JPH0821908B2 - Optical communication transmission system - Google Patents

Optical communication transmission system

Info

Publication number
JPH0821908B2
JPH0821908B2 JP4162338A JP16233892A JPH0821908B2 JP H0821908 B2 JPH0821908 B2 JP H0821908B2 JP 4162338 A JP4162338 A JP 4162338A JP 16233892 A JP16233892 A JP 16233892A JP H0821908 B2 JPH0821908 B2 JP H0821908B2
Authority
JP
Japan
Prior art keywords
optical
transmission
optical fiber
dispersion
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4162338A
Other languages
Japanese (ja)
Other versions
JPH06318914A (en
Inventor
直也 逸見
正吾 中谷
朝樹 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4162338A priority Critical patent/JPH0821908B2/en
Priority to AU40170/93A priority patent/AU664449B2/en
Priority to EP93109609A priority patent/EP0575881B1/en
Priority to EP99124056A priority patent/EP0986198A3/en
Priority to DE69329570T priority patent/DE69329570T2/en
Publication of JPH06318914A publication Critical patent/JPH06318914A/en
Priority to US08/452,728 priority patent/US5675429A/en
Publication of JPH0821908B2 publication Critical patent/JPH0821908B2/en
Priority to US09/413,827 priority patent/USRE37621E1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、光ファイバ伝送系にお
いて、高速・超長距離の伝送系を提供する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a high speed and ultra long distance transmission system for an optical fiber transmission system.

【0002】[0002]

【従来の技術】光通信システムは、光の広帯域性を利用
し大容量の情報を伝送できるため、将来の高度情報化社
会の伝送網用の通信システムとして大いに期待されてい
る。実際従来のマイクロ波帯あるいはミリ波帯の通信で
は難しかった10Gb/sといった超大容量通信がオプ
ティカルコミュニケーションコンファレンステクニカル
ダイジェスト(1990年)に報告されている(テツユ
キ スザキ他、”10Gb/s optical tr
ansmitter module with mul
tiquantum well DFB LD and
doped−channel hetero−MIS
FET driver IC,”1990年 Opti
cal Fiber Communication C
onferenceテクニカルダイジェスト TUI2
1990年)。
2. Description of the Related Art Since an optical communication system can transmit a large amount of information by utilizing the wide band property of light, it is highly expected as a communication system for a transmission network in the future advanced information society. In fact, ultra-high-capacity communication of 10 Gb / s, which was difficult with conventional microwave or millimeter wave communication, was reported in the Optical Communication Conference Technical Digest (1990) (Tetsuyuki Saki et al., “10 Gb / s optical tr”).
ansmitter module with mul
tiquantum well DFB LD and
doped-channel hetero-MIS
FET driver IC, "1990 Opti
cal Fiber Communication C
onference technical digest TUI2
1990).

【0003】しかしこのような大容量通信においては、
伝送路である光ファイバの波長分散により伝送後に大き
な波形歪をきたし、伝送特性を大いに劣化させることも
知られている。このため、光送信器に用いられる光源の
波長帯において波長分散が零である光ファイバを用いる
伝送が報告されている。また、光ファイバ分散が完全に
零にならない場合には、この分散量を補償するため分散
補償用の光ファイバを伝送路に挿入することが特開昭6
2−65530号及び特開昭62−65529号に記載
されている。
However, in such a large capacity communication,
It is also known that chromatic dispersion of an optical fiber, which is a transmission line, causes a large waveform distortion after transmission and greatly deteriorates transmission characteristics. For this reason, transmission using an optical fiber having zero chromatic dispersion in the wavelength band of the light source used for the optical transmitter has been reported. Further, when the optical fiber dispersion does not become completely zero, it is necessary to insert an optical fiber for dispersion compensation into the transmission line in order to compensate for this dispersion amount.
2-65530 and JP-A-62-65529.

