JPH0821815A - Corroded state detecting method and device for water feed/drainage device and water feed/drainage device equipped with this detecting device - Google Patents

Corroded state detecting method and device for water feed/drainage device and water feed/drainage device equipped with this detecting device

Info

Publication number
JPH0821815A
JPH0821815A JP15257794A JP15257794A JPH0821815A JP H0821815 A JPH0821815 A JP H0821815A JP 15257794 A JP15257794 A JP 15257794A JP 15257794 A JP15257794 A JP 15257794A JP H0821815 A JPH0821815 A JP H0821815A
Authority
JP
Japan
Prior art keywords
corrosion
solution
potential
measured
pipeline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15257794A
Other languages
Japanese (ja)
Other versions
JP3471078B2 (en
Inventor
Shukuji Asakura
祝治 朝倉
美雪 ▲吉▼川
Miyuki Yoshikawa
Daisuke Niimi
大輔 新美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHIHARA EISEI KOGYOSHO KK
Original Assignee
NISHIHARA EISEI KOGYOSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHIHARA EISEI KOGYOSHO KK filed Critical NISHIHARA EISEI KOGYOSHO KK
Priority to JP15257794A priority Critical patent/JP3471078B2/en
Publication of JPH0821815A publication Critical patent/JPH0821815A/en
Application granted granted Critical
Publication of JP3471078B2 publication Critical patent/JP3471078B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To correctly measure the corroding speed with a simple action and a device by feeding a reference solution to a measurement region in a pipe, electrically exciting a pipe wall, obtaining the potential of the pipe wall against a reference, feeding a corrosion accelerating solution, obtaining the potential of the pipe wall, and comparing two potentials to obtain the corroding speed. CONSTITUTION:A potentiometer 37 having a reference electrode 32 and a measuring electrode 33 is arranged at the measurement region 36 of a passage 21, and a passage 27 feeding a corrosion accelerating liquid, a discharge passage 31, and a by-pass passage 23 are provided. Valves 24, 25 are opened, valves 28, 30, 34, 35 are closed, water (reference solution) is fed to the passage 21, a voltage is applied to the measurement region 36, and the potential of the pipe wall 33 against the reference electrode 32 is measured by the potentiometer 37. The valves 24, 25 are closed, the valves 34, 35 are closed, water feed is continued via the by-pass passage 23, the valves 28, 30 are opened to guide a sodium chloride solution to the measurement region 36 from the passage 27, and it is discharged from the discharge passage 31 after the similar potential measurement. Corroding speed is obtained from the difference between two detected potentials via a diagram prepared in advance.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、配管装置、給水槽、排
水槽等の給排水装置の腐食状態検出方法に関し、特に、
配管装置の腐食状態検出方法に関する。また、本発明
は、腐食状態検出装置を備える配管装置、給水槽、排水
槽等の給排水装置に関し、特に腐食状態検出装置を備え
る配管装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting a corrosion state of a water supply / drainage device such as a piping device, a water supply tank, a drainage tank, and the like.
The present invention relates to a method for detecting a corrosion state of a piping device. The present invention also relates to a piping device including a corrosion state detecting device, a water supply / drainage device such as a water supply tank and a drainage tank, and particularly to a piping device including a corrosion state detecting device.

【0002】[0002]

【従来の技術】一般に行われている建築物、船舶等の建
造物内の水道管等の給排水装置の腐食計測は、電気化学
的手法を用いた腐食電位及び分極曲線の測定並びに分極
抵抗法などにより行われている。しかし、給排水装置の
構造物を対象とする現場計測では、基準電極と測定電極
間の電位差を測定することにより計測できるので、分極
曲線の測定及び分極抵抗法に比して、装置が高価でな
く、また操作が簡単であり、配管内の腐食系を乱さない
などの点から、主として腐食電位計測が行われている。
2. Description of the Related Art Corrosion measurement of water supply / drainage equipment such as water pipes in buildings, ships and other structures that is generally performed is performed by measuring the corrosion potential and polarization curve using an electrochemical method and by the polarization resistance method. Is done by. However, in the field measurement for the structure of the water supply / drainage device, since it can be measured by measuring the potential difference between the reference electrode and the measurement electrode, the device is less expensive than the measurement of the polarization curve and the polarization resistance method. In addition, the corrosion potential is mainly measured because it is easy to operate and does not disturb the corrosion system in the pipe.

【0003】[0003]

【発明が解決しようとする課題】しかし、腐食電位計測
は、腐食の自然電位を求めるものであるから、平衡論的
情報しか得られないので、腐食速度を正確に測定するこ
とができず、問題とされていた。本発明は、腐食電位計
測の計測値に係る問題点を解決することを目的としてい
る。
However, since the corrosion potential measurement is to obtain the spontaneous potential of corrosion, only equilibrium information can be obtained, so that the corrosion rate cannot be accurately measured, which is a problem. Was said. An object of the present invention is to solve the problem related to the measured value of corrosion potential measurement.

【0004】[0004]

【課題を解決するための手段】本発明は、腐食電位計測
という簡単な操作及び安価な装置によって測定すること
ができる腐食速度測定方法及び装置を提供することを目
的としている。即ち、本発明は、電気化学的測定容器内
に試料片を保持すると共に基準溶液を導入して、試料片
を電源に接続し、基準電極に対する試料片の電位を測定
し、次いで、前記測定容器内に腐食促進溶液を導入し
て、基準電極に対する試料片の電位を求め、これらの測
定された電位を比較して試料片の腐食速度を求めること
を特徴とする給排水装置の腐食状態検出方法にあり、ま
た、本発明は、配管路の腐食状態検出方法において、配
管路内の測定領域に基準溶液を流入して、該測定領域の
配管路壁を電気的に付勢して、基準電極に対する該測定
領域の配管路壁の電位を測定し、ついで前記測定領域の
配管路内に腐食促進溶液を流入して、基準電極に対する
前記測定領域の配管路壁の電位を測定して、これらの測
定された基準電極に対する配管路壁の電位を比較して配
管路の腐食速度を求めることを特徴とする配管路の腐食
状態検出方法にある。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a corrosion rate measuring method and device which can be measured by a simple operation of measuring corrosion potential and an inexpensive device. That is, the present invention is to hold a sample piece in an electrochemical measurement container and introduce a reference solution, connect the sample piece to a power source, measure the potential of the sample piece with respect to a reference electrode, and then measure the measurement container. Introduce a corrosion accelerating solution into the sample, determine the potential of the sample piece with respect to the reference electrode, and compare the measured potentials to determine the corrosion rate of the sample piece. Also, the present invention, in the method for detecting a corrosion state of a pipeline, injecting a reference solution into a measurement region in the pipeline, electrically urging the wall of the pipeline in the measurement region, to the reference electrode. The potential of the pipeline wall of the measurement region is measured, and then the corrosion promoting solution is flown into the pipeline of the measurement region to measure the potential of the pipeline wall of the measurement region with respect to the reference electrode, and these measurements are made. Pipe wall for a fixed reference electrode In corrosion state detecting method of a pipe passage and obtains the corrosion rate of the pipe passage by comparing the potential.

【0005】さらに、本発明は、配管水路と、該配管水
路の上流側に形成されている第1分岐点及び前記配管水
路の下流側に形成されている第2分岐点を結ぶ迂回流路
と、前記配管水路の第1分岐点と第2分岐点の間の上流
側及び下流側に夫々設けられている開閉弁と、これら開
閉弁の間に形成されている腐食促進溶液導入口及び腐食
促進溶液排出口と、該腐食促進溶液導入口に開閉弁を介
して接続する腐食促進溶液槽と、前記腐食促進溶液導入
口及び排出口の間において、配管水路内に液密に挿通さ
れている基準電極と、測定電極の配管水路壁とを備え、
前記基準電極及び測定電極は電位差計に接続しているこ
とを特徴とする腐食状態検出装置を備えた配管装置にあ
る。
Further, according to the present invention, a pipe water channel and a bypass flow passage connecting a first branch point formed on the upstream side of the pipe water channel and a second branch point formed on the downstream side of the pipe water channel. An on-off valve provided on the upstream side and a downstream side between the first branch point and the second branch point of the pipe water channel, and a corrosion-promoting solution inlet port and a corrosion-promoting port formed between these on-off valves. A solution discharge port, a corrosion-accelerating solution tank connected to the corrosion-accelerating solution introducing port via an on-off valve, and a standard that is liquid-tightly inserted in a pipe water channel between the corrosion-accelerating solution introducing port and the discharge port. An electrode and a pipe wall of the measurement electrode,
The reference electrode and the measuring electrode are connected to a potentiometer, which is a piping device equipped with a corrosion state detecting device.

