
Symposium,pp.795〜799,1988)。
Bonnefous et al. Calculated the correlation function of the signal in the direction orthogonal to the beam axis,
We have proposed a method for obtaining the velocity component in the direction orthogonal to the beam axis from the time when the maximum value is obtained (Ultrasonics Symposium, pp.795-799, 1988, Ultrasonics
Symposium, pp.795-799, 1988).

【0006】センサー(D. Censor)らは相反定理よりエ
コー信号のスペクトルがトランスデューサの開口径およ
び指向性の関数の畳み込みとなることを利用し、エコー
信号のスペクトルの包絡線の端の周波数からビーム軸と
直交する方向の速度成分を求める方法を提案している
(アイイーイーイー・トランザクション・オン・バイオ
メディカル・エンジニアリング,vol.35,No.9,pp740
〜751,1988,IEEETransactions on Biomedical Engine
ering,vol.35,No.9,pp740〜751,1988)。
Sensors (D. Censor) and others use the fact that the spectrum of the echo signal is a convolution of the function of the aperture diameter and the directivity of the transducer according to the reciprocity theorem, and the beam from the frequency at the end of the envelope of the spectrum of the echo signal is used. We have proposed a method to obtain the velocity component in the direction orthogonal to the axis (IEEE Transaction on Biomedical Engineering, vol.35, No.9, pp740).
~ 751, 1988, IEEE Transactions on Biomedical Engine
ering, vol.35, No.9, pp740-751, 1988).

【0007】一方、片倉らは一次元に配列された素子を
用いてそれらの素子が受信する信号の位相回転速度から
ビームと直交する方向の流速成分を求める方法を提案し
ている(特願平1−227360号,特願平3−62719号,特願
平5−82941号明細書)。
On the other hand, Katakura et al. Have proposed a method of using elements arranged one-dimensionally to obtain a flow velocity component in the direction orthogonal to the beam from the phase rotation speed of the signals received by those elements (Japanese Patent Application No. Hei 10 (1999) -135242). 1-227360, Japanese Patent Application No. 3-62719, Japanese Patent Application No. 5-82941).

【0008】[0008]

【発明が解決しようとする課題】本発明の目的は二次元
的に連続配列された素子を利用することにより、異なる
速度分布を持つ反射体の三次元の血流速分布を計測可能
とすることにある。
SUMMARY OF THE INVENTION An object of the present invention is to make it possible to measure a three-dimensional blood flow velocity distribution of a reflector having different velocity distributions by utilizing elements arranged two-dimensionally continuously. It is in.

【0009】[0009]

【課題を解決するための手段】本発明では、二次元的に
連続配列された複数個の素子によって得た受信信号を線
形処理することにより、反射体の三次元方向の速度成分
を求め、その速度分布を導出することを可能とする。
According to the present invention, a velocity component in a three-dimensional direction of a reflector is obtained by linearly processing a received signal obtained by a plurality of two-dimensionally arranged elements. It is possible to derive the velocity distribution.

【0010】[0010]

【作用】図1に示すように二次元配列された素子Qを用
いるとする。二次元配列された素子Qにおけるm方向お
よびn方向の各素子間の間隔はΔxおよびΔyである。
この二次元配列された素子Qの全体あるいは一部の素子
から時刻pkごとに点Pに集束する音波を送出する。k
は送波の番号であり、pは送波の時間間隔である。この
音波により得られる点Pの反射信号はQ内の位置(m,
n)における素子q(m,n)により受信される。送波か
ら一定時間Sを経過した時刻で信号を観測すると、k番
目の送波直後の観測時刻はt=kp+Sとなる。ここで
k番目の送波による時刻tにおける受信信号をs(k,
m,n)とする。
It is assumed that the elements Q arranged two-dimensionally as shown in FIG. 1 are used. In the two-dimensionally arrayed elements Q, the intervals between the elements in the m direction and the n direction are Δx and Δy.
A sound wave focused on the point P is transmitted at every time pk from all or a part of the elements Q arranged two-dimensionally. k
Is the transmission number and p is the time interval of transmission. The reflected signal at the point P obtained by this sound wave is at the position (m,
It is received by element q (m, n) in n). When the signal is observed at the time when a certain time S has passed from the transmission, the observation time immediately after the k-th transmission is t = kp + S. Here, the received signal at time t by the k-th transmission is s (k,
m, n).