【0004】近年エルビュームファイバ増幅器の出現に
伴い、光直接増幅中継系の検討も盛んに行われている。
このような光伝送系では光ファイバの波長分散の影響は
非常に大きいため、零波長分散光ファイバを用いた伝送
が検討されている。また、実際の伝送路では、完全に零
分散条件を光ファイバ全長にわたって満足できないた
め、この微少な分散の影響を抑圧するための送信、受信
側での分散補償技術も提案されている。例えばオプティ
カルファイバーコミュニケーションコンファレンス(1
990年)のPD7とPD8に記載されている。(エー
・エイチ・グノーク他、”Optical Equal
ization of Fiber Chromati
c Dispersion in a 5−Gb/s
Transmission system,1990年
Optical Fiber Communicat
ion Conference ポストデッドラインペ
ーパーPD7および ナオヤ ヘンミ他、”A Nov
el DispersionCompensation
Technique for Multigigab
it Transmission with Norm
al OpticalFiber at 1.5 mi
cron Wavelength,”1990年 Op
tical Fiber Communication
Conference ポストデッドラインペーパー
PD8)
With the advent of erbume fiber amplifiers in recent years, optical direct amplification repeater systems have been actively studied.
In such an optical transmission system, the influence of chromatic dispersion of the optical fiber is very large, and therefore transmission using a zero wavelength dispersion optical fiber is being studied. Further, in an actual transmission line, the zero-dispersion condition cannot be completely satisfied over the entire length of the optical fiber. Therefore, a dispersion compensation technique on the transmitting side and the receiving side for suppressing the influence of this minute dispersion has been proposed. For example, Optical Fiber Communication Conference (1
990) PD7 and PD8. (A.H.Gnoke and others, "Optical Equal"
ization of Fiber Chromati
c Dispersion in a 5-Gb / s
Transmission system, 1990 Optical Fiber Communicat
Ion Conference Post Deadline Paper PD7 and Naoya Henmi et al., “A Nov.
el Dispersion Compensation
Technique for Multigigab
it Transmission with Norm
al OpticalFiber at 1.5 mi
cron Wavelength, "1990 Op
tial fiber communication
(Conference Post Deadline Paper PD8)

【発明が解決しようとする課題】光直接増幅中継系にお
いて伝送特性を劣化させる原因は、前述の光ファイバ内
の波長分散だけではない。多段直接増幅中継系における
雑音蓄積効果、光ファイバ内での非線形効果が伝送特性
を大いに劣化させることも知られている。前者の雑音蓄
積効果の影響を抑圧するためには伝送光パワーを大きく
することが、後者の非線形効果の影響を抑圧するために
は伝送光パワーを小さくすることが要求されるため、こ
の両者を同時に抑圧することは困難であった。また、特
に光ファイバ内の非線形効果に関しては不明な点も多
く、劣化原因が特定されていなかった。
The cause of degrading the transmission characteristics in the optical direct amplification repeater system is not only the above-mentioned chromatic dispersion in the optical fiber. It is also known that the noise accumulation effect in the multistage direct amplification repeater system and the nonlinear effect in the optical fiber greatly deteriorate the transmission characteristics. In order to suppress the influence of the former noise accumulation effect, it is necessary to increase the transmission optical power, and in order to suppress the influence of the latter nonlinear effect, it is required to reduce the transmission optical power. At the same time it was difficult to suppress. In addition, there are many unclear points especially regarding the nonlinear effect in the optical fiber, and the cause of deterioration has not been specified.

【0005】[0005]

【課題を解決するための手段】本発明の光多段直接増幅
中継伝送系は、光送信器と、伝送用光ファイバと、光直
接増幅中継器と光受信器を用いる光多段直接増幅中継系
において、送信器−光増幅中継器間、前記光増幅中継器
間、あるいは光増幅器−光受信器間を接続するそれぞれ
の区間の伝送用光ファイバが、前記光送信器の送信波長
において波長分散が零と異なる値の複数の光ファイバ群
縦続接続により構成されており、該伝送用光ファイバの
各区間での光ファイバ群波長分散総和が零となることを
特徴とした光通信伝送系である。
An optical multistage direct amplification repeater transmission system of the present invention is an optical multistage direct amplification repeater system using an optical transmitter, an optical fiber for transmission, an optical direct amplification repeater and an optical receiver. , The transmitter-optical amplification repeater, the optical amplification repeater, or the optical amplifier-optical receiver in each of the sections connecting the optical amplifier, the chromatic dispersion is zero at the transmission wavelength of the optical transmitter. The optical communication transmission system is characterized in that it is constituted by a plurality of cascaded optical fiber groups having different values from each other, and that the total chromatic dispersion of the optical fiber group in each section of the transmission optical fiber becomes zero.

【0006】[0006]

【作用】本発明の光直接増幅中継系は、各伝送区間毎に
総波長分散量を零となるように設定し、かつ伝送用光フ
ァイバの分散値が信号光波長で零となる光ファイバ伝送
路として用いないあるいは用いる距離を短くした光伝送
系である。
In the optical direct amplification repeater system of the present invention, the total chromatic dispersion amount is set to be zero for each transmission section, and the dispersion value of the transmission optical fiber is zero at the signal light wavelength. It is an optical transmission system that is not used as a path or has a short distance.