【0006】本発明において、腐食状態が検出される対
象は、腐食環境下で使用される金属試料又は配管路の管
壁である。金属試料は、試料片として測定セル中に試験
電極側として吊るされ、電位差計の試験電極側に接続さ
せて、該電位差計の基準電極側に接続されている基準電
極に対する腐食電位が測定される。本発明において、基
準電極は、電気化学的に電極電位を測定するための基準
になる電極であり、標準水素電極、飽和カロメル電極及
び銀・塩化銀電極がある。
In the present invention, the object whose corrosion state is detected is a metal sample used in a corrosive environment or a pipe wall of a pipe line. The metal sample is hung as a test piece side in the measurement cell as a sample piece, and is connected to the test electrode side of the potentiometer, and the corrosion potential with respect to the reference electrode connected to the reference electrode side of the potentiometer is measured. . In the present invention, the reference electrode is an electrode serving as a reference for electrochemically measuring the electrode potential, and includes a standard hydrogen electrode, a saturated calomel electrode, and a silver / silver chloride electrode.

【0007】配管路の管壁の場合は、分岐管内の上流側
開閉弁及び下流側開閉弁の間に形成される測定領域内に
露出する管壁の一部に、電位差計の試験電極側を接続さ
せ、分岐管の測定領域の管壁の一部に貫通孔を形成し
て、前記電位差計の基準電極側に接続する基準電極が前
記貫通孔内に液密に挿通保持して、分岐管内に突出させ
て、前記基準電極に対する試験電極である管壁の腐食電
位が計測される。この腐食電位の計測は、基準溶液中又
は腐食促進溶液中で行われ、基準溶液又は腐食促進溶液
中で計測された腐食電位の差、即ち電位応答幅が求めら
れる。
In the case of the pipe wall of the pipe passage, the test electrode side of the potentiometer is attached to a part of the pipe wall exposed in the measurement region formed between the upstream side opening / closing valve and the downstream side opening / closing valve in the branch pipe. By connecting and forming a through hole in a part of the tube wall of the measurement area of the branch pipe, the reference electrode connected to the reference electrode side of the potentiometer is liquid-tightly inserted and held in the through hole, Then, the corrosion potential of the tube wall, which is the test electrode with respect to the reference electrode, is measured. The measurement of the corrosion potential is performed in the reference solution or the corrosion promoting solution, and the difference in the corrosion potential measured in the reference solution or the corrosion promoting solution, that is, the potential response width is obtained.

【0008】本発明において、基準溶液は、水道水及び
その他の給水、並びに低濃度の洗浄水等の工場排水及び
空調等の冷却水系に使用される水をいう。本発明におい
て、腐食促進溶液は、金属の腐食状態を示す電位応答を
得るために、金属の周囲に存在する溶液環境を変えるた
めのものであり、腐食促進溶液としては、塩化物イオン
を生じる、例えばイオン結合の塩化物のpHが略中性の
溶液が使用され、代表的には、塩化物イオン溶液として
は、例えば塩化ナトリウム、塩化カリウム等のアルカリ
金属塩化物溶液が使用される。腐食促進溶液は、これら
塩化物溶液の中、希薄溶液が使用される。塩化ナトリウ
ムの溶液の塩化ナトリウムイオンの濃度は、1モル以下
であり、好ましくは、0.2モル以下の塩化物イオン濃
度に希釈された塩化物溶液を使用することができる。し
かし、0.1乃至0.01モルの塩化物イオン濃度とす
ると、測定試料及び測定される配管壁の腐食系を乱すこ
とがなく、腐食速度の測定ができるので好ましい。
In the present invention, the standard solution means water used for tap water and other feed water, as well as factory drainage such as low-concentration washing water and cooling water system such as air conditioning. In the present invention, the corrosion accelerating solution is for changing the solution environment existing around the metal in order to obtain a potential response indicating the corrosion state of the metal, and as the corrosion accelerating solution, chloride ions are generated, For example, a solution of ionic bond chloride having a substantially neutral pH is used, and typically, as the chloride ion solution, an alkali metal chloride solution such as sodium chloride or potassium chloride is used. As the corrosion promoting solution, a dilute solution of these chloride solutions is used. The concentration of sodium chloride ions in the sodium chloride solution is 1 mol or less, and a chloride solution diluted to a chloride ion concentration of 0.2 mol or less can be used. However, a chloride ion concentration of 0.1 to 0.01 mol is preferable because the corrosion rate can be measured without disturbing the corrosion system of the measurement sample and the pipe wall to be measured.

【0009】本発明において、配管路には、前後に開閉
弁を設けて測定領域を形成するのが好ましい。測定領域
には、基準電極を配管路内部に突き出して設けられる。
しかし、このように、配管路の一部に測定領域を形成す
ると、腐食状態の検出時には、該配管路による給水及び
排水を停止することとなるので、このような腐食状態の
検出時においても、配管路の給水及び排水を続ける場合
は、配管路を例えば三方分岐管により分岐して、分岐さ
れた一方の管路に基準電極を備える測定領域を形成し
て、該管路の管壁の腐食状態の検出試験に供し、残る一
方の管路を、腐食状態の検出時に配管路の給水及び排水
に使用する迂回路に形成するのが好ましい。
In the present invention, it is preferable that an on-off valve is provided in the front and rear of the pipe line to form a measurement region. In the measurement area, a reference electrode is provided so as to protrude inside the pipeline.
However, in this way, if a measurement region is formed in a part of the pipeline, at the time of detecting the corrosion state, water supply and drainage by the pipeline will be stopped, so even when detecting such a corrosion state, When water supply and drainage of the pipeline are continued, the pipeline is branched by, for example, a three-way branch pipe to form a measurement region equipped with a reference electrode in one of the branched pipelines, and the pipe wall of the pipeline is corroded. It is preferable that the remaining pipeline is subjected to a state detection test, and the remaining one pipeline is formed as a detour used for water supply and drainage of the pipeline when a corrosion state is detected.

【0010】配管路に形成された分岐された双方の管路
に測定領域を形成すると、夫々の管路において、腐食促
進溶液を流したときの腐食電位計測と、水を流したとき
の腐食電位計測を同時に行うことができ、直ちに計測さ
れた両電位の差(電位応答幅)又は比の平均値を得るこ
とができる。この配管路に形成された分岐された複数の
管路の夫々に測定領域を形成する場合は、腐食状態の検
出時に給水及び排水を続けることができるように、これ
らの分岐された複数の管路とは別に迂回路を配管路から
分岐することが必要である。
When measuring regions are formed in both of the branched pipes formed in the pipeline, the corrosion potential when the corrosion promoting solution is flown and the corrosion potential when water is flown are measured in each pipeline. The measurement can be performed simultaneously, and the average value of the difference (potential response width) or ratio of both potentials measured immediately can be obtained. When forming a measurement region in each of the plurality of branched pipelines formed in this pipeline, the plurality of branched pipelines are provided so that water supply and drainage can be continued when a corrosion state is detected. Separately, it is necessary to branch the detour from the pipeline.

【0011】本発明において、例えば水等の基準溶液中
及び腐食促進溶液中で計測された腐食電位の値に差がな
いときは、腐食状態が進行していないことを示してお
り、差が現れる時は、腐食状態が進行しており、差の大
きさに応じて腐食速度が大きいことを示している。本発
明において、腐食速度は、計測された水等の基準溶液中
及び腐食促進溶液中での腐食電位の差、即ち電位応答幅
により求められるが、両腐食電位の比により腐食速度を
求めることができる。何れの場合においても、両腐食電
位間の差の大きさ又は両腐食電位の比に対応する腐食速
度を予め求めて、例えば表又は線図に製作しておき、該
表及び線図の対応する腐食電位の差又は比に対応する腐
食速度を求めることができる。
In the present invention, when there is no difference in the value of the corrosion potential measured in the reference solution such as water and in the corrosion accelerating solution, it means that the corrosion state has not progressed, and the difference appears. Time indicates that the corrosion state is progressing and the corrosion rate is high depending on the size of the difference. In the present invention, the corrosion rate is obtained by the difference between the corrosion potentials in the measured reference solution such as water and the corrosion acceleration solution, that is, the potential response width, but the corrosion rate can be obtained by the ratio of both corrosion potentials. it can. In any case, the corrosion rate corresponding to the magnitude of the difference between the two corrosion potentials or the ratio of the two corrosion potentials is obtained in advance and is prepared in, for example, a table or a diagram, and the table and the diagram correspond to each other. Corrosion rates corresponding to differences or ratios of corrosion potentials can be determined.