【0011】受信信号s(k,m,n)には運動する反射
体からの信号だけではなく静止物体からの反射信号も含
まれているのでこれを除去する必要がある。そこで受信
信号の差分s(k,m,n)−s(k+1,m,n)を計
算し、この結果sd(m,n,t)を出力とし、静止物
体からの信号を除去する。
Since the received signal s (k, m, n) contains not only the signal from the moving reflector but also the reflected signal from the stationary object, it is necessary to remove it. Therefore, the difference s (k, m, n) -s (k + 1, m, n) of the received signals is calculated, and the result sd (m, n, t) is output to remove the signal from the stationary object.

【0012】さてここで、反射体が図1に示すように極
座標における半径方向の速度をδ0,x方向およびy方向
における極座標の天頂角方向の角速度をε0,γ0とする
と、時刻tにおける反射体の半径方向、x方向およびy
方向における極座標の天頂角方向の位置rθ,θx、お
よびθyは数1,数2,数3となる。
Assuming that the radial velocity of the reflector in the polar coordinates is δ 0 and the angular velocities in the zenith angle direction of the polar coordinates in the x and y directions are ε 0 and γ 0 as shown in FIG. Radius, x-direction and y of the reflector at
The positions rθ, θx, and θy in the zenith angle direction of the polar coordinates in the direction are given by Equations 1, 2 and 3.

【0013】[0013]

【数1】 [Equation 1]

【0014】[0014]

【数2】 [Equation 2]

【0015】[0015]

【数3】 (Equation 3)

【0016】このとき、波面は遅延回路により平面に補
正するので、素子q(m,n)の位置を(xm,yn)とす
ると、図1に示すrxyは数4となるので、素子q
(m,n)までの超音波伝搬距離rは数5となり、素子q
(m,n)が受信する信号の位相回転量Ψmnは数6とな
る。
At this time, since the wavefront is corrected to be a plane by the delay circuit, if the position of the element q (m, n) is (xm, yn), rxy shown in FIG.
The ultrasonic wave propagation distance r to (m, n) is given by Equation 5, and the element q
The phase rotation amount Ψmn of the signal received by (m, n) is given by the equation 6.

【0017】[0017]

【数4】 [Equation 4]

【0018】[0018]

【数5】 (Equation 5)

【0019】[0019]

【数6】 (Equation 6)

【0020】Kは波数を示し、その値は2πf/cであ
る。cは音速、fは周波数である。Ψmnの定数項は無
視できるのでこれを取り除き、数7とおくことができ
る。従って、受信信号sd(m,n,t)は数8となる。
K represents the wave number, and its value is 2πf / c. c is the speed of sound and f is the frequency. Since the constant term of Ψmn can be ignored, it can be removed and set to Eq. Therefore, the received signal sd (m, n, t) is given by Eq.

【0021】[0021]

【数7】 (Equation 7)

【0022】[0022]

【数8】 (Equation 8)

【0023】a(m,n)は送受信器の開口径関数であ
り、a(m,n)はa1(m)とa2(n)の積である。ま
た、b(t)は計測時間方向の重み関数である。
A (m, n) is the aperture diameter function of the transceiver, and a (m, n) is the product of a 1 (m) and a 2 (n). Further, b (t) is a weighting function in the measurement time direction.

【0024】そこで、sd(m,n,t)をm方向および
n方向に関して二次元フーリエ変換を行うと、数9とな
る。
Then, when sd (m, n, t) is subjected to two-dimensional Fourier transform in the m direction and the n direction, the following equation 9 is obtained.

【0025】[0025]

【数9】 [Equation 9]

【0026】Ψxy{ }はm方向およびn方向に関する
二次元フーリエ変換を示すオペレータである。ここで、
A(wx,wy)はa(m,n)のm方向およびn方向に関
する二次元フーリエ変換である。数9から明らかなこと
は、R2が平面ωx=kε0tと平面ωy=kγ0tが交
差する直線上において極大値を得ることである。
Ψxy {} is an operator indicating a two-dimensional Fourier transform in the m direction and the n direction. here,
A (wx, wy) is a two-dimensional Fourier transform of a (m, n) in the m and n directions. Obvious that several 9, R 2 is the planar ωx = kε 0 t and plan ωy = kγ 0 t obtain the maximum value on the straight line intersecting.

【0027】ここで、数10,数11とおいて変数変換
を行うと、数12,数13となるので、R2は数14と
書き換えられる。
Here, if variable conversion is performed using the equations 10 and 11, the equations 12 and 13 are obtained, so that R 2 can be rewritten as the equation 14.