【0007】光多段直接増幅中継系の伝送特性を劣化さ
せる要因は、多段中継後の自然放出光雑音の蓄積効果、
光ファイバの波長分散、光ファイバ内の非線形効果の3
つである。自然放出光雑音の蓄積効果の影響を避けるた
めには各直接増幅中継器の出力を大きくする必要がある
が、光ファイバ内の非線形効果を抑圧するためには中継
器出力を小さくすることが要求される。前者の蓄積雑音
効果は理論的に回避できない効果であるため、中継器出
力レベルを大きくしても光ファイバ内の非線形効果を小
さく抑圧することが必要である。光ファイバ内の非線形
効果としては、自己位相変調効果が大きいと考えられて
いる。しかし我々は後述の伝送実験を通じ、自己位相変
調効果の他に多段直接増幅系の各区間毎に光ファイバ内
の非線形効果によって生じると考えられる雑音増加効果
を見いだした。この雑音増加は伝送距離が増大するにつ
れて増大し、雑音は伝送路全長に渡って生じていること
もわかった。この効果は自己位相変調効果に比較して大
きなスペクトル広がり、信号対雑音比劣化を引き起こす
ため、伝送限界はこの光ファイバ内非線形効果で主に制
限されていることがわかった。
The factors that deteriorate the transmission characteristics of the optical multistage direct amplification repeater system are the accumulation effect of spontaneous emission optical noise after the multistage repeater,
Wavelength dispersion of optical fiber, nonlinear effect in optical fiber
One. It is necessary to increase the output of each direct amplification repeater in order to avoid the effect of the accumulation effect of spontaneous emission noise, but it is necessary to reduce the repeater output in order to suppress the nonlinear effect in the optical fiber. To be done. Since the former accumulated noise effect is theoretically unavoidable, it is necessary to suppress the nonlinear effect in the optical fiber to a small level even if the repeater output level is increased. The self-phase modulation effect is considered to be large as the nonlinear effect in the optical fiber. However, through the transmission experiments described below, we have found, in addition to the self-phase modulation effect, the noise increase effect that is considered to be caused by the nonlinear effect in the optical fiber for each section of the multistage direct amplification system. It was also found that this noise increase increases as the transmission distance increases, and the noise is generated over the entire length of the transmission line. It was found that the transmission limit is mainly limited by this nonlinear effect in the optical fiber, because this effect causes a larger spectrum spread than the self-phase modulation effect and causes deterioration of the signal-to-noise ratio.

【0008】この光ファイバ内の非線形効果は、伝送光
パワーが大きい時に生じ、伝送用光ファイバが信号光波
長で零でないときに生じにくいことも実験的に明確にさ
れた。
It has also been empirically clarified experimentally that this non-linear effect in the optical fiber occurs when the transmission light power is large, and is unlikely to occur when the transmission optical fiber is not zero at the signal light wavelength.

【0009】そこで、伝送用光ファイバとして信号光波
長が零でない光ファイバを用いれば、伝送光パワーが大
きい時にもこの光ファイバ内非線形効果を抑圧すること
ができる。
Therefore, if an optical fiber having a non-zero signal light wavelength is used as the transmission optical fiber, it is possible to suppress the nonlinear effect in the optical fiber even when the transmission light power is large.

【0010】但しこの際、光ファイバ内の波長分散の影
響も回避する必要がある。
At this time, however, it is necessary to avoid the influence of chromatic dispersion in the optical fiber.

【0011】光ファイバの波長分散は、自己位相変調効
果を考慮しない場合には全長にわたっての波長分散総和
が零となれば良く、受信側に伝送路総分散を補償するフ
ァイバを挿入する方法が考えられる。しかし高速・超長
距離伝送では自己位相変調の影響が無視できないため、
このような従来知られている受信端だけの補償用光ファ
イバでは補償できない。この自己位相変調の影響を抑圧
するためには短い伝送距離毎に総波長分散量を零とする
必要がある。そこで本発明では各区間毎に総波長分散量
を零とする光ファイバを挿入し、自己位相変調効果の影
響を避けている。
As for the chromatic dispersion of the optical fiber, it is sufficient that the total chromatic dispersion over the entire length is zero when the self-phase modulation effect is not taken into consideration. A method of inserting a fiber for compensating the total dispersion of the transmission line on the receiving side is considered. To be However, the effect of self-phase modulation cannot be ignored in high-speed, ultra-long-distance transmission,
Such a conventionally known optical fiber for compensation only at the receiving end cannot be used for compensation. In order to suppress the influence of this self-phase modulation, it is necessary to make the total chromatic dispersion amount zero for each short transmission distance. Therefore, in the present invention, an optical fiber that makes the total chromatic dispersion amount zero is inserted in each section to avoid the influence of the self-phase modulation effect.