【0012】本発明において、計測された腐食電位の差
に対応する腐食速度は、分極抵抗法、矩形波分極抵抗法
等で測定できる。しかし、測定セル及び配管路の測定領
域の腐食系を乱すことなく腐食速度を求めるには、矩形
波分極抵抗法によるのが好ましい。本発明において、腐
食状態を検出する腐食電位計測は、測定セル中では、水
等の基準溶液又は腐食促進溶液をスターラ等の撹拌機に
より撹乱しながら行い、また配管路内の測定領域におい
ては、水等の基準溶液又は腐食促進溶液を測定領域内に
流しながら行う。
In the present invention, the corrosion rate corresponding to the measured difference in corrosion potential can be measured by a polarization resistance method, a rectangular wave polarization resistance method, or the like. However, in order to obtain the corrosion rate without disturbing the corrosion system in the measurement area of the measurement cell and the pipe, it is preferable to use the rectangular wave polarization resistance method. In the present invention, the corrosion potential measurement for detecting the corrosion state is performed in a measuring cell while disturbing a reference solution such as water or a corrosion accelerating solution with a stirrer such as a stirrer, and in the measurement area in the pipeline, It is performed while flowing a reference solution such as water or a corrosion promoting solution into the measurement area.

【0013】[0013]

【作用】本発明は、腐食状態を検出する金属試料又は配
管路の管壁についての腐食電位計測を、水等の基準溶液
中及び腐食促進溶液中で行い、水等の基準溶液中で計測
された腐食電位と腐食促進溶液中で計測された腐食電位
の差即ち電位応答幅、又は水等の基準溶液中で計測され
た腐食電位と腐食促進溶液中で計測された腐食電位の比
を求め、予め作成した前記腐食電位の差又は比に対応す
る腐食速度の関係を示す実験式、表又は線図から、前記
両腐食電位の差又は比の値に対応する腐食速度を割り出
し、金属試料及び配管路の腐食状態を検出するので、簡
単な操作で行える腐食電位の計測のみで、腐食速度を求
めることができる。
According to the present invention, the corrosion potential of a metal sample or a pipe wall of a pipeline for detecting a corrosion state is measured in a reference solution such as water and a corrosion accelerating solution and measured in a reference solution such as water. The difference between the corrosion potential and the corrosion potential measured in the corrosion promoting solution, that is, the potential response width, or the ratio of the corrosion potential measured in the reference solution such as water and the corrosion potential measured in the corrosion promoting solution, From the empirical formula, table or diagram showing the relationship of the corrosion rate corresponding to the difference or ratio of the corrosion potentials created in advance, calculate the corrosion rate corresponding to the value of the difference or ratio of the two corrosion potentials, metal sample and pipe Since the corrosion state of the road is detected, the corrosion rate can be obtained only by measuring the corrosion potential that can be performed by a simple operation.

【0014】このように、本発明によると、分極抵抗法
や矩形波分極抵抗法による腐食速度の計測は、前記腐食
電位の差又は比に対応する腐食速度の関係を示す実験
式、表又は線図を作成する段階で行えば足りるので、例
えば配管路の管壁についての腐食状態は、水等の基準溶
液中及び腐食促進溶液中での腐食電位を計測するだけ
で、簡単且つ容易に知ることができる。
As described above, according to the present invention, the measurement of the corrosion rate by the polarization resistance method or the rectangular wave polarization resistance method is performed by using an empirical formula, a table or a line indicating the relationship of the corrosion rates corresponding to the difference or the ratio of the corrosion potentials. Since it is sufficient to perform it at the stage of creating a diagram, for example, the corrosion state of the pipe wall of the pipeline can be easily and easily known by measuring the corrosion potential in the reference solution such as water and the corrosion promoting solution. You can

【0015】[0015]

【実施例】以下、添付図面を参照して、本発明の実施の
態様の一について説明するが、本発明は、以下の説明及
び例示によって何ら制限を受けるものではない。図1
は、本発明の一実施例において使用される測定セルの概
略を示す説明図であり、図2は本発明の別の一実施例の
系統図であり、図3は図2に示す実施例の測定領域の基
準電極の取付け構造を中心に示す概略の拡大部分断面図
である。図4は、塩化ナトリウイオン等の塩化物イオン
が1モル濃度となるように添加した場合の、腐食電位の
差即ち電位応答幅(ΔEcorr)と腐食速度(log
corr)の関係を示す図であり、図5は、塩化ナト
リウムイオン等の塩化物イオンが0.1モル濃度となる
ように添加した場合の、腐食電位の差即ち電位応答幅
(ΔEcorr)と腐食速度(loglcorr)の関
係を示す図であり、図6は、塩化ナトリウム等の塩化物
イオンが0.1モル濃度となるように添加した場合の、
腐食電位の差即ち電位応答幅(ΔEcorr)と腐食速
度(loglco rr)の関係を示す図である。図7
は、水道水における塩化ナトリウム等の塩化物イオン濃
度(モル)の変化に対する電位応答(Ecorr)と腐
食速度(lcorr)の変化を示す図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings, but the present invention is not limited by the following description and examples. FIG.
FIG. 3 is an explanatory diagram showing an outline of a measuring cell used in one embodiment of the present invention, FIG. 2 is a system diagram of another embodiment of the present invention, and FIG. 3 is a diagram of the embodiment shown in FIG. FIG. 3 is a schematic enlarged partial cross-sectional view mainly showing a reference electrode mounting structure in a measurement region. FIG. 4 shows the difference in corrosion potential, that is, the potential response width (ΔE corr ), and the corrosion rate (log) when chloride ions such as sodium chloride ions were added to have a molar concentration of 1.
is a diagram showing the relationship between l corr), FIG. 5, when the chloride ions such as sodium chloride ions are added to a 0.1 molar concentration, the difference in corrosion potential i.e. potential response width (Delta] E corr) And FIG. 6 is a diagram showing the relationship between the corrosion rate and the corrosion rate (logl corr ), and FIG. 6 shows the case where chloride ions such as sodium chloride are added so as to have a 0.1 molar concentration.
It is a diagram showing the relationship of the difference between the corrosion potential i.e. potential response width (Delta] E corr) and corrosion rate (logl co rr). Figure 7
FIG. 4 is a diagram showing changes in potential response (E corr ) and corrosion rate (l corr ) with respect to changes in chloride ion concentration (molar) such as sodium chloride in tap water.

【0016】図1において、測定槽1は、栓2を有する
広口の容器3を有している。栓2には、0.1モルの塩
化ナトリウム溶液供給用の漏斗4、空気導入用の管5、
塩橋6、白金板7を備える対極8及び測定される試料片
9を保持する試験電極10が固定されている。測定槽1
の底部11に撹拌子12が回動可能に配置されており、
この回転子12は容器3の下方に設けられるスターラ1
3により回転駆動される。本例においては、塩橋6を介
して、測定槽1とイオンが移動可能に連絡する基準電極
14が設けられている。この基準電極14は、塩化カリ
ウムの飽和溶液15に、銀・塩化銀電極部材16の先端
を浸して形成されている。
In FIG. 1, the measuring tank 1 has a wide-mouthed container 3 having a stopper 2. The stopper 2 has a funnel 4 for supplying a 0.1 mol sodium chloride solution, a pipe 5 for introducing air,
A salt bridge 6, a counter electrode 8 including a platinum plate 7, and a test electrode 10 holding a sample piece 9 to be measured are fixed. Measuring tank 1
A stirrer 12 is rotatably arranged on the bottom 11 of the
The rotor 12 is a stirrer 1 provided below the container 3.
It is rotationally driven by 3. In this example, a reference electrode 14 that movably communicates with the measurement tank 1 via a salt bridge 6 is provided. The reference electrode 14 is formed by immersing the tip of a silver / silver chloride electrode member 16 in a saturated solution 15 of potassium chloride.

【0017】本例において、試験電極10を電位差計1
7を介して基準電極14に接続する回路18が形成され
ている。この回路は無抵抗電流計19を介して、電源2
0の負極に接続している。本例の測定槽1には、矩形波
分極抵抗法により、腐食速度を測定することができるよ
うに、対極8が電源20の正極に接続されてる。
In this example, the test electrode 10 was replaced with a potentiometer 1.
A circuit 18 connected to the reference electrode 14 via 7 is formed. This circuit is connected to the power supply 2 via the resistanceless ammeter 19.
It is connected to the negative electrode of 0. In the measuring tank 1 of this example, the counter electrode 8 is connected to the positive electrode of the power source 20 so that the corrosion rate can be measured by the rectangular wave polarization resistance method.