【0028】[0028]

【数10】 [Equation 10]

【0029】[0029]

【数11】 [Equation 11]

【0030】[0030]

【数12】 (Equation 12)

【0031】[0031]

【数13】 (Equation 13)

【0032】[0032]

【数14】 [Equation 14]

【0033】ここで、χおよびγは数15および数16
である。
Here, χ and γ are equations 15 and 16
Is.

【0034】[0034]

【数15】 (Equation 15)

【0035】[0035]

【数16】 [Equation 16]

【0036】さらに、R2′をtに関してフーリエ変換
を行うと、数17を得る。
Further, when Fourier transform is performed on R 2 ′ with respect to t, the following equation 17 is obtained.

【0037】[0037]

【数17】 [Equation 17]

【0038】Ft{ }はtに関するフーリエ変換を示す
オペレータである。従って、R3 が極大値を得る点
0,η0,μ0)は数18,数19および数20に示す
条件を満たすので、求めるべき対象の速度δ0 、および
角速度ε0,γ0は数21,数22および数23から求め
られる。
Ft {} is an operator indicating the Fourier transform with respect to t. Therefore, the point where R 3 gets the maximum value
Since (ξ 0 , η 0 , μ 0 ) satisfies the conditions shown in Formula 18, Formula 19 and Formula 20, the target velocity δ 0 and the angular velocities ε 0 and γ 0 are Formula 21, Formula 22 and Formula 23. Required from.

【0039】[0039]

【数18】 (Equation 18)

【0040】[0040]

【数19】 [Formula 19]

【0041】[0041]

【数20】 (Equation 20)

【0042】[0042]

【数21】 [Equation 21]

【0043】[0043]

【数22】 [Equation 22]

【0044】[0044]

【数23】 (Equation 23)

【0045】なお並列ビーム形成器によるビーム形成は
空間に関するフーリエ変換と等価である。したがって、
m方向およびn方向に関する二次元フーリエ変換は図2
に示すように、受信信号s(k,m,n)を図3に示す複
数の受信用超音波ビームsb(k,m,n)によって得る
受信信号sc(k,m,n)のすべてを同時に出力すると
いう複数受信ビームの並列形成を行うことに置き換える
ことができる。
Beamforming by the parallel beamformer is equivalent to Fourier transform in space. Therefore,
The two-dimensional Fourier transform for the m-direction and the n-direction is shown in FIG.
, The received signal s (k, m, n) is obtained by the plurality of receiving ultrasonic beams sb (k, m, n) shown in FIG. This can be replaced by performing parallel formation of a plurality of reception beams that output simultaneously.

【0046】[0046]

【実施例】以下、本発明の1実施例を図4により説明す
る。Qは二次元に配列されたM×N個のトランスデュー
サ素子であり、二次元配列された素子Qにおけるm方向
およびn方向の各素子間の間隔はΔxおよびΔyであ
る。Qの一部の素子Vに接続された駆動源によりVを駆
動して、送波間隔pとしてQの前面に繰り返し、パルス
状音波を送信する。この音波により得られる点Pの反射
信号はQ内の位置(m,n)における素子q(m,n)によ
り受信される。送波から一定時間Sを経過した時刻で信
号を観測すると、k番目の送波直後の観測時刻はt=k
p+Sとなる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. Q is a two-dimensional array of M × N transducer elements, and the spacing between the elements in the two-dimensional array of elements Q in the m and n directions is Δx and Δy. V is driven by a driving source connected to part of the elements V of Q, and a pulsed sound wave is repeatedly transmitted to the front surface of Q with a transmission interval p. The reflected signal at the point P obtained by this sound wave is received by the element q (m, n) at the position (m, n) in Q. When the signal is observed at the time when a certain time S has passed from the transmission, the observation time immediately after the k-th transmission is t = k.
It becomes p + S.