【0012】また、前記に光ファイバ内非線形効果に起
因した雑音(スペクトル広がり)は前述のように伝送路
全長に渡って生じているため、受信側のみで補償用ファ
イバを用いると、伝送路のはじめで生じた雑音は信号光
と同時に受信されるが、後方で生じた雑音は異なる時間
に受信され雑音となって受信特性を劣化させてしまう。
本発明では補償用光ファイバを分布させて配置している
ため、この雑音も生じない。
Further, since the noise (spectral spread) due to the nonlinear effect in the optical fiber occurs over the entire length of the transmission line as described above, if the compensation fiber is used only on the receiving side, The noise generated at the beginning is received at the same time as the signal light, but the noise generated at the rear is received at different times and becomes noise, which deteriorates the reception characteristics.
In the present invention, the noise is not generated because the compensating optical fibers are arranged in a distributed manner.

【0013】以上の様に本発明の光直接増幅中継系を用
いることで、高速・超長距離の伝送が可能となる。本発
明を説明する前に従来の光通信伝送系について説明す
る。図5は従来の光直接増幅中継系である。
As described above, by using the optical direct amplification repeater system of the present invention, high speed and ultra long distance transmission is possible. Before describing the present invention, a conventional optical communication transmission system will be described. FIG. 5 shows a conventional optical direct amplification repeater system.

【0014】まず図5を用いて従来の光直接増幅中継系
の動作について具体的に説明する。
First, the operation of the conventional optical direct amplification repeater system will be specifically described with reference to FIG.

【0015】光送信器3は、半導体レーザ光源1から出
力された光パワーを、変調信号源5から出力された10
Gb/sの信号で駆動されたニオブ酸リチウムの外部変
調器2で強度変調し、光パワー増幅器11に出力する。
光パワー増幅器11は、エルビュームドープ光ファイバ
増幅器であり、この増幅器を用いて信号光レベルを増幅
し、第1の伝送路用光ファイバ101に出力している。
このとき、信号光レベルが10dBm以上となる場合
には伝送用ファイバ内でのブリユアン散乱の影響を避け
るため、従来から良く知られている半導体レーザの直接
FM変調等の技術を用い、半導体レーザの線幅を予め広
げている。光ファイバ101を通過した光信号は、エル
ビュームドープ光ファイバ増幅器である光直接増幅中継
器12で再び増幅され、第2の伝送路用光ファイバ11
1に出力される。第2の伝送路の信号光を第2の光増幅
中継器13で増幅し第3の伝送路121へ出力するとい
う具合いに光多段増幅中継系を構成している。
The optical transmitter 3 outputs the optical power output from the semiconductor laser light source 1 to the optical power output from the modulation signal source 5.
The intensity is modulated by the external modulator 2 of lithium niobate driven by the Gb / s signal and output to the optical power amplifier 11.
The optical power amplifier 11 is an Erbium-doped optical fiber amplifier, which amplifies the signal light level using this amplifier and outputs it to the first transmission line optical fiber 101.
At this time, when the signal light level is 10 dBm or more, in order to avoid the influence of Brillouin scattering in the transmission fiber, a well-known technique such as direct FM modulation of a semiconductor laser is used, The line width is widened in advance. The optical signal that has passed through the optical fiber 101 is amplified again by the optical direct amplification repeater 12 which is an erbume-doped optical fiber amplifier, and the second transmission line optical fiber 11
It is output to 1. The optical multistage amplification repeater system is configured in such a manner that the signal light of the second transmission line is amplified by the second optical amplification repeater 13 and output to the third transmission line 121.

【0016】受信側では、最後の光伝送路191を伝送
されてきた信号光を光前置増幅器21で増幅し、光受信
器53で受信している。光受信器53は光電変換素子で
あるPINフォトダイオード51を用いて受信信号光を
電気信号に変換した後、等化増幅、再生回路52で送信
されてきた変調信号源5からの10Gb/sの信号を再
生している。
On the receiving side, the signal light transmitted through the last optical transmission line 191 is amplified by the optical preamplifier 21 and received by the optical receiver 53. The optical receiver 53 uses the PIN photodiode 51, which is a photoelectric conversion element, to convert the received signal light into an electric signal, and then equalizes and amplifies and reproduces the 10 Gb / s signal from the modulation signal source 5 transmitted by the reproduction circuit 52. Playing the signal.