【0018】本例は以上のように構成されているので、
容器3内に水を入れ、栓2をはめて、撹拌子12を回転
させて、試料片9の腐食電位を電位差計17により測定
する。この腐食電位を測定したところで、矩形波分極抵
抗法により腐食速度を求める。即ち、本例において、分
極コンダクタンス測定装置(図示されていない)を用い
て、ファンクションジェネレータ(図示されていない)
により駆動されるガルバノスタット(図示されていな
い)から、測定槽1内に矩形波電流を流して、溶液抵抗
(Rs)及び全抵抗(Rt)を求め、分極抵抗を(R
p)を、式:Rp=Rt−Rsより算出し、腐食速度を
求める。次いで、栓2を取って容器3内の水をあけ、容
器3内を空にしたところで、栓2をして漏斗4から0.
1モル濃度の塩化ナトリウム溶液を容器3内に供給し
て、試料片9の腐食電位を電位差計17により測定す
る。
Since this example is constructed as described above,
Water is put in the container 3, the stopper 2 is fitted, the stirring bar 12 is rotated, and the corrosion potential of the sample piece 9 is measured by the potentiometer 17. When this corrosion potential is measured, the corrosion rate is obtained by the rectangular wave polarization resistance method. That is, in this example, a polarization conductance measuring device (not shown) is used, and a function generator (not shown) is used.
From the galvanostat (not shown) driven by, a rectangular wave current is passed through the measuring tank 1 to obtain the solution resistance (Rs) and the total resistance (Rt), and the polarization resistance (R
p) is calculated from the formula: Rp = Rt−Rs to obtain the corrosion rate. Next, the stopper 2 was removed, the water in the container 3 was drained, and when the inside of the container 3 was emptied, the stopper 2 was inserted and the funnel 4 was closed.
A 1 molar sodium chloride solution is supplied into the container 3 and the corrosion potential of the sample piece 9 is measured by a potentiometer 17.

【0019】このような測定により得られた水で測定し
た腐食電位と、0.1モルNaCl溶液で測定した腐食
電位の差、即ち電位応答幅をΔE(mV)とし、実時間
腐食速度をC(mA/cm)として、次の実験式: ΔE=4.4×10logC+1.6 が求められた。
The difference between the corrosion potential measured with water and the corrosion potential measured with a 0.1 molar NaCl solution, that is, the potential response width is ΔE (mV), and the real-time corrosion rate is C As (mA / cm 2 ), the following empirical formula: ΔE = 4.4 × 10 log C + 1.6 was obtained.

【0020】水道水、硫酸カリウムの5×10−4モル
溶液又は硫酸カリウムの0.01モル溶液を基準溶液と
した場合で、これら基準溶液で測定した腐食電位と1モ
ルの塩化ナトリウム溶液で測定した腐食電位の差、即ち
電位応答幅と腐食速度の関係は、相関係数0.97で、
次の実験式: △E=1.6×10+1.4×10logC が求められた。この電位応答幅と腐食速度の関係は、図
4に示されている。図中丸印は水道水の場合の電位応答
幅であり、黒い四角印は硫酸カリウムの5×10−4
ル溶液の場合の電位応答幅であり、黒い三角印は、硫酸
カリウムの0.01モル溶液の場合の電位応答幅と腐食
速度の関係を示している。
When tap water, a 5 × 10 −4 mol solution of potassium sulfate or a 0.01 mol solution of potassium sulfate was used as a reference solution, the corrosion potential measured with these reference solutions and the 1 mol sodium chloride solution were measured. The difference between the corrosion potentials, that is, the relationship between the potential response width and the corrosion rate has a correlation coefficient of 0.97,
The following empirical formula was calculated: ΔE = 1.6 × 10 2 + 1.4 × 10 2 logC. The relationship between the potential response width and the corrosion rate is shown in FIG. In the figure, the circles represent the potential response width in the case of tap water, the black squares represent the potential response width in the case of a potassium sulfate 5 × 10 −4 mol solution, and the black triangles represent the potassium sulfate 0.01 mol. The relationship between the potential response width and the corrosion rate in the case of a solution is shown.

【0021】基準溶液の水道水又は硫酸カリウム5×1
−4モル溶液で測定された腐食電位と、0.1モルの
NaCl溶液で測定した腐食電位との差と腐食速度の関
係は、相関係数0.90で、次の実験式: ΔE=3.3×10+5.8×10logC が求められた。この電位応答幅と腐食速度の関係は、図
5に示されている。図中丸印は水道水の場合の電位応答
幅であり、黒い四角印は硫酸カリウムの5×10−4
ル溶液の場合の電位応答幅と腐食速度の関係を示してい
る。
Standard solution of tap water or potassium sulfate 5 × 1
The difference between the corrosion potential measured in a 0-4 molar solution and the corrosion potential measured in a 0.1 molar NaCl solution and the corrosion rate is a correlation coefficient of 0.90 with the following empirical formula: ΔE = 3.3 x 10 + 5.8 x 10 log C was determined. The relationship between the potential response width and the corrosion rate is shown in FIG. In the figure, the circles indicate the potential response width in the case of tap water, and the black squares indicate the relationship between the potential response width and the corrosion rate in the case of a 5 × 10 −4 mol solution of potassium sulfate.

【0022】さらに、基準溶液の水道水、硫酸カリウム
の5×10−4モル溶液又は硫酸カリウムの0.01モ
ル溶液で測定した腐食電位と、0.01モルNaCl溶
液で測定した腐食電位との差と腐食速度の関係は、相関
係数0.90で、次の実験式: ΔE=2.5×10+3.3×10logC が求められた。この電位応答幅と腐食速度の関係は、図
6に示されている。図中丸印は水道水の場合の電位応答
幅であり、黒い四角印は硫酸カリウムの5×10−4
ル溶液の場合の電位応答幅であり、黒い三角印は、硫酸
カリウムの0.01モル溶液の場合の電位応答幅と腐食
速度の関係を示している。
Furthermore, the corrosion potential measured with a standard solution of tap water, a 5 × 10 −4 mol solution of potassium sulfate or a 0.01 mol solution of potassium sulfate, and the corrosion potential measured with a 0.01 mol NaCl solution. The correlation between the difference and the corrosion rate was 0.90, and the following empirical formula: ΔE = 2.5 × 10 + 3.3 × 10 log C 2 was obtained. The relationship between the potential response width and the corrosion rate is shown in FIG. In the figure, the circles represent the potential response width in the case of tap water, the black squares represent the potential response width in the case of a potassium sulfate 5 × 10 −4 mol solution, and the black triangles represent the potassium sulfate 0.01 mol. The relationship between the potential response width and the corrosion rate in the case of a solution is shown.

【0023】本例において、腐食計測を行う場合、塩化
物イオンを除去して、元の溶液環境即ち基準溶液に戻し
た場合、塩化物イオンに起因する腐食系の乱れが残存す
るか否かを、基準溶液への塩化物イオンの添加と、新た
な基準溶液の入れ換えを繰り返して腐食の状況を調べた
その結果を図7に示す。図7において、白丸は基準溶液
のとき、斜線部分は塩化物イオン濃度が0.1モルのと
きを表している。四角印は腐食速度の測定を示す。横軸
に時間が取ってあり、塩化物イオンの添加が4回あった
ことを示している。
In this example, when performing corrosion measurement, if chloride ions were removed and returned to the original solution environment, that is, the reference solution, it was determined whether or not the disorder of the corrosion system due to chloride ions remains. FIG. 7 shows the results of examining the state of corrosion by repeating the addition of chloride ions to the standard solution and the replacement of a new standard solution. In FIG. 7, white circles represent the standard solution, and shaded areas represent the chloride ion concentration of 0.1 mol. Square marks indicate the measurement of corrosion rate. The horizontal axis is timed, indicating that there were four chloride ion additions.

【0024】上記の実験式及び図4乃至図6に示される
ように、本例における水等の基準溶液で測定した腐食電
位と、0.1モルのイオン濃度のNaCl溶液で測定し
た腐食電位の差、即ち電位応答幅ΔE(mV)はlog
Cと線形関係にあり、前記腐食電位を求めることによっ
て、腐食速度Dを求めることができる。この腐食速度
は、前記実時間腐食速度とよく対応していた。電位応答
幅に対する腐食速度は、塩化ナトリウ溶液の塩化ナトリ
ウム濃度が小さい溶液ほど精密な測定が可能であること
を示しているが、0.01モル以下の濃度であると水道
水と略同等の塩化物イオン濃度となり、電位応答幅の測
定値が小さくなって、誤差を生じ易くなる。
As shown in the above empirical formula and FIGS. 4 to 6, the corrosion potential measured with a reference solution such as water in this example and the corrosion potential measured with a NaCl solution having an ion concentration of 0.1 mol. The difference, that is, the potential response width ΔE (mV) is log
It has a linear relationship with C, and the corrosion rate D can be calculated by calculating the corrosion potential. This corrosion rate corresponded well with the real-time corrosion rate. It is shown that the corrosion rate with respect to the potential response width can be measured more accurately as the sodium chloride concentration of the sodium chloride solution is smaller, but when the concentration is 0.01 mol or less, it is almost equivalent to tap water. It becomes the concentration of the product ions, the measured value of the potential response width becomes small, and an error easily occurs.