【0047】ここでk番目の送波による時刻tにおける
反射信号をs(k,m,n)(m=1,…,M,n=1,
…,N)をQにより受信し、これらをAD変換器により
離散化し、C(k,m,n)とする。ここでt=kTで、
TはAD変換器のサンプリング間隔である。さらに静止
物体からの反射信号を除去するために、フィルタにより
kに関して複数個のC(k,m,n)について差分処
理、すなわちC(k,m,n)−C(k+1,m,n)を
求めることを行い、その出力をd(k,m,n)とする。
そして、この信号d(k,m,n)をまず、一次元フーリ
エ変換器によりmに関してフーリエ変換を行い、数24
に示す出力DR1(ωx,n,k)を得る。
Here, the reflection signal at time t due to the k-th transmission is represented by s (k, m, n) (m = 1, ..., M, n = 1,
, N) is received by Q, and these are discretized by an AD converter to be C (k, m, n). Where t = kT,
T is the sampling interval of the AD converter. Further, in order to remove a reflection signal from a stationary object, a difference processing is performed on a plurality of C (k, m, n) with respect to k by a filter, that is, C (k, m, n) -C (k + 1, m, n). Is obtained, and the output is set as d (k, m, n).
Then, the signal d (k, m, n) is first Fourier-transformed with respect to m by a one-dimensional Fourier transformer,
The output DR 1 (ωx, n, k) shown in is obtained.

【0048】数24におけるDA1は数25に示すよう
に開口径関数a1(m)のm方向の離散フーリエ変換であ
る。
DA1 in the equation 24 is a discrete Fourier transform of the aperture diameter function a 1 (m) in the m direction as shown in the equation 25.

【0049】[0049]

【数24】 [Equation 24]

【0050】[0050]

【数25】 (Equation 25)

【0051】さらにDR1(ωx,n,k)を一次元フー
リエ変換器によりnに関してフーリエ変換を行い、数2
6に示す出力DR2(ωx,ωy,k)とする。数26に
おけるDA2は数27に示すように開口径関数a2(n)
のn方向の離散フーリエ変換である。
Further, DR 1 (ωx, n, k) is Fourier transformed with respect to n by a one-dimensional Fourier transformer,
The output DR 2 (ωx, ωy, k) shown in FIG. DA2 in the equation 26 is the aperture diameter function a 2 (n) as shown in the equation 27.
Is a discrete Fourier transform in the n direction.

【0052】[0052]

【数26】 (Equation 26)

【0053】[0053]

【数27】 [Equation 27]

【0054】DR2(ωx,ωy,k)を直交座標空間
(ωx,ωy,k)において表すと、その値は平面ωx
=Kε0tと平面ωy=Kγ0tが交差する直線上におい
て極大値を得る。Kは波数を示す。これらの平面の傾き
は前記数10および数11であるので、それらの平面の
傾きの値を最小二乗法により求め、数21および数22
を計算し、x方向およびy方向における極座標の天頂角
方向すなわちθ方向の角速度ε0,γ0の値を得る。
If DR 2 (ωx, ωy, k) is expressed in the Cartesian coordinate space (ωx, ωy, k), its value is the plane ωx.
= Kε 0 t and the plane ωy = Kγ 0 t intersect, the maximum value is obtained on the straight line. K indicates the wave number. Since the inclinations of these planes are the equations 10 and 11, the values of the inclinations of the planes are obtained by the least squares method, and the equations 21 and 22 are obtained.
Is calculated and the values of the angular velocities ε 0 and γ 0 in the zenith angle direction of the polar coordinates in the x direction and the y direction, that is, the θ direction are obtained.

【0055】さらにDR2(ωx,ωy,k)を一次元フ
ーリエ変換器によりkに関してフーリエ変換を行い、数
28に示す出力DR3(ξ,η,μ)を得る。数28にお
けるDBは数29に示すように重み関数b(kT)のk方
向の離散フーリエ変換である。
Further, DR 2 (ωx, ωy, k) is Fourier-transformed with respect to k by a one-dimensional Fourier transformer, and an output DR 3 (ξ, η, μ) shown in Expression 28 is obtained. DB in Expression 28 is a discrete Fourier transform in the k direction of the weighting function b (kT) as shown in Expression 29.

【0056】[0056]

【数28】 [Equation 28]

【0057】[0057]

【数29】 [Equation 29]

【0058】この最終出力DR3(ξ,η,μ)は直交座
標空間(ξ,η,μ)において、極大値を得る点から前
記数23を計算し、半径方向の速度δ0 の値を得る。そ
して得られたδ0 ,ε0 ,γ0 の値を三次元の極座標空
間としてディスプレイ上に表示するか、δ0 ,ε0 ,γ
0 の値から数30,数31,数32により直交座標系に
おけるx、y、およびz方向の速度成分vx,vy,v
zを計算し、三次元の直交座標空間としてディスプレイ
上に表示する。
This final output DR 3 (ξ, η, μ) is calculated in the Cartesian coordinate space (ξ, η, μ) from the point where the maximum value is obtained, and the value of the velocity δ 0 in the radial direction is calculated. obtain. Then, the obtained values of δ 0 , ε 0 , γ 0 are displayed on the display as a three-dimensional polar coordinate space, or δ 0 , ε 0 , γ
From the value of 0 , the velocity components vx, vy, v in the x, y, and z directions in the Cartesian coordinate system are obtained from Equations 30, 31, and 32.
Calculate z and display it on the display as a three-dimensional Cartesian coordinate space.