【0017】本系において、まず半導体レーザ光源の波
長を1.552μmに設定し、光ファイバ101、11
1、121、131、191に1.552μmに零分散
を有する分散シフトファイバ100kmを用いて9段多
段直接増幅1000km中継伝送を行った。ここで分散
シフトファイバ100kmの伝送損失は22ー23dB
であり、光パワー増幅器11、光増幅中継器12、1
3、14、15、20、光前置増幅器21の雑音指数は
8ー9dBであった。光パワー増幅器11、光増幅中継
器12、13、14、15、20の出力レベルを1dB
m程度に設定すると、それぞれの光増幅中継器への入力
信号光パワーレベルが−21ー−22dBmと低下する
ため、自然放出光雑音蓄積による雑音増加で受信できな
かった。そこで、直接増幅中継器出力レベルを増加させ
て伝送を行ったが、信号レベルを+11ー+12dBm
まで上昇させても良好な伝送特性を得ることはできなか
った。伝送信号光パワーを上昇させた場合の受信信号ス
ペクトルを図2に示す。伝送信号光レベルを上昇させた
場合、信号光スペクトルは光ファイバ内の非線形効果で
返って信号対雑音比が低下していることがわかる。
In this system, first, the wavelength of the semiconductor laser light source is set to 1.552 μm, and the optical fibers 101 and 11 are
Nine-stage multistage direct amplification 1000 km relay transmission was performed using 100 km of dispersion-shifted fiber having zero dispersion at 1.552 μm in 1, 121, 131, and 191. Here, the transmission loss of the dispersion-shifted fiber 100 km is 22-23 dB.
And the optical power amplifier 11, the optical amplification repeater 12, 1
The noise figure of 3, 14, 15, 20 and the optical preamplifier 21 was 8-9 dB. The output level of the optical power amplifier 11 and the optical amplification repeaters 12, 13, 14, 15, 20 is 1 dB.
When it is set to about m, the power level of the input signal light to each optical amplification repeater is lowered to -21 to -22 dBm, so that noise cannot be received due to noise increase due to spontaneous emission noise accumulation. Therefore, the transmission was performed by increasing the output level of the direct amplification repeater, but the signal level was + 11- + 12 dBm.
It was not possible to obtain good transmission characteristics even when the temperature was raised to. FIG. 2 shows the received signal spectrum when the transmission signal light power is increased. It can be seen that when the level of the transmitted signal light is increased, the signal light spectrum is returned due to the non-linear effect in the optical fiber and the signal to noise ratio is reduced.

【0018】次に本発明のための予備実験として同一の
伝送系で、半導体レーザ光源の波長を1.547、1.
557μmに変化させ、同一の実験を行った。ここで分
散シフトファイバ101、111、121、131、1
91は各波長でそれぞれ−0.35ps/km/nm,
+0.35ps/km/nmの分散値を有している。図
3、図4に示すように伝送後のスペクトルを観測する
と、正負分散値いずれの場合にも伝送後の信号対雑音比
が回復されていることがわかる。しかし伝送路全体での
分散量が大きいため、伝送後の波形歪が大きく受信でき
なかった。光ファイバ内の非線形効果による伝送特性劣
化は従来自己位相変調による波形歪と考えられてきた
が、この伝送実験では、光ファイバ内での非線形性によ
る雑音増加効果が観測されている。この雑音増加効果の
原因は現状では不明であるが、光ファイバ内の零分散波
長に信号光がある場合に大きく、分散値が零でない場合
に小さいことを筆者らは実験により明確にした。また、
伝送距離を増加するに従い雑音成分が増加することも観
測され、この雑音は伝送路である光ファイバ全長にわた
り発生していること、ただし負分散領域ではこの雑音増
加抑圧が顕著であることもわかった。
Next, as a preliminary experiment for the present invention, the wavelength of the semiconductor laser light source was 1.547, 1.
The same experiment was performed by changing the thickness to 557 μm. Here, the dispersion shift fibers 101, 111, 121, 131, 1
91 is -0.35 ps / km / nm at each wavelength,
It has a dispersion value of +0.35 ps / km / nm. Observing the spectrum after transmission as shown in FIGS. 3 and 4, it can be seen that the signal-to-noise ratio after transmission is recovered for both positive and negative variance values. However, since the amount of dispersion in the entire transmission line is large, the waveform distortion after transmission was large and could not be received. The deterioration of the transmission characteristics due to the nonlinear effect in the optical fiber has been conventionally considered to be the waveform distortion due to the self-phase modulation, but in this transmission experiment, the noise increasing effect due to the nonlinearity in the optical fiber is observed. The cause of this noise increase effect is unknown at present, but the authors have clarified by experiments that it is large when there is signal light at the zero dispersion wavelength in the optical fiber and small when the dispersion value is not zero. Also,
It was also observed that the noise component increased as the transmission distance increased, and it was also found that this noise is generated over the entire length of the optical fiber that is the transmission line, but this noise increase suppression is remarkable in the negative dispersion region. .