【0025】図2に示す実施例においては、配管路21
に、分岐点22で分岐して迂回路23が形成されてい
る。配管路21には、上流側に第1開閉弁24が形成さ
れ、下流側に第2開閉弁25が形成されており、前記迂
回路23は、第2開閉弁25の下流側で配管路21に接
続している。配管路21は第1開閉弁24に続く箇所2
6で分岐して、0.1モル濃度の塩化ナトリウム溶液供
給流路27が形成されている。この塩化ナトリウム溶液
供給流路27は、第3開閉弁28を有し、0.1モル濃
度の塩化ナトリウム溶液槽(図示されていない)に、該
塩化ナトリウム溶液を配管路21に送液する送液ポンプ
(図示されていない)を介して接続している。
In the embodiment shown in FIG. 2, the pipe line 21
In addition, a bypass 23 is formed by branching at the branch point 22. A first opening / closing valve 24 is formed on the upstream side of the pipeline 21, and a second opening / closing valve 25 is formed on the downstream side of the pipeline 21. The bypass 23 is located on the downstream side of the second opening / closing valve 25. Connected to. The pipe line 21 is located at a point 2 that follows the first opening / closing valve 24.
A branch is made at 6 to form a 0.1 molar sodium chloride solution supply channel 27. The sodium chloride solution supply flow path 27 has a third opening / closing valve 28, and sends the sodium chloride solution to a pipe line 21 to a 0.1 molar sodium chloride solution tank (not shown). It is connected via a liquid pump (not shown).

【0026】また配管路21は第2開閉弁の上流側の箇
所29で分岐して、第4開閉弁30を備える塩化ナトリ
ウム溶液排出路31が形成されている。配管路21の分
岐点26及び29の間には、基準電極32が配管路21
内に突き出て設けられている。基準電極32の周囲の配
管路壁33は、試験電極33となっており測定領域36
が形成されている。基準電極32及び試験電極33は電
位差計37に接続している。一方、迂回路23は、上流
側に第5開閉弁34を備え、また下流側に第6開閉弁3
5を備えている。
The pipe line 21 is branched at a location 29 on the upstream side of the second opening / closing valve to form a sodium chloride solution discharge passage 31 having a fourth opening / closing valve 30. The reference electrode 32 is provided between the branch points 26 and 29 of the pipe line 21.
It is provided so as to project inside. The pipe passage wall 33 around the reference electrode 32 serves as the test electrode 33 and serves as the measurement area 36.
Are formed. The reference electrode 32 and the test electrode 33 are connected to a potentiometer 37. On the other hand, the detour 23 is provided with the fifth opening / closing valve 34 on the upstream side and the sixth opening / closing valve 3 on the downstream side.
5 is provided.

【0027】本例は以上のように構成されているので、
配管路21を介して給水を行うときは、第1開閉弁24
及び第2開閉弁25を開き、第2乃至第6開閉弁を閉じ
て行う。水による腐食電位の測定は、このように配管路
21を介して給水を行っている間に行われる。水による
腐食電位の値は、電位差計37の腐食電位が定常値とな
ったところで読み取られる。測定が終わったところで、
第1及び第2開閉弁24及び25を閉じ、第5及び第6
開閉弁34及び35を開いて、迂回路23を介して給水
を行い、塩化ナトリウム溶液による腐食電位の測定を行
う。
Since this example is constructed as described above,
When water is supplied through the pipeline 21, the first opening / closing valve 24
The second on-off valve 25 is opened, and the second to sixth on-off valves are closed. The measurement of the corrosion potential due to water is performed while water is being supplied through the pipe line 21 in this manner. The value of the corrosion potential due to water is read when the corrosion potential of the potentiometer 37 reaches a steady value. When the measurement is over,
The first and second on-off valves 24 and 25 are closed, and the fifth and sixth
The on-off valves 34 and 35 are opened, water is supplied through the bypass 23, and the corrosion potential of the sodium chloride solution is measured.

【0028】塩化ナトリウム溶液による腐食電位の測定
は、第3及び第4開閉弁28および30を開いて、0.
1モル濃度の塩化ナトリウム溶液を測定領域37を経由
して排出路に流しながら行う。この0.1モル濃度の塩
化ナトリウム溶液を流す間に、塩化ナトリウム溶液の腐
食電位の値を、電位差計37の腐食電位が定常値となっ
たところで読み取る。先に読み取った水による腐食電位
の値と塩化ナトリウム溶液による腐食電位の値の差を求
めて、腐食速度を実験式から求める。
To measure the corrosion potential using a sodium chloride solution, open the third and fourth on-off valves 28 and 30, and set to 0.
It is carried out while flowing a 1 molar sodium chloride solution through the measurement region 37 into the discharge path. While flowing the 0.1 molar sodium chloride solution, the value of the corrosion potential of the sodium chloride solution is read when the corrosion potential of the potentiometer 37 reaches a steady value. The difference between the previously read value of the corrosion potential due to water and the value of the corrosion potential due to the sodium chloride solution is obtained, and the corrosion rate is obtained from the empirical formula.

【0029】この塩化ナトリウム溶液による腐食電位の
測定が終了したところで、開閉弁28を閉じ、第1開閉
弁24を開いて、測定領域に残留する測定に使用された
0.1モル濃度の塩化ナトリウム溶液を、流路31から
排出する。腐食電位の測定に使用された塩化ナトリウム
溶液が排出されたところで、第2開閉弁25を開き、第
5及び第6開閉弁34及び35を閉じる。
When the measurement of the corrosion potential by this sodium chloride solution is completed, the on-off valve 28 is closed and the first on-off valve 24 is opened to leave the residual sodium chloride in the measurement region at the concentration of 0.1 molar sodium chloride used for the measurement. The solution is discharged from the channel 31. When the sodium chloride solution used for measuring the corrosion potential has been discharged, the second opening / closing valve 25 is opened and the fifth and sixth opening / closing valves 34 and 35 are closed.

【0030】配管路21が排水に使用される場合におい
て、腐食速度を検出するときは、第1及び第2開閉弁2
4及び25を閉じ、第5及び第6開閉弁を開いて迂回路
23に排水を流しながら行われる。この場合、流路27
は、第2開閉弁28を介して、塩化ナトリウム溶液槽に
接続している。
When the corrosion rate is detected when the pipe line 21 is used for drainage, the first and second on-off valves 2
4 and 25 are closed, the fifth and sixth on-off valves are opened, and drainage is made to flow to the bypass 23. In this case, the flow path 27
Is connected to the sodium chloride solution tank via the second opening / closing valve 28.

【0031】まず、第1開閉弁24及び第2開閉弁25
を開き第5開閉弁34及び第6開閉弁35を閉じて、排
水を測定領域36に流して、排水の腐食電位の値が電位
差計の定常値から読み取られる。排水の腐食電位の値が
読み取られたところで、第1及び第2開閉弁24及び2
5を閉じて第5及び第6開閉弁を開いて、第3開閉弁2
8を開いて、測定領域を塩化ナトリウム溶液槽に接続
し、測定領域36内に0.1モル濃度の塩化ナトリウム
溶液を流す。この塩化ナトリウム溶液を測定領域36に
流しながら、0.1モルの濃度の塩化ナトリウム溶液に
よる腐食電位を、電位差計の定常値から読み取る。
First, the first opening / closing valve 24 and the second opening / closing valve 25.
Is opened and the fifth on-off valve 34 and the sixth on-off valve 35 are closed, the waste water is caused to flow into the measurement region 36, and the value of the corrosion potential of the waste water is read from the steady value of the potentiometer. When the value of the corrosion potential of the waste water is read, the first and second on-off valves 24 and 2 are
5 and the fifth and sixth on-off valves are opened to open the third on-off valve 2
8 is opened, the measurement area is connected to a sodium chloride solution tank, and a 0.1 molar sodium chloride solution is flown into the measurement area 36. While flowing this sodium chloride solution into the measurement region 36, the corrosion potential due to the sodium chloride solution having a concentration of 0.1 mol is read from the steady value of the potentiometer.

【0032】図3は、図2に示す実施例における基準電
極の取付け部の構造の概略を示す測定領域の一部拡大断
面図であり、図2に対応する箇所には、同一の符号が付
されている。配管路21の測定領域36の一部には、基
準電極32の取り付け用分岐管継手38により前後の配
管39及び40が接続されている。
FIG. 3 is a partially enlarged cross-sectional view of the measurement area showing the outline of the structure of the mounting portion of the reference electrode in the embodiment shown in FIG. 2, and the portions corresponding to FIG. Has been done. The front and rear pipes 39 and 40 are connected to a part of the measurement region 36 of the pipe passage 21 by a branch pipe joint 38 for mounting the reference electrode 32.