【0059】[0059]

【数30】 [Equation 30]

【0060】[0060]

【数31】 [Equation 31]

【0061】[0061]

【数32】 [Equation 32]

【0062】なお、静止物体からの信号を除去するため
の差分処理はmおよびnに関するフーリエ変換を行った
あとでもよいので、図5に示すように一次元フーリエ変
換器2の後に差分処理フィルタを接続してもよい。ま
た、時間方向のフーリエ変換を行ったあとに差分処理を
行ってもよいので、図6に示すように一次元フーリエ変
換器3の後に差分処理フィルタを接続してもよい。
Since the difference processing for removing the signal from the stationary object may be performed after performing the Fourier transform on m and n, a difference processing filter is provided after the one-dimensional Fourier transformer 2 as shown in FIG. You may connect. Further, since the difference processing may be performed after performing the Fourier transform in the time direction, a difference processing filter may be connected after the one-dimensional Fourier transformer 3 as shown in FIG.

【0063】なお、空間に関するフーリエ変換は並列ビ
ーム形成器によるビーム形成と等価であることが知られ
ている。そこで、図7に示すようにmおよびnに関する
フーリエ変換を行う一次元フーリエ変換器1および一次
元フーリエ変換器2を並列ビーム形成器に置き換えるこ
とができる。すなわち、m方向およびn方向に関する一
次元フーリエ変換を図2に示すように、受信信号s
(k,m,n)を図3に示す複数の受信用超音波ビームB
mnによって得る受信信号sb(k,m,n)のすべてを
同時に出力するという複数受信ビームの並列形成を行う
ことに置き換えることができる。
It is known that the Fourier transform related to the space is equivalent to the beam forming by the parallel beam former. Therefore, as shown in FIG. 7, the one-dimensional Fourier transformer 1 and the one-dimensional Fourier transformer 2 that perform Fourier transform on m and n can be replaced with a parallel beam former. That is, as shown in FIG. 2, the one-dimensional Fourier transform in the m-direction and the n-direction is received signal s
(k, m, n) are shown in FIG.
It can be replaced by performing parallel formation of a plurality of reception beams by simultaneously outputting all the reception signals sb (k, m, n) obtained by mn.

【0064】具体的な手順としては、測定対象とする反
射体からの反射信号s(k,m,n)(m=1,…,M,
n=1,…,N)をQにより受信し、並列受信ビーム形
成器によりM×N個の各信号にそれぞれ遅延をかけ、加
算して目的とする方向に指向性を有する受波ビームの受
信信号sb(k,h,l)(h=1,…,H,l=1,
…,L)を作る。
As a concrete procedure, a reflection signal s (k, m, n) (m = 1, ..., M, from the reflector to be measured) is used.
(n = 1, ..., N) is received by Q, and a parallel reception beamformer delays each of M × N signals and adds them to receive a reception beam having directivity in a target direction. Signal sb (k, h, l) (h = 1, ..., H, l = 1,
..., L) is made.

【0065】得られた複数のビームは図3に示すように
それぞれ隣り合ったビームは角度εの方位差を有する。
そこで、これらの受信信号のうち図3に示すように角度
Θの範囲内のH×L本の受信ビームsd(k,h,l)を
選択する。そして、この信号をAD変換器により離散化
する。その出力を差分処理フィルタを通過させ、その出
力を一次元フーリエ変換器3によりkに関するフーリエ
変換を行い、三次元方向の速度成分を求める。
As shown in FIG. 3, the plurality of obtained beams have the azimuth difference of the angle ε between the adjacent beams.
Therefore, H × L reception beams sd (k, h, l) within the range of the angle Θ are selected from these reception signals as shown in FIG. Then, this signal is discretized by the AD converter. The output is passed through a difference processing filter, and the output is subjected to Fourier transform with respect to k by the one-dimensional Fourier transformer 3 to obtain the velocity component in the three-dimensional direction.