【0019】[0019]

【実施例】図1は本発明の一実施例の光直接増幅中継系
の構成図である。
FIG. 1 is a block diagram of an optical direct amplification repeater system of an embodiment of the present invention.

【0020】図1を用いて2の実施例の動作について説
明する。半導体レーザ光源1の波長を1.547μmに
し、伝送路である光ファイバ101、111、121、
131、…191は図2〜図4の実験で用いた1.55
2μmに雰分散を有する分散シフトファイバを用いた。
さらに図5の中継系においてそれぞれの分散シフトフ
ァイバの波長分散を補償する通常分散ファイバ102、
112、122、132、…192を各伝送路区間毎に
分散シフトファイバの後に挿入した。各区間毎の分散シ
フトファイバの分散量は100kmで−35ps/nm
であるため、通常分散ファイバ約2km(分散値35p
s/nm)を縦続接続し、各区間の総和分散量を0ps
/nm付近に設定した。この結果+8dBm以上の中継
器出力の場合に伝送後受信感度劣化1dB程度の良好な
伝送特性を得ることができた。
The operation of the second embodiment will be described with reference to FIG. The wavelength of the semiconductor laser light source 1 is set to 1.547 μm, and the optical fibers 101, 111, 121, which are transmission lines,
131, ... 191 are 1.55 used in the experiments of FIGS.
A dispersion shift fiber having an atmospheric dispersion of 2 μm was used.
Further, in the relay system of FIG. 5, a normal dispersion fiber 102 for compensating the chromatic dispersion of each dispersion shift fiber,
, 192 are inserted after the dispersion shift fiber for each transmission path section. The dispersion amount of the dispersion shift fiber for each section is -35 ps / nm at 100 km.
Therefore, the normal dispersion fiber is about 2 km (dispersion value 35 p
s / nm) in cascade connection, and the total dispersion amount of each section is 0 ps
/ Nm was set. As a result, in the case of a repeater output of +8 dBm or more, it was possible to obtain a good transmission characteristic with reception sensitivity deterioration of about 1 dB after transmission.

【0021】以上の結果から、従来の光直接増幅中継系
では、高速・超長距離光直接増幅中継系を実現すること
は困難であるが、本発明を用いることで実現できること
が示された。
From the above results, it has been shown that it is difficult to realize a high-speed, ultra-long-distance optical direct amplification repeater system with the conventional optical direct amplification repeater system, but it can be realized by using the present invention.

【0022】本発明にはこの他にも多数の変形例があ
る。送信波長を伝送光ファイバの正分散波長帯に設定
し、この分散を補償する光ファイバとして負分散ファイ
バを用いることもできるし、分散絶対値の等しい負分散
と正分散のファイバを等距離用いることもできる。ま
た、各区間に使用する光ファイバも2種類に限らず3種
類以上でも良い。各区間毎の総和分散量を零付近に設定
すれば、正負それぞれの光ファイバ長を各区間で自由に
設定できる。中継段数も9段に限ることなく20段、1
00段、またこれ以上、以下でも良い。各区間長も10
0kmに限ることなく50km、150km、またこれ
以上これ以下でも良い。また使用するビットレートは1
0Gb/sに限ることなく、2.5Gb/sでも5Gb
/sでも20Gb/sあるいはそれ以上それ以下であっ
ても良い。
The present invention has many other variations. It is possible to set the transmission wavelength to the positive dispersion wavelength band of the transmission optical fiber and use a negative dispersion fiber as an optical fiber that compensates for this dispersion, or use negative dispersion and positive dispersion fibers with equal absolute dispersion values at equal distances. You can also Moreover, the number of optical fibers used in each section is not limited to two, and may be three or more. If the total dispersion amount for each section is set near zero, the positive and negative optical fiber lengths can be freely set for each section. The number of relay stages is not limited to 9, but 20 stages, 1
It may be 00 steps, or more or less. Each section length is 10
The distance is not limited to 0 km, and may be 50 km, 150 km, or more or less. The bit rate used is 1
Not limited to 0 Gb / s, 2.5 Gb / s is 5 Gb
/ S or 20 Gb / s or more or less.