【0033】本例において、前記分岐管継手39は、分
岐ねじ継手であり、その分岐部41には、接合端がねじ
切りされた短管42が螺着されている。短管42のねじ
切りされていない端部43には、ゴム等の弾性部材によ
り作製されている栓44が嵌合されており、基準電極3
2は、この嵌合されている栓44の貫通孔45を挿通し
て栓保持されている。
In this example, the branch pipe joint 39 is a branch threaded joint, and a short pipe 42 having a threaded joint end is screwed to the branching portion 41. A stopper 44 made of an elastic member such as rubber is fitted to the non-threaded end portion 43 of the short tube 42, and the reference electrode 3
The plug 2 is held by being inserted through the through hole 45 of the fitted plug 44.

【0034】本例は以上のように構成されているので、
測定時には、分岐管継手の分岐部41に基準電極32を
取付けた短管42を螺着により取付け、使用しないとき
は、封鎖用のねじ付の栓体(図示されていない)が螺着
される。本例の基準電極32の取付け構造を、図2の実
施例の配管路に適用する場合、開閉弁34及び35を開
き、給水を迂回路23に通し、開閉弁24及び25を閉
じて、封鎖用の栓体を分岐部41から取り除き、短管4
2を分岐部41に取り付ける。短管42の取り付けが行
われたところで、開閉弁24及び25を開いて、配管路
21を介して給水を行い、開閉弁34及び35を閉じ迂
回路23を介する給水を停止する。配管路21を水が流
れる間に水による腐食電位の測定を行う。
Since this example is constructed as described above,
At the time of measurement, the short pipe 42 having the reference electrode 32 attached thereto is attached to the branching portion 41 of the branch pipe joint by screwing, and when not used, a plug body (not shown) with a screw for sealing is screwed on. . When the mounting structure of the reference electrode 32 of the present example is applied to the pipeline of the embodiment of FIG. 2, the opening / closing valves 34 and 35 are opened, the water supply is passed through the bypass 23, and the opening / closing valves 24 and 25 are closed to close it. Remove the plug for use from the branch part 41,
2 is attached to the branch portion 41. When the short pipe 42 is attached, the opening / closing valves 24 and 25 are opened, water is supplied through the pipe line 21, the opening / closing valves 34 and 35 are closed, and the water supply through the bypass 23 is stopped. The corrosion potential due to water is measured while the water flows through the pipe line 21.

【0035】[0035]

【発明の効果】本発明は、腐食状態を検出する金属試料
又は配管路の管壁についての腐食電位計測を、水中及び
腐食促進溶液中で行い、水中で計測された腐食電位と腐
食促進溶液中で計測された腐食電位の差又は比を求め、
予め作成した前記腐食電位の差又は比に対応する腐食速
度の関係を示す実験式、表又は線図から、前記両腐食電
位の差又は比の値に対応する腐食速度を割り出し、金属
試料及び配管路の腐食状態を検出するので、従来の分極
抵抗法、矩形波分極抵抗法などによる腐食速度の計測に
比して、短時間で且つ簡単な操作で、腐食速度を求める
ことができる。
INDUSTRIAL APPLICABILITY In the present invention, the corrosion potential of a metal sample or a pipe wall of a pipeline for detecting a corrosion state is measured in water and a corrosion promoting solution, and the corrosion potential measured in water and the corrosion promoting solution are measured. Obtain the difference or ratio of the corrosion potential measured in
From the empirical formula, table or diagram showing the relationship of the corrosion rate corresponding to the difference or ratio of the corrosion potentials created in advance, calculate the corrosion rate corresponding to the value of the difference or ratio of the two corrosion potentials, metal sample and pipe Since the corrosion state of the road is detected, it is possible to obtain the corrosion rate in a short time and with a simple operation as compared with the measurement of the corrosion rate by the conventional polarization resistance method, the rectangular wave polarization resistance method, or the like.

【0036】このように、本発明によると、水による腐
食電位と腐食促進溶液における腐食電位の差又は比を求
めて腐食速度を求めるので、従来の分極抵抗法や矩形波
分極抵抗法による腐食速度の計測に比して、測定装置の
構造が簡単となり、配管路の複数箇所に取り付けて、配
管路の腐食状態の管理が、従来の腐食速度測定装置と比
して安価に行うことができ経済的に優れるものである。
As described above, according to the present invention, since the corrosion rate is obtained by calculating the difference or ratio between the corrosion potential of water and the corrosion potential of the corrosion promoting solution, the corrosion rate by the conventional polarization resistance method or rectangular wave polarization resistance method is obtained. The structure of the measuring device is simpler than that of the above, and the corrosion state of the piping can be controlled at a lower cost compared to the conventional corrosion rate measuring device by installing it at multiple points in the piping. Is superior in terms of quality.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例において使用される測定セル
の概略を示す説明図である。
FIG. 1 is an explanatory diagram showing an outline of a measuring cell used in an embodiment of the present invention.

【図2】本発明の別の一実施例の測定セルを備えた配管
路の系統図である。
FIG. 2 is a system diagram of a piping line including a measuring cell according to another embodiment of the present invention.

【図3】図2に示す実施例の測定領域の基準電極の取付
け構造を中心に示す概略の拡大部分断面図である。
3 is a schematic enlarged partial cross-sectional view mainly showing a reference electrode mounting structure in a measurement region of the embodiment shown in FIG.

【図4】塩化ナトリウイオン等の塩化物イオンが1モル
濃度となるように添加した場合の、腐食電位の差即ち電
位応答幅(ΔEcorr)と腐食速度(logl
corr)の関係を示す図である。
FIG. 4 shows the difference in corrosion potential, that is, potential response width (ΔE corr ), and corrosion rate (logl) when chloride ions such as sodium chloride ions are added so as to have a molar concentration of 1.
It is a figure which shows the relationship of ( corr ).

【図5】塩化ナトリウムイオン等の塩化物イオンが0.
1モル濃度となるように添加した場合の、腐食電位の差
即ち電位応答幅(ΔEcorr)と腐食速度(logl
corr)の関係を示す図である。
FIG. 5 shows that chloride ions such as sodium chloride ion are less than 0.
Difference in corrosion potential, ie, potential response width (ΔE corr ), and corrosion rate (logl), when added so as to have a molar concentration of 1.
It is a figure which shows the relationship of ( corr ).

【図6】塩化ナトリウム等の塩化物イオンが0.1モル
濃度となるように添加した場合の、腐食電位の差即ち電
位応答幅(ΔEcorr)と腐食速度(logl
corr)の関係を示す図である。
FIG. 6 shows the difference in corrosion potential, that is, the potential response width (ΔE corr ), and the corrosion rate (logl) when chloride ions such as sodium chloride are added so as to have a concentration of 0.1 mol.
It is a figure which shows the relationship of ( corr ).

【図7】水道水における塩化ナトリウム等の塩化物イオ
ン濃度(モル)の変化に対する電位応答(Ecorr
と腐食速度(lcorr)の変化を示す図である。
FIG. 7: Potential response (E corr ) to changes in chloride ion concentration (mol) such as sodium chloride in tap water
It is a figure which shows the change of the corrosion rate (l corr ).

【符号の説明】[Explanation of symbols]

1 測定槽 2 栓 3 広口の容器 4 漏斗 5 空気導入用の管 6 塩橋 7 白金板 8 対極 9 試料片 10 試験電極 11 測定槽の底部 12 撹拌子 13 スターラ 14、32 基準電極 15 塩化カリウムの飽和溶液 16 銀・塩化銀電極部材 17、37 電位差計 18 基準電極に接続する回路 19 無抵抗電流計 20 電源 21 配管路 22 分岐点 23 迂回路 24 第1開閉弁 25 第2開閉弁 26、29 分岐箇所 27 塩化ナトリウム溶液供給流路 28 第3開閉弁 30 第4開閉弁 31 塩化ナトリウム溶液排出路 33 配管路壁 34 第5開閉弁 35 第6開閉弁 1 Measuring Tank 2 Stopper 3 Wide Mouth Container 4 Funnel 5 Air Introducing Tube 6 Salt Bridge 7 Platinum Plate 8 Counter Electrode 9 Specimen 10 Test Electrode 11 Bottom of Measuring Tank 12 Stirrer 13 Stirrer 14, 32 Reference Electrode 15 Potassium Chloride Saturated solution 16 Silver / silver chloride electrode member 17,37 Potentiometer 18 Circuit connected to the reference electrode 19 Non-resistance ammeter 20 Power supply 21 Pipeline 22 Branch point 23 Bypass 24 First opening / closing valve 25 Second opening / closing valve 26, 29 Branching point 27 Sodium chloride solution supply flow path 28 Third opening / closing valve 30 Fourth opening / closing valve 31 Sodium chloride solution discharge path 33 Piping path wall 34 Fifth opening / closing valve 35 Sixth opening / closing valve

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成6年6月1日[Submission date] June 1, 1994