【0066】さて、ディスプレイに表示する方法として
は二次元的に表示する方法と三次元的に表示する方法が
考えられる。例えば、図8に示すように任意の二次元面
を選択し、その面に平行な速度成分の方向を矢印で表示
する。各速度成分の大きさは矢印の大きさあるいは太さ
で表示する。あるいは図9に示すように速度成分の方向
を色別で表し、各速度成分の大きさは色の濃淡または輝
度の高低で表示する。
A two-dimensional display method and a three-dimensional display method can be considered as the display method. For example, as shown in FIG. 8, an arbitrary two-dimensional surface is selected, and the direction of the velocity component parallel to that surface is indicated by an arrow. The size of each velocity component is indicated by the size or thickness of the arrow. Alternatively, as shown in FIG. 9, the direction of the speed component is represented by color, and the size of each speed component is displayed by the shade of color or the level of brightness.

【0067】三次元的に表示する方法は、図10に示す
ように各速度成分の方向を矢印で表示する。各速度成分
の大きさは矢印の大きさあるいは太さで表示する。ある
いは図11に示すように速度成分の方向を色別で表し、
各速度成分の大きさは色の濃淡または輝度の高低で表示
する。
In the three-dimensional display method, the direction of each velocity component is indicated by an arrow as shown in FIG. The size of each velocity component is indicated by the size or thickness of the arrow. Alternatively, as shown in FIG. 11, the direction of the velocity component is represented by color,
The magnitude of each velocity component is displayed by the shade of color or the level of brightness.

【0068】[0068]

【発明の効果】本発明により異なる流速を持つ反射体の
速度を三次元的に計測することが可能になる。
According to the present invention, the velocities of reflectors having different flow velocities can be measured three-dimensionally.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の動作の説明図。FIG. 1 is an explanatory diagram of the operation of the present invention.

【図2】本発明の空間におけるフーリエ変換を行う代わ
りに並列受波ビーム形成器を用いる場合の動作の説明
図。
FIG. 2 is an explanatory diagram of an operation when a parallel receiving beamformer is used instead of performing Fourier transform in the space of the present invention.

【図3】本発明の空間におけるフーリエ変換を行う代わ
りに並列受波ビーム形成器を用いる場合の動作の説明
図。
FIG. 3 is an explanatory diagram of an operation when a parallel receiving beamformer is used instead of performing Fourier transform in the space of the present invention.

【図4】本発明の実施例の構成を示すブロック図。FIG. 4 is a block diagram showing a configuration of an exemplary embodiment of the present invention.

【図5】本発明の実施例の構成を示すブロック図。FIG. 5 is a block diagram showing a configuration of an exemplary embodiment of the present invention.

【図6】本発明の実施例の構成を示すブロック図。FIG. 6 is a block diagram showing the configuration of an embodiment of the present invention.

【図7】本発明の実施例の構成を示すブロック図。FIG. 7 is a block diagram showing the configuration of an embodiment of the present invention.

【図8】本発明の実施例におけるディスプレイ方法の説
明図。
FIG. 8 is an explanatory diagram of a display method according to an embodiment of the present invention.

【図9】本発明の実施例におけるディスプレイ方法の説
明図。
FIG. 9 is an explanatory diagram of a display method according to an embodiment of the present invention.

【図10】本発明の実施例におけるディスプレイ方法の
説明図。
FIG. 10 is an explanatory diagram of a display method according to an embodiment of the present invention.

【図11】本発明の実施例におけるディスプレイ方法の
説明図。
FIG. 11 is an explanatory diagram of a display method according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