【0023】変調方式は強度変調に限らず、周波数変
調、位相変調でも良い。受信方式は直接検波方式だけで
なく、ヘテロダイン検波を用いることもできる。多段直
接増幅中継系に用いる光増幅器もエルビュームドープフ
ァイバ増幅器に限らず半導体レーザ増幅器、プラセオジ
ウムドープ光ファイバ増幅器、光ラマン増幅器でも良
い。また送信光源の波長帯も1.5μm帯に限ることな
く、1.3μm帯を用いることもできる。
The modulation method is not limited to intensity modulation, but may be frequency modulation or phase modulation. Not only the direct detection method but also the heterodyne detection method can be used as the reception method. The optical amplifier used in the multistage direct amplification repeater system is not limited to the erbume-doped fiber amplifier, but may be a semiconductor laser amplifier, a praseodymium-doped optical fiber amplifier, or an optical Raman amplifier. Further, the wavelength band of the transmission light source is not limited to the 1.5 μm band, and the 1.3 μm band can be used.

【発明の効果】以上説明したように本発明を用いれば、
光直接増幅中継系において伝送路である光ファイバの分
散値を送信波長において零に一致させないことで、光フ
ァイバ内の非線形性効果の抑圧を行ったので、光直接増
幅中継系の伝送パワーの増大、ひいては超高速・超長距
離の光直接増幅中継系を容易に実現することができる。
As described above, by using the present invention,
Since the dispersion value of the optical fiber that is the transmission line in the optical direct amplification repeater system is not matched to zero at the transmission wavelength, the nonlinear effect in the optical fiber is suppressed, so the transmission power of the optical direct amplification repeater system is increased. As a result, it is possible to easily realize an ultrafast, ultralong distance optical direct amplification repeater system.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例FIG. 1 is an embodiment of the present invention.

【図2】多段直接増幅中継伝送後の光信号スペクトルFIG. 2 Optical signal spectrum after multistage direct amplification repeater transmission

【図3】多段直接増幅中継伝送後の光信号スペクトルの
図である。
FIG. 3 is a diagram of an optical signal spectrum after multistage direct amplification relay transmission.

【図4】多段直接増幅中継伝送後の光信号スペクトルの
図である。
FIG. 4 is a diagram of an optical signal spectrum after multistage direct amplification relay transmission.

【図5】従来の技術を説明するための図である。FIG. 5 is a diagram for explaining a conventional technique.

【符号の説明】[Explanation of symbols]

1 半導体レーザ光源 2 外部変調器 3 光送信器 5 変調信号源 11 光パワー増幅器 12、13、14、15、20 光直接増幅中継器 21 光前置増幅器 101、111、121、131、191 分散シフト
ファイバ 102、112、122、132、192 通常分散フ
ァイバ 51 PIN フォトダイオード 52 等化増幅再生回路 53 光受信器
1 semiconductor laser light source 2 external modulator 3 optical transmitter 5 modulation signal source 11 optical power amplifier 12, 13, 14, 15, 20 optical direct amplification repeater 21 optical preamplifier 101, 111, 121, 131, 191 dispersion shift Fibers 102, 112, 122, 132, 192 Ordinary dispersion fiber 51 PIN photodiode 52 Equalization amplification reproduction circuit 53 Optical receiver

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/16 10/18 H04B 9/00 M ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Office reference number FI technical display location H04B 10/16 10/18 H04B 9/00 M