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】本発明において、例えば水等の基準溶液中
及び腐食促進溶液中で計測された腐食電位の値に開きが
ないとき、即ち電位応答幅が小さいときは、電位応答幅
が大きいときに比して腐食電流が大きく、したがって、
腐食状態が進行していることを示しており、また水等の
基準溶液中及び腐食促進溶液中で計測された腐食電位の
値に開きが現れるとき、即ち電位応答幅が大きいとき
は、腐食速度は小さく、腐食状態が進行していないこと
を示している。このように計測された腐食電位の値の開
きが大きいほど、腐食速度が小さいことを示している。
本発明において、腐食速度は、計測された水等の基準溶
液中及び腐食促進溶液中での腐食電位の差、即ち電位応
答幅により求められるが、両腐食電位の比により腐食速
度を求めることができる。何れの場合においても、両腐
食電位間の差の大きさ又は両腐食電位の比に対応する腐
食速度を予め求めて、例えば表又は線図に製作してお
き、該表及び線図の対応する腐食電位の差又は比に対応
する腐食速度を求めることができる。
In the present invention, the values of the corrosion potential measured in a standard solution such as water and in a corrosion accelerating solution are different from each other.
When there is not, that is, when the potential response width is small, the potential response width
Has a higher corrosion current than
It shows that the corrosion state is progressing ,
Of the corrosion potential measured in the reference solution and in the corrosion-promoting solution
When the difference appears in the value, that is, when the potential response width is large
Indicates that the corrosion rate is low and the corrosion state has not progressed
Is shown. Opening the value of the corrosion potential measured in this way
The larger the grain size, the lower the corrosion rate.
In the present invention, the corrosion rate is obtained by the difference between the corrosion potentials in the measured reference solution such as water and the corrosion acceleration solution, that is, the potential response width, but the corrosion rate can be obtained by the ratio of both corrosion potentials. it can. In any case, the corrosion rate corresponding to the magnitude of the difference between the two corrosion potentials or the ratio of the two corrosion potentials is obtained in advance and is prepared in, for example, a table or a diagram, and the table and the diagram correspond to each other. Corrosion rates corresponding to differences or ratios of corrosion potentials can be determined.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0024[Name of item to be corrected] 0024

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0024】上記の実験式及び図4乃至図6に示される
ように、本例における水等の基準溶液で測定した腐食電
位と、0.1モルのイオン濃度のNaCl溶液で測定し
た腐食電位の差、即ち電位応答幅ΔE(mV)はlog
Cと線形関係にあり、前記腐食電位を求めることによっ
て、腐食速度Dを求めることができる。この腐食速度
は、前記実時間腐食速度とよく対応していた。例えば、
図5についてみれば、水等の基準溶液において計測され
た腐食電位の値と腐食促進溶液において計測された腐食
電位の値の開き、即ち電位応答幅(ΔEcorr)が−
200mVに現れるときの腐食速度(log
corr)は10−3(mA/cm)のオーダーで
あるのに対し、電位応答幅(ΔEcorr)が0mV、
即ち水等の基準溶液中と腐食促進溶液中で計測された腐
食電位の値に開きが現れないときの腐食速度(logl
corr)は、10(mA/cm)のオーダーであ
る。したがって、図5は、電位応答幅が大きい場合に比
して、電位応答幅が小さい場合は腐食速度が大きく、腐
食が進行していることを示している。しかも、図5で、
電位応答幅ムΔ(mV)と腐食速度logl
corr(mA/cm)との関系は線状であるから、
図5は、水等の基準溶液中で計測された腐食電位の値と
腐食促進溶液中で計測された腐食電位の値の間に開きが
大きいほど、腐食速度が小さいことを示している。この
関係は、図4及び図6においても同様である。したがっ
て、図4乃至図6は、水等の基準溶液中及び腐食促進溶
液中で計測された腐食電位の値に開きがないとき、即
ち、電位応答幅が小さいときは、電位応答幅が大きいと
きに比して腐食速度が大きく、腐食状態が進行している
ことを示しており、また、水等の基準溶液中及び腐食促
進溶液中で計測された腐食電位の値に開きが現れると
き、即ち電位応答幅が大きいときは、腐食速度は小さ
く、腐食状態が進行していないことを示している。した
がって、図4乃至図6は、以上のように、水等の基準溶
液中及び腐食促進溶液中で計測された腐食電位の値の開
きが大きいほど、即ち電位応答幅が大きいほど、腐食速
度が小さくなることを示している。電位応答幅に対する
腐食速度は、塩化ナトリウム溶液の塩化ナトリウム濃度
が小さい溶液ほど精密な測定が可能であることを示して
いるが、0.01モル以下の濃度であると水道水と略同
等の塩化物イオン濃度となり、電位応答幅の測定値が小
さくなって、誤差を生じ易くなる。
As shown in the above empirical formula and FIGS. 4 to 6, the corrosion potential measured with a reference solution such as water in this example and the corrosion potential measured with a NaCl solution having an ion concentration of 0.1 mol. The difference, that is, the potential response width ΔE (mV) is log
It has a linear relationship with C, and the corrosion rate D can be calculated by calculating the corrosion potential. This corrosion rate corresponded well with the real-time corrosion rate. For example,
Referring to FIG. 5, the measurement was performed in a standard solution such as water.
Corrosion Potential Values and Corrosion Measured in Corrosion Accelerating Solutions
The potential difference, that is, the potential response width (ΔE corr ) is −
Corrosion rate when appearing at 200 mV (log
l corr ) is on the order of 10 −3 (mA / cm 2 ).
In contrast, the potential response width (ΔE corr ) is 0 mV,
That is, the corrosion measured in a standard solution such as water and in a corrosion promoting solution
Corrosion rate when no difference appears in the value of the erosion potential (logl
corr ) is of the order of 10 0 (mA / cm 2 ).
It Therefore, FIG. 5 shows a case where the potential response width is large.
If the potential response width is small, the corrosion rate is high and
It shows that food is progressing. Moreover, in FIG.
Potential response width m (mV) and corrosion rate logl
Since the relationship with corr (mA / cm 2 ) is linear,
Figure 5 shows the values of the corrosion potential measured in a standard solution such as water.
There is a gap between the values of the corrosion potential measured in the corrosion-promoting solution.
The larger the value, the smaller the corrosion rate. this
The relationship is the same in FIGS. 4 and 6. Accordingly
4 to 6 show the results in a standard solution such as water and a corrosion-promoting solution.
If there is no difference in the value of the corrosion potential measured in the liquid, immediately
When the potential response width is small, the potential response width is large
Corrosion rate is higher than that of
In addition, in a standard solution such as water and corrosion
When a gap appears in the value of the corrosion potential measured in the developing solution
Corrosion rate is small when the potential response width is large
It means that the corrosion state has not progressed. did
Therefore, as shown in FIG. 4 to FIG.
Development of corrosion potential values measured in liquid and in corrosion-promoting solutions
Corrosion rate increases as the grain size increases, that is, the potential response width increases.
It shows that the degree becomes smaller. It is shown that the corrosion rate with respect to the potential response width can be measured more accurately as the sodium chloride solution of the sodium chloride solution has a lower concentration. It becomes the concentration of the product ions, the measured value of the potential response width becomes small, and an error easily occurs.

【手続補正3】[Procedure 3]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0030[Name of item to be corrected] 0030

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0030】配管路21が排水に使用される場合におい
て、腐食速度を検出するときは、第1及び第2開閉弁2
4及び25を閉じ、第5及び第6開閉弁を開いて迂回路
23に排水を流しながら行われる。この場合、流路27
は、第開閉弁28を介して、塩化ナトリウム溶液槽に
接続している。
When the corrosion rate is detected when the pipe line 21 is used for drainage, the first and second on-off valves 2
4 and 25 are closed, the fifth and sixth on-off valves are opened, and drainage is made to flow to the bypass 23. In this case, the flow path 27
Is connected to the sodium chloride solution tank via the third opening / closing valve 28.