Q…二次元配列素子、q(m,n)…Q内の位置(m,
n)における素子、P…反射体、B…並列ビーム形成
器、δ0…半径方向の速度成分、ε0…x方向における天
頂角方向の角速度成分、γ0 …y方向における天頂角方
向の角速度成分。
Q ... Two-dimensional array element, q (m, n) ... Position in Q (m,
n) elements, P ... Reflector, B ... Parallel beam former, δ 0 ... Velocity component in radial direction, ε 0 ... Angular velocity component in zenith angular direction in x direction, γ 0 ... Angular velocity in zenith angular direction in y direction component.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】二次元の配列素子により超音波の反射信号
を受信し、各複数信号の位相回転速度を求め、これらの
値から反射体の速度成分のうち極座標における半径方
向、および前記二次元配列素子に平行な面内の直交する
二つの方向における天頂角方向の速度成分を計測するこ
とを特徴とする超音波流速計測装置。
1. A two-dimensional array element receives a reflection signal of an ultrasonic wave, obtains a phase rotation speed of each of a plurality of signals, and from these values, a radial direction in polar coordinates of a speed component of a reflector, and the two-dimensional An ultrasonic flow velocity measuring device characterized by measuring velocity components in the zenith angle direction in two directions orthogonal to each other in a plane parallel to the array element.
【請求項2】請求項1において、二次元の配列を有する
送受波器と,その送受波器の一部の素子を所定周期で繰
り返し駆動して測定対象に超音波を送波する手段と,測
定対象からの反射信号を離散化して記憶する離散化装置
と,各信号において送波からの所定経過時刻の信号同士
を差分処理し、静止物体からの信号の除去を行う手段
と,それら静止物体からの信号の除去を行った後の信号
に対し、二次元の配列方向のうちの一つの方向に関する
フーリエ変換を行う第一の一次元フーリエ変換装置と,
受波ビームの二次元の配列方向のうちの前記一つの方向
と異なる方向に関するフーリエ変換を行う第二の一次元
フーリエ変換装置と,第一および第二のフーリエ変換装
置の順次出力を繰り返し送波する時間方向についてフー
リエ変換する第三のフーリエ変換手段を有し、この第三
のフーリエ変換手段の出力の三次元分布において極大値
を得る点から前記測定対象内の移動物体の極座標におけ
る半径方向の速度成分、および前記二次元配列素子に平
行な面内の直交する二つの方向における天頂角方向の角
速度成分を求め、これら求めた速度成分の値から三次元
表示を行う超音波流速計測装置。
2. A wave transmitter / receiver having a two-dimensional array, and means for transmitting ultrasonic waves to a measurement object by repeatedly driving a part of elements of the wave transmitter / receiver at a predetermined cycle. A discretizer for discretizing and storing a reflection signal from a measurement target, a means for performing differential processing on signals at a predetermined elapsed time from transmission in each signal, and removing the signal from a stationary object, and those stationary objects A first one-dimensional Fourier transform device for performing a Fourier transform on one of the two-dimensional array directions on the signal after removal of the signal from
A second one-dimensional Fourier transform device that performs a Fourier transform in a direction different from the one direction of the two-dimensional array direction of the received beam, and the sequential output of the first and second Fourier transform devices is repeatedly transmitted. Having a third Fourier transform means for performing a Fourier transform in the time direction, and from the point of obtaining the maximum value in the three-dimensional distribution of the output of the third Fourier transform means, in the radial direction in the polar coordinates of the moving object in the measurement target. An ultrasonic flow velocity measuring device that obtains a velocity component and an angular velocity component in the zenith angle direction in two directions orthogonal to each other in a plane parallel to the two-dimensional array element, and performs three-dimensional display from the obtained velocity component values.
【請求項3】請求項1または2において、第一の一次元
フーリエ変換装置および第二の一次元フーリエ変換装置
を、前記送受波器の各素子からの信号を整相して指向性
の異なる複数の受波ビームによる受波信号を二次元的に
並列に出力する並列受波ビーム形成器とする超音波流速
計測装置。
3. The first one-dimensional Fourier transform device and the second one-dimensional Fourier transform device according to claim 1, wherein signals from respective elements of the transceiver are phased to have different directivities. An ultrasonic flow velocity measuring device as a parallel receiving beamformer that outputs received signals by a plurality of receiving beams in parallel two-dimensionally.
【請求項4】請求項1または2において、各信号におい
て送波からの所定経過時刻の信号同士を差分処理して静
止物体からの信号の除去を行う手段を、前記第一のフー
リエ変換器の前段に配置する超音波流速計測装置。
4. The means for removing a signal from a stationary object by performing a difference process between signals at a predetermined elapsed time after transmission in each signal according to claim 1 or 2. An ultrasonic flow velocity measuring device placed in the previous stage.
【請求項5】請求項1または2において、各信号におい
て送波からの所定経過時刻の信号同士を差分処理して静
止物体からの信号の除去を行う手段を、前記第三のフー
リエ変換器の前段に配置する超音波流速計測装置。
5. The means for removing a signal from a stationary object by performing a difference process between signals at a predetermined elapsed time from transmission in each signal according to claim 1 or 2. An ultrasonic flow velocity measuring device placed in the previous stage.
【請求項6】請求項2において、各信号において送波か
らの所定経過時刻の信号同士を差分処理して静止物体か
らの信号の除去を行う手段を、前記第三のフーリエ変換
器の後段に配置する超音波流速計測装置。
6. A means for removing a signal from a stationary object by performing a difference process between signals at a predetermined elapsed time from transmission in each signal, in a stage subsequent to the third Fourier transformer. An ultrasonic flow velocity measuring device to be placed.
【請求項7】請求項1または2において、計測データか
ら計算して求めた前記極座標における半径方向の速度成
分、および前記二次元配列素子に平行な面内の直交する
二つの方向における天頂角方向の角速度成分から、座標
変換を行い、直交座標における三次元の方向の速度成分
を計算し、それらの値から三次元画像表示を行う超音波
流速計測装置。
7. The velocity component in the radial direction in the polar coordinates calculated from the measurement data and the zenith angle direction in two directions orthogonal to each other in a plane parallel to the two-dimensional array element according to claim 1 or 2. An ultrasonic flow velocity measuring device that performs coordinate conversion from the angular velocity components of 3 above, calculates velocity components in 3D directions in Cartesian coordinates, and displays a 3D image from those values.
JP3042395A 1995-02-20 1995-02-20 Ultrasonic flow velocity measuring device Expired - Fee Related JP3483970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3042395A JP3483970B2 (en) 1995-02-20 1995-02-20 Ultrasonic flow velocity measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3042395A JP3483970B2 (en) 1995-02-20 1995-02-20 Ultrasonic flow velocity measuring device