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光送信器と、伝送用光ファイバと、光直
接増幅中継器と光受信器を用いる光多段直接増幅中継伝
送系において、送信器−光増幅中継器間、前記光増幅中
継器間、あるいは光増幅器−光受信器間を接続するそれ
ぞれの区間の伝送用光ファイバが、前記光送信器の送信
波長において波長分散が零と異なる値の複数の光ファイ
バ群縦続接続により構成されており、該伝送用光ファイ
バの各区間での光ファイバ群波長分散総和が零となるこ
とを特徴とした光通信伝送系。
1. In an optical multistage direct amplification repeater transmission system using an optical transmitter, an optical fiber for transmission, an optical direct amplification repeater and an optical receiver, between the transmitter and the optical amplification repeater, the optical amplification repeater. Or a transmission optical fiber in each section connecting the optical amplifier and the optical receiver is constituted by a plurality of optical fiber group cascade connections having chromatic dispersion different from zero at the transmission wavelength of the optical transmitter. And an optical fiber group chromatic dispersion sum in each section of the transmission optical fiber is zero.
JP4162338A 1992-06-22 1992-06-22 Optical communication transmission system Expired - Lifetime JPH0821908B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP4162338A JPH0821908B2 (en) 1992-06-22 1992-06-22 Optical communication transmission system
AU40170/93A AU664449B2 (en) 1992-06-22 1993-06-09 Optical communication transmission system
EP93109609A EP0575881B1 (en) 1992-06-22 1993-06-16 Optical communication transmission system with chromatic dispersion compensation
EP99124056A EP0986198A3 (en) 1992-06-22 1993-06-16 Optical amplifier repeater and long-haul optical amplifer lumped repeating method
DE69329570T DE69329570T2 (en) 1992-06-22 1993-06-16 Optical communication system with color dispersion compensation
US08/452,728 US5675429A (en) 1992-06-22 1995-05-30 Optical communication transmission system
US09/413,827 USRE37621E1 (en) 1992-06-22 1999-10-06 Optical communication transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4162338A JPH0821908B2 (en) 1992-06-22 1992-06-22 Optical communication transmission system

Publications (2)

Publication Number Publication Date
JPH06318914A JPH06318914A (en) 1994-11-15
JPH0821908B2 true JPH0821908B2 (en) 1996-03-04

Family

ID=15752660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4162338A Expired - Lifetime JPH0821908B2 (en) 1992-06-22 1992-06-22 Optical communication transmission system

Country Status (1)

Country Link
JP (1) JPH0821908B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122897A (en) * 2000-10-17 2002-04-26 Furukawa Electric Co Ltd:The Optical transmission system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2825109B2 (en) * 1991-05-13 1998-11-18 日本電信電話株式会社 Optical soliton transmission method

Also Published As

Publication number Publication date
JPH06318914A (en) 1994-11-15

Similar Documents

Publication Publication Date Title
AU664449B2 (en) Optical communication transmission system
Cartaxo Cross-phase modulation in intensity modulation-direct detection WDM systems with multiple optical amplifiers and dispersion compensators
Nuyts et al. Performance improvement of 10 Gb/s standard fiber transmission systems by using the SPM effect in the dispersion compensating fiber
US20020001123A1 (en) Raman amplifier
JPH0764131A (en) Optical communication device
US6529315B2 (en) Optical amplifier providing dispersion compensation
JP2743972B2 (en) Optical amplification repeater transmission method and system device
EP1087549A1 (en) Wdm optical communication system
US6888669B2 (en) Raman amplifier
JP2001094511A (en) Compensating method for wavelength dispersion and optical transmission system
US7103285B1 (en) Optical transmission system for reducing nonlinear optical phenomena using modulation depth control system
CN110855365B (en) Relay-free optical fiber transmission system and relay-free optical fiber transmission method
JPH07146493A (en) Optical soliton transmitter
Miyamoto et al. 10-Gbit/s 280-km nonrepeatered transmission with suppression of modulation instability
Nielsen et al. 8 x 10 Gb/s 1.3-μm unrepeatered transmission over a distance of 141 km with Raman post-and pre-amplifiers
JP2825109B2 (en) Optical soliton transmission method
JPH0821908B2 (en) Optical communication transmission system
JP2919193B2 (en) Optical communication transmission system
JP3215153B2 (en) Optical amplification repeater
JP4785380B2 (en) Spectral inversion apparatus and method for compensating distortion of optical signal
Park et al. 2.488 Gb/s-318 km repeaterless transmission using erbium-doped fiber amplifiers in a direct-detection system
US7324721B2 (en) Optical communication line with dispersion intrachannel nonlinearities management
Kavitha et al. Mixed fiber optical parametric amplifiers for broadband optical communication systems with reduced nonlinear effects
JP3503720B2 (en) Soliton transmission line
JP3609008B2 (en) Optical transmission line

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960820

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080304

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090304

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100304

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110304

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120304

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 17

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130304

Year of fee payment: 17