【手続補正4】[Procedure amendment 4]

【補正対象書類名】図面[Document name to be corrected] Drawing

【補正対象項目名】図2[Name of item to be corrected] Figure 2

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図2】 [Fig. 2]

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新美 大輔 神奈川県横須賀市森崎3−15−1日産森崎 寮2棟417 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Daisuke Niimi 3-15-1 Morisaki Yokosuka City, Kanagawa Nissan Morisaki Dormitory 2 Buildings 417

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 電気化学的測定容器内に試料片を保持す
ると共に基準溶液を導入して、試料片を電源に接続し、
基準電極に対する試料片の電位を測定し、次いで、前記
測定容器内に腐食促進溶液を導入して、基準電極に対す
る試料片の電位を求め、これらの測定された電位を比較
して試料片の腐食速度を求めることを特徴とする給排水
装置の腐食状態検出方法。
1. A sample piece is held in an electrochemical measuring container, a reference solution is introduced, and the sample piece is connected to a power source.
The potential of the sample piece with respect to the reference electrode is measured, and then a corrosion promoting solution is introduced into the measurement container to obtain the potential of the sample piece with respect to the reference electrode, and the measured potentials are compared to corrode the sample piece. A method for detecting a corrosion state of a water supply / drainage device, characterized by obtaining a speed.
【請求項2】 配管路の腐食状態検出方法において、配
管路内の測定領域に基準溶液を流入して、該測定領域の
配管路壁を電気的に付勢して、基準電極に対する該測定
領域の配管路壁の電位を測定し、ついで前記測定領域の
配管路内に腐食促進溶液を流入して、基準電極に対する
前記測定領域の配管路壁の電位を測定して、これらの測
定された基準電極に対する配管路壁の電位を比較して配
管路の腐食速度を求めることを特徴とする配管路の腐食
状態検出方法。
2. A method for detecting a corrosion state of a pipeline, wherein a reference solution is flown into a measurement area in the pipeline to electrically energize a wall of the pipeline in the measurement area to measure the measurement area relative to a reference electrode. The potential of the pipeline wall is measured, then the corrosion promoting solution is flown into the pipeline of the measurement region, the potential of the pipeline wall of the measurement region with respect to the reference electrode is measured, and these measured standards are measured. A method for detecting a corrosion state of a pipeline, which comprises determining the corrosion rate of the pipeline by comparing the potentials of the walls of the pipeline with respect to the electrodes.
【請求項3】 配管水路と、該配管水路の上流側に形成
されている第1分岐点及び前記配管水路の下流側に形成
されている第2分岐点を結ぶ迂回流路と、前記配管水路
の第1分岐点と第2分岐点の間の上流側及び下流側に夫
々設けられている開閉弁と、これら開閉弁の間に形成さ
れている腐食促進溶液導入口及び腐食促進溶液排出口
と、該腐食促進溶液導入口に開閉弁を介して接続する腐
食促進溶液槽と、前記腐食促進溶液導入口及び排出口の
間において、配管水路内に液密に挿通されている基準電
極と、測定電極の配管水路壁とを備え、前記基準電極及
び測定電極は電位差計に接続していることを特徴とする
腐食状態検出装置を備えた配管装置。
3. A pipe channel, a bypass channel connecting a first branch point formed on the upstream side of the pipe channel and a second branch point formed on the downstream side of the pipe channel, and the pipe channel. Switching valves provided on the upstream side and the downstream side between the first branching point and the second branching point, and a corrosion promoting solution introducing port and a corrosion promoting solution discharging port formed between these opening and closing valves. , A corrosion-promoting solution tank connected to the corrosion-promoting solution inlet through an on-off valve, and a reference electrode liquid-tightly inserted in a pipe water channel between the corrosion-promoting solution inlet and the outlet, and A pipe apparatus having a corrosion state detecting device, comprising: a pipe water channel wall of an electrode, wherein the reference electrode and the measuring electrode are connected to a potentiometer.
【請求項4】 迂回流路が、その上流側及び下流側に開
閉弁が夫々設けられ、これら開閉弁の間に腐食促進溶液
導入口及び腐食促進溶液排出口が形成され、該腐食促進
溶液導入口に開閉弁を介して腐食促進溶液槽が接続され
て、前記腐食促進溶液導入口及び排出口の間において、
配管水路内に基準電極が液密に挿通され、測定電極の配
管水路壁とを備えていることを特徴とする請求項3に記
載の腐食状態検出装置を備えた配管装置。
4. A bypass passage is provided with an opening / closing valve on the upstream side and the downstream side thereof, respectively, and a corrosion promoting solution introducing port and a corrosion promoting solution discharging port are formed between these opening / closing valves, and the corrosion promoting solution introducing A corrosion accelerating solution tank is connected to the mouth through an on-off valve, and between the corrosion accelerating solution inlet and the outlet,
The pipe apparatus equipped with the corrosion state detecting device according to claim 3, wherein the reference electrode is liquid-tightly inserted into the pipe water passage and the pipe water passage wall of the measurement electrode is provided.
JP15257794A 1994-05-31 1994-05-31 Method of detecting corrosion state of water supply and drainage device and water supply and drainage device provided with corrosion state detection device of water supply and drainage device Expired - Fee Related JP3471078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15257794A JP3471078B2 (en) 1994-05-31 1994-05-31 Method of detecting corrosion state of water supply and drainage device and water supply and drainage device provided with corrosion state detection device of water supply and drainage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15257794A JP3471078B2 (en) 1994-05-31 1994-05-31 Method of detecting corrosion state of water supply and drainage device and water supply and drainage device provided with corrosion state detection device of water supply and drainage device

Publications (2)

Publication Number Publication Date
JPH0821815A true JPH0821815A (en) 1996-01-23
JP3471078B2 JP3471078B2 (en) 2003-11-25

Family

ID=15543516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15257794A Expired - Fee Related JP3471078B2 (en) 1994-05-31 1994-05-31 Method of detecting corrosion state of water supply and drainage device and water supply and drainage device provided with corrosion state detection device of water supply and drainage device

Country Status (1)

Country Link
JP (1) JP3471078B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056284A (en) * 1999-08-20 2001-02-27 Fukushima Industries Corp Measurement hole cap
CN104266961A (en) * 2014-10-16 2015-01-07 北京交通大学 Thermal oxidation accelerated aging test device and service life prediction method for in-service polyethylene pipeline
WO2019029103A1 (en) * 2017-08-09 2019-02-14 广州特种承压设备检测研究院 Aging test device for pe pipe under fluctuating pressure and lifetime prediction method
CN111650112A (en) * 2020-06-19 2020-09-11 中国核动力研究设计院 Controllable water chemistry research and test device and method for material corrosion
CN113945509A (en) * 2021-11-01 2022-01-18 西安稀有金属材料研究院有限公司 Device and method for performing electrochemical test in high-temperature liquid-phase corrosion environment

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056284A (en) * 1999-08-20 2001-02-27 Fukushima Industries Corp Measurement hole cap
CN104266961A (en) * 2014-10-16 2015-01-07 北京交通大学 Thermal oxidation accelerated aging test device and service life prediction method for in-service polyethylene pipeline
WO2019029103A1 (en) * 2017-08-09 2019-02-14 广州特种承压设备检测研究院 Aging test device for pe pipe under fluctuating pressure and lifetime prediction method
CN111650112A (en) * 2020-06-19 2020-09-11 中国核动力研究设计院 Controllable water chemistry research and test device and method for material corrosion
CN111650112B (en) * 2020-06-19 2022-11-08 中国核动力研究设计院 Controllable water chemistry research and test device and method for material corrosion
CN113945509A (en) * 2021-11-01 2022-01-18 西安稀有金属材料研究院有限公司 Device and method for performing electrochemical test in high-temperature liquid-phase corrosion environment

Also Published As

Publication number Publication date
JP3471078B2 (en) 2003-11-25

Similar Documents

Publication Publication Date Title
EP0218469A2 (en) On-line calibration system for chemical monitors
US20210341381A1 (en) Corrosivity Evaluation Device and Method Thereof
JPH0821815A (en) Corroded state detecting method and device for water feed/drainage device and water feed/drainage device equipped with this detecting device
CN108896629A (en) A kind of 3 flow-type caliberating devices of sodium ion densimeter and its scaling method
JPH09329568A (en) Method and apparatus for diagnosis of corrosion probability or corrosion degree of reinforcing bar in concrete structure
He et al. Oxygen-transfer measurement in clean water
JPS59217147A (en) Method and apparatus for inspecting corrosion of steel material in concrete
Trojanowicz Continuous potentiometric determination of sulphate in a differential flow system
WO2023286400A1 (en) Electrochemical measurement device and electrochemical measurement method
US3181058A (en) Method and apparatus for determination of amount of salt in hydrocarbon oil
JP3533573B1 (en) Automatic chlorine concentration measuring device and chlorine concentration measuring method
JP2004333280A (en) Concentration-measuring device
Stumm Estimating corrosion rates in water
US5061634A (en) Method for continually and automatically measuring the level of a water treatment product in boiler feedwater
JP3407085B2 (en) Piping inspection equipment
JP2585972Y2 (en) Residual chlorine meter with automatic calibration function
JP2824804B2 (en) Method and apparatus for measuring corrosion resistance of metal tubes
CN211347867U (en) Automatic water replenishing device for salt spray test box
JPS62147357A (en) Control and controlling apparatus for magnetic powder liquid
JPH05180799A (en) Residual chlorine measuring apparatus
JP3459168B2 (en) Chlorine concentration measurement device
JPH10332679A (en) Automatic measuring device for stability index
JPH10277534A (en) Degassing apparatus
JPS6018751A (en) Flow cell washing method
JPH0351754A (en) Method and apparatus for measuring concentration of fluorine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070912

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20080912

LAPS Cancellation because of no payment of annual fees