Publications (2)

Publication Number Publication Date
JPH08220124A true JPH08220124A (en) 1996-08-30
JP3483970B2 JP3483970B2 (en) 2004-01-06

Family

ID=12303556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3042395A Expired - Fee Related JP3483970B2 (en) 1995-02-20 1995-02-20 Ultrasonic flow velocity measuring device

Country Status (1)

Country Link
JP (1) JP3483970B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259850A (en) * 2007-03-30 2008-10-30 General Electric Co <Ge> Method and apparatus for measuring flow in multi-dimensional ultrasound
JP2008301892A (en) * 2007-06-05 2008-12-18 Toshiba Corp Ultrasonic diagnostic apparatus and ultrasonic speed measuring method
JP2020128894A (en) * 2019-02-07 2020-08-27 日本無線株式会社 Water temperature measurement device and water temperature measurement method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008259850A (en) * 2007-03-30 2008-10-30 General Electric Co <Ge> Method and apparatus for measuring flow in multi-dimensional ultrasound
JP2008301892A (en) * 2007-06-05 2008-12-18 Toshiba Corp Ultrasonic diagnostic apparatus and ultrasonic speed measuring method
JP2020128894A (en) * 2019-02-07 2020-08-27 日本無線株式会社 Water temperature measurement device and water temperature measurement method

Also Published As

Publication number Publication date
JP3483970B2 (en) 2004-01-06

Similar Documents

Publication Publication Date Title
JP4100709B2 (en) Apparatus for determining the motion and velocity of moving objects
US5230340A (en) Ultrasound imaging system with improved dynamic focusing
EP1060413B1 (en) Doppler angle unfolding in ultrasound color flow and doppler
CN111819467A (en) Method and apparatus for estimating wave propagation and scattering parameters
US20090292208A1 (en) Automated detection of asymptomatic carotid stenosis
Allevato 3D imaging method for an air-coupled 40 kHz ultrasound phased-array
JP3483970B2 (en) Ultrasonic flow velocity measuring device
US5341809A (en) Ultrasonic flowmeter
JPH03155843A (en) Ultrasonic diagnostic device
JPH04126137A (en) Ultrasonic doppler diagnostic device
JP3018300B2 (en) Vector velocity measurement device for objects using ultrasonic waves
Newhouse et al. Invariance of the Doppler bandwidth with flow displacement in the illuminating field
JP3266723B2 (en) Ultrasonic signal processing method
JPH0933553A (en) Ultrasonic flow velocity measuring device
JPH0938085A (en) Ultrasonic flow velocity measuring device
JP3202969B2 (en) Wave receiver
JPH069561B2 (en) Ultrasonic diagnostic equipment
JP2005130877A (en) Ultrasonic diagnosis apparatus
JPH0368694B2 (en)
JP2643142B2 (en) Ultrasound blood flow meter
JP2956783B2 (en) Ultrasonic flow velocity measuring device
JPH0824679B2 (en) Ultrasonic Doppler diagnostic device
JPH0567287B2 (en)
JP2760558B2 (en) Ultrasound diagnostic equipment
JPH0751130B2 (en) Ultrasonic Doppler diagnostic device

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091017

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101017

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees